
The Sorrows of a Young Algebraist

Tomáš Nagy

Jagiellonian University

joint work with
J. B. Brunar, J. W. Goethe, M. Kozik, and M. Pinsker

AAA 108, Wien, 8th February 2026

Neither the author nor the co-authors are responsible
for any consequences or side effects of this talk.

Charlotte: CSP
(Johanna Beate Brunar)

Charlotte: CSP
(Johanna Beate Brunar)

Werther (aka the Young Algebraist): Universal Algebra
(Philipp Alexander Grzywaczuk)

Charlotte: CSP

(Johanna Beate Brunar)

Werther (aka the Young Algebraist): Universal Algebra

(Philipp Alexander Grzywaczky)

Albert (Charlotte's fiancé and later husband): Computer Science

(any volunteers?)

The Ballroom of the Past

When CSP Found the Beauty of Universal Algebra

Finite-domain CSP \leftrightarrow universal algebra

The Ballroom of the Past

When CSP Found the Beauty of Universal Algebra

Finite-domain CSP \leftrightarrow universal algebra

Congurences of algebras \leftrightarrow identities \leftrightarrow algorithms (e.g., Bulatov, Dalmau)

The Ballroom of the Past

When CSP Found the Beauty of Universal Algebra

Finite-domain CSP \leftrightarrow universal algebra

Congurences of algebras \leftrightarrow identities \leftrightarrow algorithms (e.g., Bulatov, Dalmau)

New identities proven algebraically (absorption, centers, ...)

The Ballroom of the Past

When CSP Found the Beauty of Universal Algebra

Finite-domain CSP \leftrightarrow universal algebra

Congurences of algebras \leftrightarrow identities \leftrightarrow algorithms (e.g., Bulatov, Dalmau)

New identities proven algebraically (absorption, centers, ...)

\rightsquigarrow the Bulatov-Zhuk dichotomy theorem relies on algebraic machinery

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Algebraic methods of limited utility,

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Algebraic methods of limited utility, instead

- Hardcore CS,

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Algebraic methods of limited utility, instead

- Hardcore CS,
- Topology,

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Algebraic methods of limited utility, instead

- Hardcore CS,
- Topology,
- Category theory,

Does CSP Still Need Algebra?

After the dichotomy proof: Focus shifted to variants of CSP
(PCSPs, Quantum CSPs, VCSPs, ...)

Algebraic methods of limited utility, instead

- Hardcore CS,
- Topology,
- Category theory,
- ...

The Flirt

Is There Still Hope?

Infinite-domain CSP

Algebraic approach generalises
(complexity depends only on polymorphisms)

Infinite-domain CSP

Algebraic approach generalises
(complexity depends only on polymorphisms)

Some identities lift ([6](#)-ary pseudo-Siggers)

Infinite-domain CSP

Algebraic approach generalises
(complexity depends only on polymorphisms)

Some identities lift (6-ary pseudo-Siggers)

New algebraic theory developed recently
(smooth approximations; Mottet, Pinsker, 2022)

The most useful identities do not lift (cyclic, WNUs unsure)

- || The most useful identities do not lift (cyclic, WNUs unsure)
- || WLOG assumptions do not generalise (idempotency)

- || The most useful identities do not lift (cyclic, WNUs unsure)
- || WLOG assumptions do not generalise (idempotency)
- || Unclear how to lift most of the notions (absorption, . . .)

- || The most useful identities do not lift (cyclic, WNUs unsure)
- || WLOG assumptions do not generalise (idempotency)
- || Unclear how to lift most of the notions (absorption, . . .)
- || Important properties not characterised by identities (local consistency)

- || The most useful identities do not lift (cyclic, WNUs unsure)
- || WLOG assumptions do not generalise (idempotency)
- || Unclear how to lift most of the notions (absorption, . . .)
- || Important properties not characterised by identities (local consistency)

⇒ Most of the finite-domain methods cannot be lifted

The programme of the jealous husband:

- Remove algebra from the finite proofs

The Disillusion

The De-Algebraisation Programme

The programme of the jealous husband:

- Remove algebra from the finite proofs
- Lift them to the infinite!

