

Graph Representation Between Some Polynomial Clones

Radka Schwartzová

Miroslav Ploščica

Pavol Jozef Šafárik University in Košice,
108th Workshop on General Algebra
Vienna, Austria

6 – 8 February 2026

Funded by the
European Union

NextGenerationEU

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V05-00008.

The lattice of clones on a set A :

If $|A| = 1$, then the clone lattice consists of one clone.

If $|A| = 2$, then the clone lattice consists of countably many clones (Post's Lattice).

If $|A| > 2$, then the clone lattice consists of uncountable many clones.

Investigated interval

$$J_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

Investigated interval

$$J_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

The elements of $P(\mathbb{Z}_n, +)$ are all linear functions in the following form

$$p(x_1, \dots, x_n) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n,$$

where $a_0 \in \mathbb{Z}_n$, $a_1, \dots, a_n \in \mathbb{Z}$.

Investigated interval

$$J_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

The elements of $P(\mathbb{Z}_n, +)$ are all linear functions in the following form

$$p(x_1, \dots, x_n) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n,$$

where $a_0 \in \mathbb{Z}_n$, $a_1, \dots, a_n \in \mathbb{Z}$.

The elements of $P(\mathbb{Z}_n, +, \cdot)$ are all polynomial functions in the following form

$$q(\mathbf{x}) = \sum_{\alpha} a_{\alpha} \mathbf{x}^{\alpha},$$

where $\mathbf{x} = (x_1, \dots, x_n)$, the sum consists of finitely many tuples $\alpha = (\alpha_1, \dots, \alpha_n)$ of natural numbers, coefficients a_{α} belong to the set \mathbb{Z}_n and $\mathbf{x}^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$.

What is already known about the interval $J_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$?

Solved cases:

- $n = \text{prime number } p$ (Rosenberg, 1970)

$$\mathcal{J}_p$$

Lemma

Let $m, n \in \mathbb{N}$. If $\gcd(m, n) = 1$, then

$$J_{mn} \cong J_m \times J_n.$$

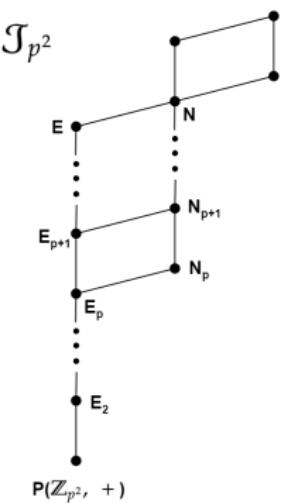
Corollary

It suffices to investigate the case $n = p^k$, $k \in \mathbb{N}$, where p is a prime number.

What is already known about the interval $J_n = \langle \mathbb{P}(\mathbb{Z}_{p^k}, +), \mathbb{P}(\mathbb{Z}_{p^k}, +, \cdot) \rangle$?

Solved cases:

- $n = p^2$, where p is prime number (Krokhin et al. 1997; Idziak and Bulatov, 2003)



Investigated interval $\langle P(\mathbb{Z}_{p^k}, +), P(\mathbb{Z}_{p^k}, +, \cdot) \rangle$

Open Problem

What is the structure of the clone lattice of the interval $\langle P(\mathbb{Z}_{p^3}, +), P(\mathbb{Z}_{p^3}, +, \cdot) \rangle$?

Investigated interval $\langle P(\mathbb{Z}_{p^k}, +), P(\mathbb{Z}_{p^k}, +, \cdot) \rangle$

Open Problem

What is the structure of the clone lattice of the interval $\langle P(\mathbb{Z}_{p^3}, +), P(\mathbb{Z}_{p^3}, +, \cdot) \rangle$?

↓

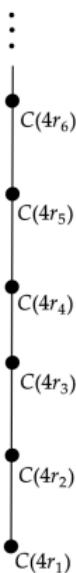
Open Problem

What is the structure of the clone lattice of the interval $\langle P(\mathbb{Z}_8, +), P(\mathbb{Z}_8, +, \cdot) \rangle$?

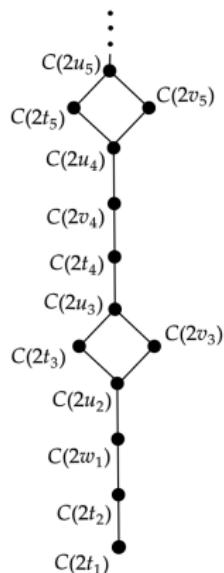
Investigated interval $\langle P(\mathbb{Z}_8, +), P(\mathbb{Z}_8, +, \cdot) \rangle$

Lattice of clones generated by operations with even coefficients:

