

Algebraic properties of L -fuzzy approximation operators on residuated lattices

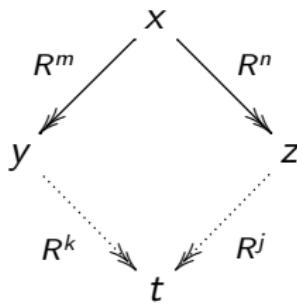
M. Kondo

Tokyo Denki University

Feb. 6-8, 2026, Vienna, Austria

We consider properties of L -fuzzy relations on a residuated lattice L and show a characterization theorem of **confluent** L -fuzzy relation:

$$R^m(x, y) \odot R^n(x, z) \leq \bigvee_{t \in U} (R^k(y, t) \odot R^j(z, t)) \quad (m, n, k, j \in \mathbb{N}),$$



$$R \text{ is confluent} \iff \bar{R}^n \underline{R}^j \leq \underline{R}^m \bar{R}^k.$$

residuated lattice

Let $\mathcal{L} = \langle L, \wedge, \vee, \odot, 0, 1 \rangle$ be a residuated lattice, i.e.,

- (i) $\langle L, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice;
- (ii) $\langle L, \odot, 1 \rangle$ is a commutative monoid;
- (iii) For all $a, b, c \in L$,

$$a \odot b \leq c \iff a \leq b \rightarrow c.$$

Proposition 1.([1]) For all $a, b, c, a_i, b_i \in L$, we have

- (1) $a \odot a' = 0$, where $a' = a \rightarrow 0$;
- (2) $a \leq b \iff a \rightarrow b = 1$;
- (3) $a \odot (a \rightarrow b) \leq b$;
- (4) $a \leq b \implies a \odot c \leq b \odot c, c \rightarrow a \leq c \rightarrow b,$
 $b \rightarrow c \leq a \rightarrow c$;
- (5) $1 \rightarrow a = a$;
- (6) $a \vee (b \rightarrow c) \leq b \rightarrow a \vee c$;

L-fuzzy relation

Let U be a non-empty set and L a residuated lattice. A map $R : U \times U \rightarrow L$ is called an *L-fuzzy relation* on U .

There are two special *L*-fuzzy relations ω, ι on U defined by

$$\omega(x, y) \stackrel{\text{def}}{=} \begin{cases} 1 & (x = y) \\ 0 & (x \neq y), \end{cases}$$

$$\iota(x, y) \stackrel{\text{def}}{=} 1 \quad (\forall, x, y \in U).$$

We define an order \leq on the set $\mathcal{R}(U) = L^{U \times U}$ of all L -fuzzy relations on U as usual: For $R, S \in \mathcal{R}(U)$,

$$R \leq S \iff R(x, y) \leq S(x, y) \quad (\forall x, y \in U).$$

For $R, S \in \mathcal{R}(U)$, we define operations $^{-1}$ and \circ

$$R^{-1}(x, y) = R(y, x) \quad (\forall x, y \in U);$$

$$(R \circ S)(x, y) = \bigvee_{z \in X} (R(x, z) \odot S(z, y)) \quad (\forall x, y \in U).$$

Proposition 2. For any $R, S \in \mathcal{R}(U)$,

- (1) $R^{-1}, R \circ S \in \mathcal{R}(U)$;
- (2) $R \leq S \iff R^{-1} \leq S^{-1}$;
- (3) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$;
- (4) $(R^{-1})^{-1} = R$.

For a non-empty set U and an L -fuzzy relation R on U , a structure (U, R) is called an *L -fuzzy approximation space*.

We define an *upper (lower) L -fuzzy approximation operators* \overline{R} (\underline{R}) : $L^U \rightarrow L^U$ as follows: For all $A \in L^U$,

$$\overline{R}(A)(x) \stackrel{\text{def}}{=} \bigvee_{y \in U} (R(x, y) \odot A(y))$$

$$\underline{R}(A)(x) \stackrel{\text{def}}{=} \bigwedge_{y \in U} (R(x, y) \rightarrow A(y))$$

An order \leq is defined on the set of all L -fuzzy approximation operators on U as usual: For $F, G : L^U \rightarrow L^U$,

$$F \leq G \iff F(A)(x) \leq G(A)(x) \quad (\forall x \in U, A \in L^U).$$

Proposition 3. For any L -fuzzy relation $R, R_i, S, S_i \in L^{U \times U}$,

(1) $\overline{R}, \underline{R}$ are order-preserving, that is,

$$A \leq B \Rightarrow \overline{R}(A) \leq \overline{R}(B), \underline{R}(A) \leq \underline{R}(B);$$

(2) If $\overline{R_i} \leq \overline{S_i}$ ($i = 1, 2$), then $\overline{R_1} \overline{R_2} \leq \overline{S_1} \overline{S_2}$;

(3) If $\underline{R_i} \leq \underline{S_i}$ ($i = 1, 2$), then $\underline{R_1} \underline{R_2} \leq \underline{S_1} \underline{S_2}$.

