

Multi-sorted partial algebras of tree languages of a fixed variable

Thodsaporn Kumduang

RMUTR, Thailand
thodsaporn.kum@rmutr.ac.th

AAA108
TU Wien, Austria
Feb 6-8, 2026

Outline of presentation

1 Introduction and preliminaries

- Terms
- Tree languages
- Question

2 Results

3 Open problems

Outline of presentation

1 Introduction and preliminaries

- Terms
- Tree languages
- Question

2 Results

3 Open problems

Terms

- Let I be a nonempty indexed set and $(f_i)_{i \in I}$ be a sequence of operation symbols.
- The sequence $\tau := (n_i)_{i \in I}$ is said to be a *type* where $n_i \in \mathbb{N}$ is a natural number of the arity of f_i .
- We denote by $X_n := \{x_1, \dots, x_n\}$ a finite set of *alphabet* and its elements are called *variables* and $X := \{x_1, x_2, \dots\}$.
- The set $W_\tau(X_n)$ of all *n-ary terms of type τ* is the smallest set which contains X_n inductively defined by
 - $X_n \subset W_\tau(X_n)$ and
 - If $t_1, \dots, t_{n_i} \in W_\tau(X_n)$ and f_i is an operation symbol of the arity n_i implies $f_i(t_1, \dots, t_{n_i}) \in W_\tau(X_n)$.

Terms of a fixed variable

- An idempotent algebra is an algebra of type (2) satisfying the identity $f(x, x) \approx x$.
- A subclass of terms called **terms of a fixed variable** of type τ was introduced in 2020.
- Let us consider the following example. In the set $W_{(2)}^{fv}(X_3)$ with respect to a binary operation symbol f , the elements $x_1, x_2, x_3, f(x_1, x_1), f(x_2, x_2), f(f(x_3, x_3), x_3)$ are examples of members of this set. However, the terms $f(x_2, x_1)$ and $f(x_1, f(x_2, x_2))$ are not terms of a fixed variable, i.e., they belong to $W_{(2)}(X_3) \setminus W_{(2)}^{fv}(X_3)$.

Outline of presentation

1 Introduction and preliminaries

- Terms
- Tree languages
- Question

2 Results

3 Open problems

Tree languages

- On the set $W_\tau(X_n)$, one consider its the power set, i.e., $\mathcal{P}(W_\tau(X_n))$. In this matter, each element in $\mathcal{P}(W_\tau(X_n))$ is called a **tree language**. Actually, it generalizes formal languages, that is, sets of words over a given alphabet.
- The operation

$$\hat{S}_m^n : \mathcal{P}(W_\tau(X_n)) \times \mathcal{P}(W_\tau(X_m))^n \rightarrow \mathcal{P}(W_\tau(X_m))$$

for $m, n \in \mathbb{N}$ is defined as follows:

- (1) If $B = \{x_j\}$ for $1 \leq j \leq n$, then $\hat{S}_m^n(B, B_1, \dots, B_n) := B_j$.
- (2) If $B = \{f_i(s_1, \dots, s_{n_i})\}$ and assume that $\hat{S}_m^n(\{s_j\}, B_1, \dots, B_n)$ for $1 \leq j \leq n$ are already defined, then

$$\hat{S}_m^n(B, B_1, \dots, B_n) := \{f_i(u_1, \dots, u_{n_i}) \mid u_j \in \hat{S}_m^n(\{s_j\}, B_1, \dots, B_n)\}.$$
- (3) If $|B| > 1$, then $\hat{S}_m^n(B, B_1, \dots, B_n) := \bigcup_{b \in B} \hat{S}_m^n(\{b\}, B_1, \dots, B_n)$.
- (4) If one of the sets B, B_1, \dots, B_n is empty, then

$$\hat{S}_m^n(B, B_1, \dots, B_n) := \emptyset.$$

Clones

- The *variety of all abstract clones*, denoted by K_0 , is a family of \mathbb{N} -sorted algebras satisfying the following three identities:

(C1) $\tilde{S}_m^n(\tilde{S}_m^p(\tilde{Z}, \tilde{Y}_1, \dots, \tilde{Y}_p), \tilde{X}_1, \dots, \tilde{X}_n) \approx \tilde{S}_m^p(\tilde{Z}, \tilde{S}_m^n(\tilde{Y}_1, \tilde{X}_1, \dots, \tilde{X}_n), \dots, \tilde{S}_m^n(\tilde{Y}_p, \tilde{X}_1, \dots, \tilde{X}_n)), m, n, p \in \mathbb{N};$