R_1

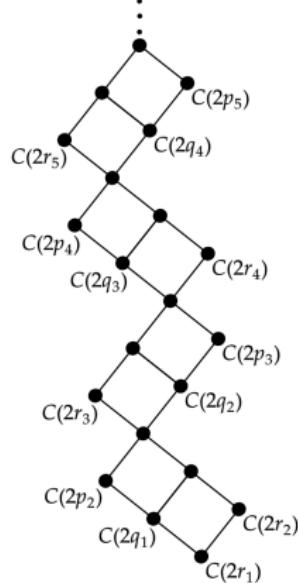


R_2



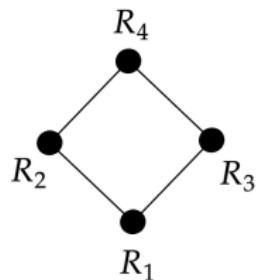
R_3

R_4



Investigated interval $\langle P(\mathbb{Z}_8, +), P(\mathbb{Z}_8, +, \cdot) \rangle$

Lattice of clones generated by operations with even coefficients:



Clones generated by some operations with odd coefficients

Let $C(f_E) \subseteq P(\mathbb{Z}_8, +, \cdot)$ be a clone generated by an operation

$$f_E(x_1, \dots, x_n) = x_1 \dots x_n \sum_{ij \in E} (x_i - 1)(x_j - 1),$$

where $E \subseteq [n]^2$ (the set of all pairs from $\{1, 2, \dots, n\}$).

Problem

The description of clones $C(f_E) \subseteq P(\mathbb{Z}_8, +, \cdot)$ generated by the operation

$$f_E(x_1, \dots, x_n) = x_1 \dots x_n \sum_{ij \in E} (x_i - 1)(x_j - 1),$$

where $E \subseteq [n]^2$ (the set of all pairs from $\{1, 2, \dots, n\}$).

$\text{Graph}(n)$ - the set of all graphs on the vertex set $\{1, 2, \dots, n\}$

$E \in \text{Graph}(n)$ - a graph on n vertices with an edge set $E \subseteq [n]^2$

Lemma

For every $E, D \in \text{Graph}(n)$, $f_E + f_D = f_{E+D}$.

$[E]$ - a class of graphs generated by E closed under isomorphism and symmetric difference
Equivalently,

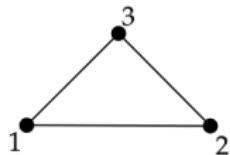
$[E] = \{E_1 + \dots + E_m \mid E_i \cong E \text{ for every } i\}$, where $+$ is the symmetric difference

$[E_1, \dots, E_m]$ - a class of graphs generated by E_1, \dots, E_m closed under isomorphism and symmetric difference

Examples

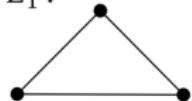
$$f_E = x_1 x_2 x_3 ((x_1 - 1)(x_2 - 1) + (x_1 - 1)(x_3 - 1) + (x_2 - 1)(x_3 - 1))$$

$E :$

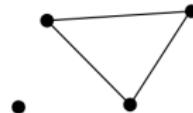


The symmetric difference of graphs:

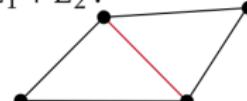
$E_1 :$



$E_2 :$



$E_1 + E_2 :$



\rightarrow

Problem

The description of clones $C(f_E) \subseteq P(\mathbb{Z}_8, +, \cdot)$ generated by the operation

$$f_E(x_1, \dots, x_n) = x_1 \dots x_n \sum_{ij \in E} (x_i - 1)(x_j - 1),$$

where $E \subseteq [n]^2$ (the set of all pairs from $\{1, 2, \dots, n\}$).

Theorem

$f_D \in C(f_E)$ if and only if $D \in [E]$.

Theorem

$f_D \in C(f_{E_1}) \vee C(f_{E_2}) \dots C(f_{E_m})$ if and only if $D \in [E_1, E_2, \dots, E_m]$.

Problem

The description of all subsets of $Graph(n)$ that are closed under isomorphism and symmetric difference.

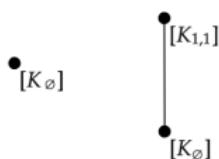
Denotations

K_m - a complete graph on m vertices and $n - m$ isolated vertices

$K_m + K_{n-m}$ - a disjoint union of K_m and K_{n-m}

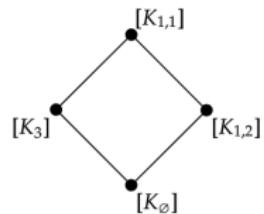
$K_{m,n-m}$ - a complete bipartite graph (with $n - m - k$ isolated vertices)