The Disillusion

The De-Algebraisation Programme

The programme of the jealous husband:

- Remove algebra from the finite proofs
- Lift them to the infinite!

Used successfully in several cases:

- Pseudo-loop lemmata (Bodor, Kozik, Mottet, Pinsker, 2023; Brunar, Kozik, Pinsker, N., 2025)

The Disillusion

The De-Algebraisation Programme

The programme of the jealous husband:

- Remove algebra from the finite proofs
- Lift them to the infinite!

Used successfully in several cases:

- Pseudo-loop lemmata (Bodor, Kozik, Mottet, Pinsker, 2023; Brunar, Kozik, Pinsker, N., 2025)
- FO vs L-hard dichotomy (Dorochko, Wrona, 2026)

The Disillusion

The De-Algebraisation Programme

The programme of the jealous husband:

- Remove algebra from the finite proofs
- Lift them to the infinite!

Used successfully in several cases:

- Pseudo-loop lemmata (Bodor, Kozik, Mottet, Pinsker, 2023; Brunar, Kozik, Pinsker, N., 2025)
- FO vs L-hard dichotomy (Dorochko, Wrona, 2026)

More to come? Pseudo-identities, local consistency, ...

The Nostalgia

Identities and Loop Conditions

6-ary Siggers identity

$$s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$$

The Nostalgia

Identities and Loop Conditions

6-ary Siggers identity

$$s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$$

Hell-Nešetřil.

Every non-bipartite graph
which does not pp-construct \mathbb{K}_3
contains a loop.

The Nostalgia

Identities and Loop Conditions

6-ary Siggers identity

$$s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$$

Hell-Nešetřil.

Every non-bipartite graph which does not pp-construct \mathbb{K}_3 contains a loop.

4-ary Siggers identity

$$s(a, r, e, a) \approx s(r, a, r, e)$$

The Nostalgia

Identities and Loop Conditions

6-ary Siggers identity

$$s(x, y, z, x, y, z) \approx s(y, z, x, z, x, y)$$

4-ary Siggers identity

$$s(a, r, e, a) \approx s(r, a, r, e)$$

Hell-Nešetřil.

Every non-bipartite graph which does not pp-construct \mathbb{K}_3 contains a loop.

Barto-Kozik-Niven.

Every smooth digraph of al 1 which does not pp-construct \mathbb{K}_3 contains a loop.

Charlotte's Dark Secrets

Pseudo-Identities and Pseudo-Loop Conditions

\mathbb{G} – smooth ω -categorical digraph

6-ary **pseudo-Siggers** identity
(Barto, Pinsker, 2016)

$$\begin{aligned} & \textcolor{blue}{u \circ s}(x, y, z, x, y, z) \\ & \approx \textcolor{blue}{v \circ s}(y, z, x, z, x, y) \end{aligned}$$

Charlotte's Dark Secrets

Pseudo-Identities and Pseudo-Loop Conditions

\mathbb{G} – smooth ω -categorical digraph

6-ary **pseudo-Siggers** identity
(Barto, Pinsker, 2016)

$$\begin{aligned} & \textcolor{blue}{u \circ s}(x, y, z, x, y, z) \\ & \approx \textcolor{blue}{v \circ s}(y, z, x, z, x, y) \end{aligned}$$

Bodor, Kozik, Mottet, Pinsker.

If $\mathbb{G} / \text{Aut}(\mathbb{G})$ non-bipartite graph
which does not pp-construct \mathbb{K}_3 ,
then $\mathbb{G} / \text{Aut}(\mathbb{G})$ contains a loop.

Charlotte's Dark Secrets

Pseudo-Identities and Pseudo-Loop Conditions

\mathbb{G} – smooth ω -categorical digraph

6-ary pseudo-Siggers identity
(Barto, Pinsker, 2016)

$$\begin{aligned} & u \circ s(x, y, z, x, y, z) \\ & \approx v \circ s(y, z, x, z, x, y) \end{aligned}$$

Bodor, Kozik, Mottet, Pinsker.

If $\mathbb{G} / \text{Aut}(\mathbb{G})$ non-bipartite graph which does not pp-construct \mathbb{K}_3 , then $\mathbb{G} / \text{Aut}(\mathbb{G})$ contains a loop.