(C2) $\tilde{S}_m^n(\lambda_j, \tilde{X}_1, \dots, \tilde{X}_n) \approx \tilde{X}_j, n, m \in \mathbb{N}, 1 \leq j \leq n;$

(C3) $\tilde{S}_n^n(\tilde{Y}, \lambda_1, \dots, \lambda_n) \approx \tilde{Y}, n \in \mathbb{N};$

where $\tilde{S}_m^n, \tilde{S}_n^p, \tilde{S}_m^p, \tilde{S}_n^n$ are operation symbols,

$\tilde{Z}, \tilde{Y}_1, \dots, \tilde{Y}_p, \tilde{X}_1, \dots, \tilde{X}_n, \tilde{Y}$ are variables for terms, and λ_j are symbols for variables.

- In general, (C1) is said to be the *superassociative law* since it generalizes the associative law.
- Each member of the variety K_0 is called an **abstract clone**.
- Every concrete clone can be considered as an abstract clone.
- For the converse, every abstract clone is isomorphic to some concrete clone.

Outline of presentation

1 Introduction and preliminaries

- Terms
- Tree languages
- Question

2 Results

3 Open problems

Question

- $(\mathcal{P}(W_{\tau}^{fv}(X_n)))$
- Each element of $\mathcal{P}(W_{\tau}^{fv}(X_n))$ is called a **tree language of a fixed variable**.
- Let $\tau = (2)$ be a type with a single binary operation symbol f . We now list several examples of tree languages of a fixed variable of type (2) , that is, elements of $\mathcal{P}(W_{(2)}^{fv}(X_3))$:

$$\{x_1, x_2, f(x_1, x_1)\}, \quad \{x_1, x_2, x_3, f(f(x_1, x_1), f(x_1, x_1))\}.$$

- For a tree language A , the symbol **var(A)** denotes the set of all variables that appear in A . Consider the following examples:
 $\text{var}(\{x_1, x_2, f(x_1, x_1)\}) = \{x_1, x_2\}$ and
 $\text{var}(\{x_3, f(x_2, x_2), f(x_4, x_4)\}) = \{x_2, x_3, x_4\}.$
- **|var(A)|** we mean the number of elements in the set var(A).

Question

- Unfortunately, in general, each set in the family $(\mathcal{P}(W_{\tau}^{fv}(X_n)))_{n \in \mathbb{N}}$ is not closed under a non-deterministic superposition.
- Let $\tau = (2)$ be a type with a binary operation symbol f , and let $X_2 = \{x_1, x_2\}$ and $X_3 = \{x_1, x_2, x_3\}$ be sets of variables. On the sets $\mathcal{P}(W_{(2)}^{fv}(X_2))$ and $\mathcal{P}(W_{(2)}^{fv}(X_3))$, consider the following subsets:

$$A = \{f(x_1, x_1)\}, \quad B_1 = \{x_3, f(x_2, x_2)\}, \quad B_2 = \{x_1, f(x_3, x_3)\}.$$

Then

$$\begin{aligned} \widehat{S}_3^2(A, B_1, B_2,) &= S_3^2(\{f(x_1, x_1)\}, \{x_3, f(x_2, x_2)\}, \{x_1, f(x_3, x_3)\}) \\ &= \{f(u_1, u_2) \mid u_1 \in \widehat{S}_3^2(\{x_1\}, \{x_3, f(x_2, x_2)\}, \{x_1, f(x_3, x_3)\}), \\ &\quad u_2 \in \widehat{S}_3^2(\{x_1\}, \{x_3, f(x_2, x_2)\}, \{x_1, f(x_3, x_3)\})\} \\ &= \{f(u_1, u_2) \mid u_1 \in \{x_3, f(x_2, x_2)\}, u_2 \in \{x_3, f(x_2, x_2)\}\} \\ &= \{f(x_3, x_3), f(x_3, f(x_2, x_2)), f(f(x_2, x_2), x_3), f(f(x_2, x_2), f(x_2, x_2))\} \\ &\subsetneq W_{(2)}^{fv}(X_3). \end{aligned}$$

Results

First, it is easy to see that $\widehat{S}_m^n(A, B_1, \dots, B_n) \in \mathcal{P}(W_{\tau}^{fv}(X_m))$ if $A = \emptyset$ or $B_j = \emptyset$ for some $j \in \{1, \dots, n\}$.