$n = 1$

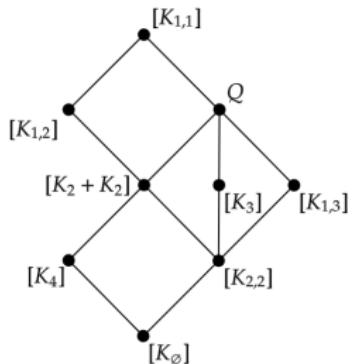


$n = 2$

$n = 3$



$n = 4$



Definition

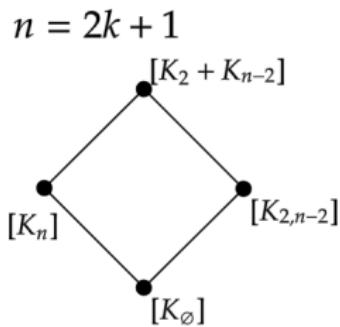
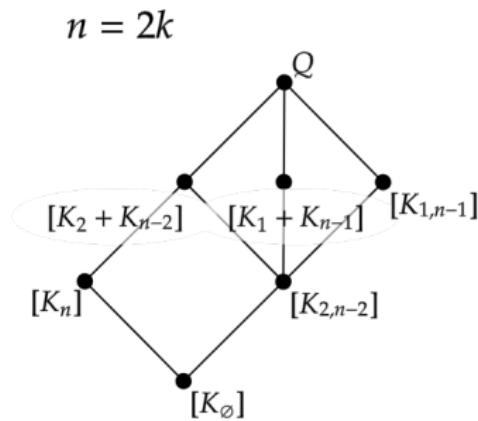
A graph $E = (V, E)$ is **quasi-complete** if any of the following conditions is satisfied for any pair of vertices $u, v \in V(E)$:

- (a) $N(u) \cup \{u, v\} = N(v) \cup \{u, v\}$,
- (b) $N(u) \cap N(v) = \emptyset$ and $N(u) \cup N(v) \cup \{u, v\} = V(E)$.

Lemma

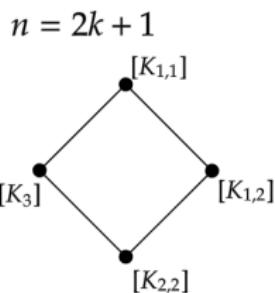
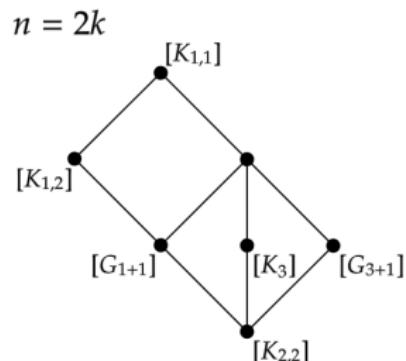
A graph E of the order n is quasi-complete, iff it is isomorphic to the graph $K_{m, n-m}$ or $K_m + K_{n-m}$ for some $m \in \{0, 1, \dots, \lfloor \frac{n}{2} \rfloor\}$.

Quasi-complete graphs $n > 4$ ($k > 1$)



Lemma

If E is not quasi-complete, then $[E]$ contains $K_{2,2}$.



$E \perp D \Leftrightarrow (E' \cap D' \mid \text{is even whenever } E' \cong E, D' \cong D)$

For $M \subseteq \text{Graph}(n)$,

$$M^\perp = \{E \in \text{Graph}(n) \mid E \perp D \text{ for every } D \in M\}$$

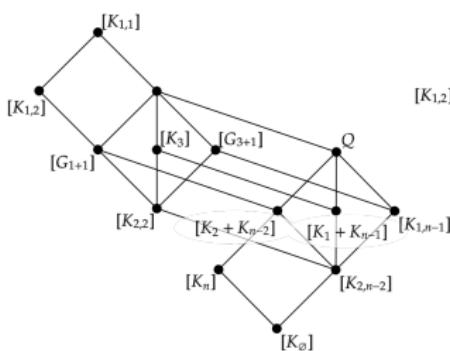
Lemma

$D \in [E] \text{ if and only if } E^\perp \subseteq D^\perp.$

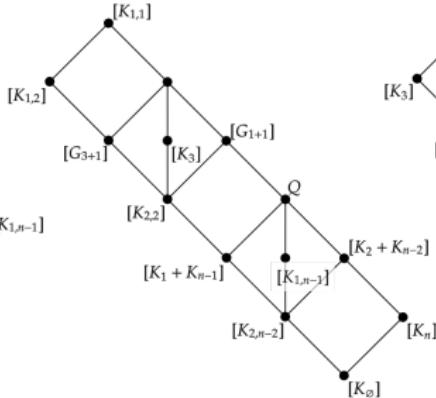
The lattice of the graph classes according to the number of vertices n

If $n > 4$ and $k \in \mathbb{N}$, then

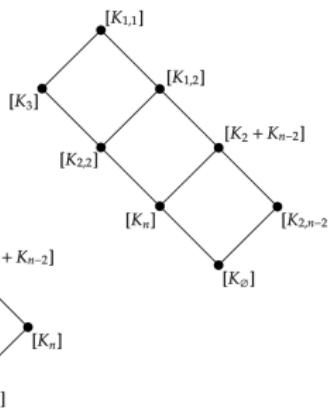
$n = 4k$



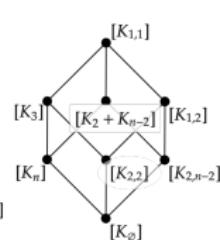
$n = 4k + 2$



$n = 4k + 1$



$n = 4k + 3$



Next aims

1. Compare $C(f_E)$ for different n
2. Investigate operations:

$$x_1 x_2 \dots x_n \sum (x_i^2 - 1)(x_j - 1)$$

$$x_1 x_2 \dots x_n \sum (x_i^2 - 1)(x_j^2 - 1)$$

3. Compare $C(f_E)$ with previously investigated clones

Thank you for your attention :)