4-ary pseudo-Siggers identity
(???)

$$\begin{aligned} & u \circ s(a, r, e, a) \\ & \approx v \circ s(r, a, r, e) \end{aligned}$$

Charlotte's Dark Secrets

Pseudo-Identities and Pseudo-Loop Conditions

\mathbb{G} – smooth ω -categorical digraph

6-ary pseudo-Siggers identity
(Barto, Pinsker, 2016)

$$\begin{aligned} & uos(x, y, z, x, y, z) \\ & \approx vos(y, z, x, z, x, y) \end{aligned}$$

Bodor, Kozik, Mottet, Pinsker.

If $\mathbb{G}/\text{Aut}(\mathbb{G})$ non-bipartite graph which does not pp-construct \mathbb{K}_3 , then $\mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

4-ary pseudo-Siggers identity
????

$$\begin{aligned} & uos(a, r, e, a) \\ & \approx vos(r, a, r, e) \end{aligned}$$

?

The Dream.

\mathbb{G} smooth ω -categorical digraph, $\mathbb{G}/\text{Aut}(\mathbb{G})$ has algebraic length 1, and \mathbb{G} does not pp-construct $\mathbb{K}_3 \Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

The Dream.

\mathbb{G} smooth ω -categorical digraph, $\mathbb{G}/\text{Aut}(\mathbb{G})$ has algebraic length 1, and \mathbb{G} does not pp-construct $\mathbb{K}_3 \Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Motivation:

- **Algebra:** 4-ary pseudo-Siggers and further identities,

The Dream.

\mathbb{G} smooth ω -categorical digraph, $\mathbb{G}/\text{Aut}(\mathbb{G})$ has algebraic length 1, and \mathbb{G} does not pp-construct $\mathbb{K}_3 \Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Motivation:

- **Algebra:** 4-ary pseudo-Siggers and further identities,
- **CS:** Hardness criteria for digraphs:
 $\mathbb{G}/\text{Aut}(\mathbb{G})$ does not contain a loop $\Rightarrow \text{CSP}(\mathbb{G})$ NP-hard

The Dream.

\mathbb{G} smooth ω -categorical digraph, $\mathbb{G}/\text{Aut}(\mathbb{G})$ has algebraic length 1, and \mathbb{G} does not pp-construct $\mathbb{K}_3 \Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Motivation:

- **Algebra:** 4-ary pseudo-Siggers and further identities,
- **CS:** Hardness criteria for digraphs:
 $\mathbb{G}/\text{Aut}(\mathbb{G})$ does not contain a loop $\Rightarrow \text{CSP}(\mathbb{G})$ NP-hard
- Development of new techniques

The Dream.

\mathbb{G} smooth ω -categorical digraph, $\mathbb{G}/\text{Aut}(\mathbb{G})$ has algebraic length 1, and \mathbb{G} does not pp-construct $\mathbb{K}_3 \Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Motivation:

- **Algebra:** 4-ary pseudo-Siggers and further identities,
- **CS:** Hardness criteria for digraphs:
 $\mathbb{G}/\text{Aut}(\mathbb{G})$ does not contain a loop $\Rightarrow \text{CSP}(\mathbb{G})$ NP-hard
- Development of new techniques

For \mathbb{G} finite proven by Bodor, Kozik, Mottet, Pinsker, 2023

The Young Algebraist on the Path of Treason

Weaker Versions of the Infinite BKN

CS view on CSP:

$\text{CSP}(\mathbb{G})$: Find a homomorphism h from an input graph \mathbb{I} to \mathbb{G}
“colour the vertices of \mathbb{I} by the vertices of \mathbb{G} ”

The Young Algebraist on the Path of Treason

Weaker Versions of the Infinite BKN

CS view on CSP:

$\text{CSP}(\mathbb{G})$: Find a homomorphism h from an input graph \mathbb{I} to \mathbb{G}
“colour the vertices of \mathbb{I} by the vertices of \mathbb{G} ”

Natural requirement:

List homomorphism: For every vertex v of \mathbb{I} , prescribe a list $L(v)$ of admissible vertices of \mathbb{G} , i.e., require $h(v) \in L(v)$

$\leadsto \text{CSP}(\mathbb{G} + \text{all subsets of vertices})$.

