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Coherent configurations are combinatorial structures encoding highly
symmetric edge-colourings of complete digraphs.

We (me and my coauthors) are interested in dagger-compact categories
used to describe quantum processes (Rel, Hilb).

Coherent configuration ~ f-Frobenius monoid internal to Rel, Hilb.
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Warning: some notation introduced on the next slide is not
standard.




A coherent configuration is an ordered pair (X, S), where X is a finite set
of vertices and S (a set of colors) is a partition of X x X, such that:
(A1) idy is a union of colors in S (if idx € S, it is an association scheme),
(A0) for each a € S, its inverse a=! = {(2',2) | (z,2') € a} is also in S,
(A8) coherence condition holds.

Structure constants V: eg., Vi, =2

Valency: |al| = the number of arrows of color a with the same
source. E.g., [la] =2, |0 =2, |c| =1, || =1 (always).




Let G be a group having an action on a finite set X. Set

vertices = X,
colors = orbits of the action of G = X x X — X x X.

Trivial scheme: action of Sx on X

(SX,X) ”a”e{lvn_l}

Thin scheme: Cayley action of G on itself

(G, G) Jall =1




a b
“V:(a,b) o ¢ iff
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We have a monoid (R®; V, e) (internal to Hilb):
V:RIQR® - RY  |a)y®@[b) > ) Vi [0

e: R > RS 1 Z |a)

aCidx

Associativity: Vo (V®id) =Vo (id® V)
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“V:(a,b) o ¢ iff

C

We have a monoid (R®; V, e) (internal to Hilb):
V:RIQR® - RY  |a)y®@[b) > ) Vi [0

e: R > RS 1 Z |a)

acidy
Associativity: Vo (V®id) =Vo (id® V)
We also have a comonoid (R%; V1, ef):
ViR - RYQRS
el: RY - RL



Let us switch to a more decorative version

lel_ge
lalllel =

c c
Va,b ~ Va,b =

Theorem 1 (Jenca, Jencova, and Lachman 2025).
(R%:V,e, V', el) is a dagger-Frobenius monoid in Hilb.

Any “connected” term com-
posed from V, e, Vv, and ef
depends only on the number
of inputs, outputs, and “holes”
(see Heunen and Vicary 2020).
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For (RS; WV, e, V1, ef) the following operator
= VoVIRY RS

is symmetric (self-adjoint), hence has a real, well-behaved spectrum.

Example:
4 V2 0 0
V2 5 0 0
VOVT: 0 0 4 \/i > 02{376}
0 0 V2 5




Definition 2 (French 2013).
A pair of maps ¢ = (¢, ¢1): (X,S) — (Y,T) is called admissible
morphism if

(i) (z,2') e a = (¢o(), do(2")) € p1(a) (colour-preserving property)



Definition 2 (French 2013).

A pair of maps ¢ = (¢0, é1): (X, 5) —
morphism if

(i) (z,2")ea = (Po(x),Po(z’)) € p1(a) (colour-preserving property)

(ii) For each (¢o(x),y) € ¢1(a), there exists § € X, s.t. (z,7) € a.
(colour-lifting property)

(Y,T) is called admissible

There is a fully faithful functor FinGrp — AS.
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Theorem 3 (Jenca, Jencova, and Lachman 2025).
Let ¢: (X,S) — (Y,T) be a surjective admissible morphism of schemes
such that

Spectrum of (X, S) A=A, )
Spectrum of (Y, T) p=(p1,--spm)

Then there is an integer k, such that
is a subvector of A (i.e., each k - p; is also an eigenvalue of (X, S)).

Example: For a regular scheme corresponding to a group G we have

Gl 0 - 0
o
vovi=| T |, A=(GL....1GD. ()
0 0 - |G|
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Definition 4.
A rainbow is an ordered pair (X, .S) satisfying (A1),(A0),(/A8).

A morphism of rainbows is a color-preserving maps between the vertex sets.



Definition 4.
A rainbow is an ordered pair (X, .S) satisfying (A1),(A0),(/A8).

A morphism of rainbows is a color-preserving maps between the vertex sets.

Let ¢: (X,S) — (Y, T), m: (Z,R) — (W, U) be two rainbow morphisms.
We say ¢ has the left coherent lifting property with respect to 7

o
if: Given any «, 3, and A;: T — R fitting into

(X,5) —— (Z,R)
o oern | 2)

(V,T) — (W.0)

the number L(¢, m, A1) of A\g making the diagram (2) commuting depends
only on A\; (not on a and j3).



Denote D,, a rainbow, with vertices {1,...,n} and each edge having a
unique color.

(D1 — Ds) o iff ¢ is an admissible morphism

(Dy > Ds3) g (1: (X,S) —e) iff (X,S)isa coherent configuration

Lemma 5.
Let ¢ be a morphism of rainbows. Then

{r|otm}
is closed under compositions, pullbacks, and “certain” retracts.
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