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Coherent configurations are combinatorial structures encoding highly
symmetric edge-colourings of complete digraphs.

We (me and my coauthors) are interested in dagger-compact categories
used to describe quantum processes (Rel, Hilb).

f f ∗

Coherent configuration ⇝ :-Frobenius monoid internal to Rel, Hilb.

Jenča, Jenčová, and Lachman 2025
Warning: some notation introduced on the next slide is not
standard.
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Definition of coherent configurations (association schemes)
A coherent configuration is an ordered pair pX, Sq, where X is a finite set
of vertices and S (a set of colors) is a partition of X ˆ X, such that:

(A1) idX is a union of colors in S (if idX P S, it is an association scheme),
(A0) for each a P S, its inverse a´1 “ tpx1, xq | px, x1q P au is also in S,
(A8) coherence condition holds.

c

c

b

b

b b

a

a a a

Structure constants ∇: e.g., ∇c
a,b “ 2

Valency: }a} “ the number of arrows of color a with the same
source. E.g., }a} “ 2, }b} “ 2, }c} “ 1, }‚} “ 1 (always).
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Examples
Let G be a group having an action on a finite set X. Set

vertices “ X,

colors “ orbits of the action of G ñ X ˆ X Ñ X ˆ X.

Trivial scheme: action of SX on X

pSX , Xq }a} P t1, n ´ 1u

Thin scheme: Cayley action of G on itself

pG, Gq }a} “ 1
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(co-)Algebraic (co-)feeling

“∇ : pa, bq ÞÑ c” iff
c

a b

We have a monoid pRS ; ∇, eq (internal to Hilb):

∇ : RS b RS Ñ RS |ay b |by ÞÑ
ÿ

c

∇c
a,b|cy

e : R1 Ñ RS 1 ÞÑ
ÿ

aĎidX

|ay

Associativity: ∇ ˝ p∇ b idq “ ∇ ˝ pid b ∇q

We also have a comonoid pRS ; ∇:, e:q:

∇: : RS Ñ RS b RS

e: : RS Ñ R1.
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Let us switch to a more decorative version

∇c
a,b ⇝ ∇̈c

a,b “

d

}c}

}a}}b}
∇c

a,b

Theorem 1 (Jenča, Jenčová, and Lachman 2025).
pRS ; ∇̈, e, ∇̈:, e:q is a dagger-Frobenius monoid in Hilb.

Any “connected” term com-
posed from ∇̈, e, ∇̈:, and e:

depends only on the number
of inputs, outputs, and “holes”
(see Heunen and Vicary 2020).
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Spectrum
For pRS ; ∇̈, e, ∇̈:, e:q the following operator

“ ∇̈ ˝ ∇̈: : RS Ñ RS

is symmetric (self-adjoint), hence has a real, well-behaved spectrum.

Example:

∇̈ ˝ ∇̈: “

»

—

—

–

4
?

2 0 0
?

2 5 0 0
0 0 4

?
2

0 0
?

2 5

fi

ffi

ffi

fl

, σ “ t3, 6u
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Right notion of morphisms?
Definition 2 (French 2013).
A pair of maps ϕ “ pϕ0, ϕ1q : pX, Sq Ñ pY, T q is called admissible
morphism if
(i) px, x1q P a ùñ pϕ0pxq, ϕ0px1qq P ϕ1paq (colour-preserving property)

(ii) For each pϕ0pxq, yq P ϕ1paq, there exists ŷ P X, s.t. px, ŷq P a.
(colour-lifting property)

φ(x) ∀yφ(a)

∃ŷ

a
∀x

There is a fully faithful functor FinGrp Ñ AS.
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Theorem 3 (Jenča, Jenčová, and Lachman 2025).
Let ϕ : pX, Sq Ñ pY, T q be a surjective admissible morphism of schemes
such that

Spectrum of pX, Sq λ “ pλ1, . . . , λnq

Spectrum of p Y, T q ρ “ pρ1, . . . , ρmq

Then there is an integer k, such that

k ¨ ρ “ pk ¨ ρ1, . . . , k ¨ ρmq

is a subvector of λ (i.e., each k ¨ ρi is also an eigenvalue of pX, Sq).

Example: For a regular scheme corresponding to a group G we have

∇̈ ˝ ∇̈: “

»

—

—

—

–

|G| 0 ¨ ¨ ¨ 0
0 |G| ¨ ¨ ¨ 0
...

... . . . ...
0 0 ¨ ¨ ¨ |G|

fi

ffi

ffi

ffi

fl

, λ “ p|G|, . . . , |G|q. (1)
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φ ψ

(3, 3, 6, 6) (2, 2)(3, 3
2
)

k = 2 k = 3
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Coherent lifting property
Definition 4.
A rainbow is an ordered pair pX, Sq satisfying (A1),(A0),//////(A8).

A morphism of rainbows is a color-preserving maps between the vertex sets.

Let ϕ : pX, Sq Ñ pY, T q, π : pZ, Rq Ñ pW, Uq be two rainbow morphisms.
We say ϕ has the left coherent lifting property with respect to π

ϕ 7 π

if: Given any α, β, and λ1 : T Ñ R fitting into

pX, Sq pZ, Rq

pY, T q pW, Uq

α

ϕ πpλ0,λ1q

β

(2)

the number Lpϕ, π, λ1q of λ0 making the diagram (2) commuting depends
only on λ1 (not on α and β).
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Denote Dn a rainbow, with vertices t1, . . . , nu and each edge having a
unique color.

1 2

3

pD1 ãÑ D2q 7 ϕ iff ϕ is an admissible morphism

pD2 ãÑ D3q 7 p! : pX, Sq Ñ ‚q iff pX, Sq is a coherent configuration

Lemma 5.
Let ϕ be a morphism of rainbows. Then

tπ | ϕ 7 πu

is closed under compositions, pullbacks, and “certain” retracts.
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THANK YOU FOR YOUR ATTENTION
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