The Young Algebraist on the Path of Treason

Weaker Versions of the Infinite BKN

CS view on CSP:

$\text{CSP}(\mathbb{G})$: Find a homomorphism h from an input graph \mathbb{I} to \mathbb{G}
“colour the vertices of \mathbb{I} by the vertices of \mathbb{G} ”

Natural requirement:

List homomorphism: For every vertex v of \mathbb{I} , prescribe a list $L(v)$ of admissible vertices of \mathbb{G} , i.e., require $h(v) \in L(v)$

$\leadsto \text{CSP}(\mathbb{G} + \text{all subsets of vertices})$.

In the infinite: Vertices of $\mathbb{G} \leadsto$ orbits of elements under $\text{Aut}(\mathbb{G})$

The Last Meeting with Charlotte

The Infinite List Homomorphism Problem

Theorem [Brunar, Kozik, N., Pinsker]

\mathbb{G} smooth ω -categorical digraph, \mathbb{G} has algebraic length 1,
and \mathbb{G} with unions of pairs of $\text{Aut}(\mathbb{G})$ -orbits does not pp-construct \mathbb{K}_3
 $\Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

The Last Meeting with Charlotte

The Infinite List Homomorphism Problem

Theorem [Brunar, Kozik, N., Pinsker]

\mathbb{G} smooth ω -categorical digraph, \mathbb{G} has algebraic length 1,
and \mathbb{G} with unions of pairs of $\text{Aut}(\mathbb{G})$ -orbits does not pp-construct \mathbb{K}_3
 $\Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Proof idea: Find a refinement of the orbit equivalence which has
better chances of being pp-definable
de-algebraised (mostly combinatorial) arguments

The Last Meeting with Charlotte

The Infinite List Homomorphism Problem

Theorem [Brunar, Kozik, N., Pinsker]

\mathbb{G} smooth ω -categorical digraph, \mathbb{G} has algebraic length 1, and \mathbb{G} with unions of pairs of $\text{Aut}(\mathbb{G})$ -orbits does not pp-construct \mathbb{K}_3
 $\Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Proof idea: Find a refinement of the orbit equivalence which has better chances of being pp-definable
de-algebraised (mostly combinatorial) arguments

Algebraic consequences:

4-ary pseudo-Siggers for structures which pp-define all unions of pairs of orbits of k -tuples for every k

The Last Meeting with Charlotte

The Infinite List Homomorphism Problem

Theorem [Brunar, Kozik, N., Pinsker]

\mathbb{G} smooth ω -categorical digraph, \mathbb{G} has algebraic length 1,
and \mathbb{G} with unions of pairs of $\text{Aut}(\mathbb{G})$ -orbits does not pp-construct \mathbb{K}_3
 $\Rightarrow \mathbb{G}/\text{Aut}(\mathbb{G})$ contains a loop.

Proof idea: Find a refinement of the orbit equivalence which has
better chances of being pp-definable
de-algebraised (mostly combinatorial) arguments

Algebraic consequences:

4-ary pseudo-Siggers for structures which pp-define
all unions of pairs of orbits of k -tuples for every k

Hope: Techniques might generalise further

The Future (If There Is Any)

Do We Need to Give Up on Algebra to Obtain Algebraic Results?

- Further de-algebraising of the finite proofs

The Future (If There Is Any)

Do We Need to Give Up on Algebra to Obtain Algebraic Results?

- Further de-algebraising of the finite proofs
- New approaches to loop lemmata:
 - Using topology to reprove Hell-Nešetřil (Meyer, Opršal, 2025)
~ another kind of algebra

The Future (If There Is Any)

Do We Need to Give Up on Algebra to Obtain Algebraic Results?

- Further de-algebraising of the finite proofs
- New approaches to loop lemmata:
 - Using topology to reprove Hell-Nešetřil (Meyer, Opršal, 2025)
 ↗ another kind of algebra
 - Connection between identities and PCSPs (Mottet, 2025)

Thank you for your attention!