Lemma

Let $u, v \in W_{\tau}^{fv}(X_n)$ with $|\text{var}(u)| = 1 = |\text{var}(v)|$. Let B_1, \dots, B_n be subsets of $W_{\tau}^{fv}(X_m)$ with $|\text{var}(B_1)| = \dots = |\text{var}(B_n)| = 1$. Then

$$|\text{var}(\widehat{S}_m^n(\{u\}, B_1, \dots, B_n))| = 1 = |\text{var}(\widehat{S}_m^n(\{v\}, B_1, \dots, B_n))|.$$

Lemma

Let $B_1, \dots, B_n \subseteq W_{\tau}^{fv}(X_m)$ with $|\text{var}(B_1)| = \dots = |\text{var}(B_n)| = 1$. If $\emptyset \neq A \in \mathcal{P}(W_{\tau}^{fv}(X_n))$ and $|\text{var}(A)| = 1$, then

$$|\text{var}(\widehat{S}_m^n(A, B_1, \dots, B_n))| = 1.$$

Results

Lemma

If $A \subseteq W_{\tau}^{fv}(X_n)$, $B_1, \dots, B_n \subseteq W_{\tau}^{fv}(X_m)$ and if $|\text{var}(B_1)| = \dots = |\text{var}(B_n)| = 1$ or if $A = \emptyset$, then

$$\widehat{S}_m^n(A, B_1, \dots, B_n) \in \mathcal{P}(W_{\tau}^{fv}(X_m)).$$

$$\overline{S}_m^n(A, B_1, \dots, B_n) := \begin{cases} \widehat{S}_m^n(A, B_1, \dots, B_n), & \text{if } B_j = \emptyset \text{ for some } j \in \{1, \dots, n\} \\ & \text{or } A = \emptyset \text{ or } |\text{var}(B_j)| = 1 \\ & \text{for every } j = 1, \dots, n, \\ \text{not defined,} & \text{otherwise.} \end{cases}$$

Results

Theorem

The partial power clone of a fixed variable

$$PC^{fv}(\tau) := ((\mathcal{P}(W_{\tau}^{fv}(X_n)))_{n \in \mathbb{N}}, (\overline{S}_m^n)_{n,m \in \mathbb{N}}, (\{x_i\})_{i \leq n, n \in \mathbb{N}})$$

belongs to the variety of abstract partial clones.

Results

Theorem

Let $A, A' \in \mathcal{P}(W_{\tau}^{fv}(X_n)), B_j, B'_j \in \mathcal{P}(W_{\tau}^{fv}(X_m))$ and $|\text{var}(B_j)| = 1$ for $j = 1, \dots, n$. Then the following statements hold:

- (1) If $A' \subseteq A$, then $\overline{S}_m^n(A', B_1, \dots, B_n) \subseteq \overline{S}_m^n(A, B_1, \dots, B_n)$,
- (2) If $B'_j \subseteq B_j$ for all $j = 1, \dots, n$, then
$$\overline{S}_m^n(A, B'_1, \dots, B'_n) \subseteq \overline{S}_m^n(A, B_1, \dots, B_n).$$
- (3) If $a \in A, b_j \in B_j$ for all $j = 1, \dots, n$, then
$$\{\overline{S}_m^n(a, b_1, \dots, b_n)\} \subseteq \overline{S}_m^n(A, B_1, \dots, B_n).$$

Results

For any $B \in \mathcal{P}(W_\tau(X_n))$ the set $B^{\mathcal{A}}$ of term operations induced on the algebra $\mathcal{A} := (A, (f_i^{\mathcal{A}})_{i \in I})$ is defined as follows:

- (1) If $B = \{x_j\}$ for $1 \leq j \leq n$, then $B^{\mathcal{A}} := \{e_j^{n, \mathcal{A}}\}$.
- (2) If $B = \{f_i(t_1, \dots, t_{n_i})\}$, then $B^{\mathcal{A}} := \{f_i^{\mathcal{A}}(t_1^{\mathcal{A}}, \dots, t_{n_i}^{\mathcal{A}})\}$ where $f_i^{\mathcal{A}}$ is the fundamental operation of \mathcal{A} corresponding to the operation symbol f_i and each $t_j^{\mathcal{A}}$ is a term operation on \mathcal{A} induced by a term t_j .
- (3) If $|B| > 1$ then $B^{\mathcal{A}} := \bigcup_{b \in B} \{b\}^{\mathcal{A}}$.
- (4) If $B = \emptyset$, then $B^{\mathcal{A}} := \emptyset$.

Let $\mathcal{P}(W_\tau(X_n))^{\mathcal{A}}$ be the collection of all sets of n -ary term operations induced by sets of n -ary terms of type τ on the algebra \mathcal{A} .

Results

For any $m, n \in \mathbb{N}$ and for any algebra \mathcal{A} of type τ , multi-sorted partial operations defined on sets of term operations of a fixed variable can be defined in the following way:

$$\overline{\bullet}_m^{n,A} : \mathcal{P}(W_\tau^{fv}(X_n))^\mathcal{A} \times (\mathcal{P}(W_\tau^{fv}(X_m))^\mathcal{A})^n \multimap \mathcal{P}(W_\tau^{fv}(X_m))^\mathcal{A}$$

with

$$\overline{\bullet}_m^{n,A}(B^\mathcal{A}, B_1^\mathcal{A}, \dots, B_n^\mathcal{A}) := \begin{cases} \bullet_m^{n,A}(B^\mathcal{A}, B_1^\mathcal{A}, \dots, B_n^\mathcal{A}), & \text{if } B_j = \emptyset \text{ for some } j \in \{1, \dots, n\} \\ & \text{or } A = \emptyset \text{ or } |\text{var}(B_j)| = 1 \\ & \text{for every } j = 1, \dots, n, \\ \text{not defined,} & \text{otherwise.} \end{cases}$$

Results

Lemma

For any $m, n \in \mathbb{N}$ and for any algebra \mathcal{A} of type τ , $\overline{\bullet}_m^{n, A}$ are partial operations.

Lemma

Let $A \in \mathcal{P}(W_\tau^{fv}(X_n))$ and $B_1, \dots, B_n \in \mathcal{P}(W_\tau^{fv}(X_m))$. Then the equation

$$[\overline{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} = \overline{\bullet}_m^{n, A}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}})$$

is weak.

Theorem

$PC^{fv}(\tau)$ is weakly homomorphic to $PC^{fv}(\mathcal{A})$.

Results

For $1 \leq i \leq j \leq n$, the binary partial operation

$$\cdot_{ij \leq n} : (\mathcal{P}(W_{\tau}^{fv}(X_n)))^2 \rightharpoonup \mathcal{P}(W_{\tau}^{fv}(X_n))$$

is defined by

$$A \cdot_{ij \leq n} B = \overline{S}_n^n(A, \{x_1\}, \dots, \{x_{i-1}\}, B, \{x_{i+1}\}, \dots, \{x_{j-1}\}, B, \{x_{j+1}\}, \dots, \{x_n\}).$$

Theorem

$((\mathcal{P}(W_{\tau}^{fv}(X_n)))_{n \in \mathbb{N}}, (\cdot_{ij \leq n})_{n \in \mathbb{N}})$ is a partial semigroup.

Theorem

Let $i, j, k, l \in \{1, \dots, n\}$. Then

$$(\mathcal{P}(W_{\tau}(X_n)), \cdot_{ij \leq n}) \cong (\mathcal{P}(W_{\tau}(X_n)), \cdot_{kl \leq n}).$$

Open problems

Questions

- Give characterizations of idempotent and regular elements in $((\mathcal{P}(W_{\tau}^{fv}(X_n)))_{n \in \mathbb{N}}, (\cdot_{ij \leq n})_{n \in \mathbb{N}})$.
- Explain the sets of tree languages of a fixed variable when substituting finite alphabets X_n with infinite ones, i.e., $X = \bigcup_{n \in \mathbb{N}} X_n$.

References

- Denecke K., Partial clones, *Asian-European J. Math.*, 13(8) (2020), 2050161.
- Kumduang, T., Sriwongsa, S. Superassociative structures of terms and formulas defined by transformations preserving a partition, *Commun. Algebra*, 2023, vol. 51, pp. 3203–3220.
- Lipparini, P., Exact- m -majority terms, *Mathematica Slovaca*, 2024, vol. 74, pp. 293–298.
- Wattanatripop, K., Kumduang, T. The partial clone of completely expanded terms, *Asian-Eur. J. Math.*, 2024, vol. 17, article ID: 2450063.

Thank you