Proposition 4. For any L -fuzzy relation R on U and $A, B \in L^U$, we have

$$\begin{aligned}\overline{R}(A) \leq B &\Leftrightarrow A \leq \underline{R}^{-1}(B) \quad (\text{i.e., } \overline{R} \dashv \underline{R}^{-1}); \\ \overline{R}^{-1}(A) \leq B &\Leftrightarrow A \leq \underline{R}(B) \quad (\text{i.e., } \overline{R}^{-1} \dashv \underline{R}).\end{aligned}$$

⇓

$$\overline{R} \underline{R}^{-1} \leq I \leq \underline{R}^{-1} \overline{R},$$

where I is defined by $I(A) = A$ for all $A \in L^U$

Proposition 5. For all L -fuzzy relation $R, S \in \mathcal{R}(U)$, we have

$$(1) \quad \overline{R} I = I \overline{R} = \overline{R};$$

$$(2) \quad \overline{(R \circ S)} = \overline{R} \overline{S};$$

$$(3) \quad \underline{(R \circ S)} = \underline{R} \underline{S};$$

$$(4) \quad R \leq S \iff \overline{R} \leq \overline{S};$$

$$(5) \quad \overline{R} \leq \overline{S} \iff \underline{S}^{-1} \leq \underline{R}^{-1}, \text{ hence,}$$

$$R \leq S \iff \overline{R} \leq \overline{S} \iff \underline{S}^{-1} \leq \underline{R}^{-1}.$$

Proof We only show (4) : $R \leq S \iff \bar{R} \leq \bar{S}$.

(\Rightarrow) If $R \leq S$, since

$$\bar{R}(A)(x) = \bigvee_y (R(x, y) \odot A(y)) \leq \bigvee_y (S(x, y) \odot A(y)) = \bar{S}(A)(x)$$

for all $x \in U, A \in L^U$, we have $\bar{R} \leq \bar{S}$.

(\Leftarrow) Conversely, suppose that $\bar{R} \leq \bar{S}$. Then we get

$$R(x, y) = \bar{R}(\mathbf{1}_y)(x) \leq \bar{S}(\mathbf{1}_y)(x) = S(x, y) \quad (\forall x, y \in U),$$

hence $R \leq S$.

□

Corollary 1. For all L -fuzzy relations R, S on U , the following are equivalent:

- (1) $R \leq S$
- (2) $\bar{R} \leq \bar{S}$
- (3) $\underline{S} \leq \underline{R}$.

For all order-preserving operators $F, G : L^U \rightarrow L^U$, it is easy to show that

- (1) *The product operator FG of F and G is also an order preserving operator;*
- (2) *For any operator $H : L^U \rightarrow L^U$, we have*

$$F \leq G \implies FH \leq GH, HF \leq HG.$$

\Downarrow

Finite product of operators $\overline{R}, \overline{R^{-1}}, \underline{R}, \underline{R^{-1}}$ is order-preserving.

Proposition 6. Let α, β be finite relational products of R, R^{-1} . Then we have

$$\overline{\alpha} \leq \overline{\beta} \iff \underline{\beta^{-1}} \leq \underline{\alpha^{-1}}.$$

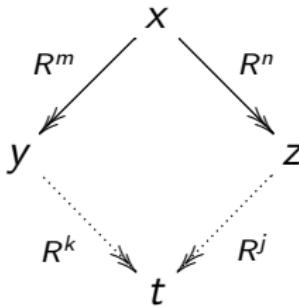
Proposition 7. We have

- (1) $\bar{\omega} = \underline{\omega} = I$
- (2) $\underline{\iota} = \iota \leq I \leq \bar{\iota}$

Characterization by L -fuzzy approximation operators

An L -fuzzy relation R is called *confluent* if

$$R^m(x, y) \odot R^n(x, z) \leq \bigvee_{t \in U} (R^k(y, t) \odot R^j(z, t)) \quad (m, n, k, j \in \mathbb{N}),$$



where R^n ($n \in \mathbb{N}$) is defined by

$$R^n = \begin{cases} \omega & (n = 0) \\ R \circ R^{n-1} & (n \geq 1). \end{cases}$$

Using the results

$$\overline{R^{-1}} \dashv \underline{R} \text{ and } \overline{R} \dashv \underline{R^{-1}},$$

we have the characterization theorem of the confluent by L -fuzzy operators \overline{R} and \underline{R} .

Theorem 7. Let R be an L -fuzzy relation. Then we have

$$R \text{ is confluent} \iff \overline{R}^n \underline{R}^j \leq \underline{R}^m \overline{R}^k.$$

Proof Since

$$\begin{aligned} R \text{ is confluent} &\iff (R^{-1})^m \circ R^n \leq R^k \circ (R^{-1})^j \\ &\iff (\overline{R^{-1}})^m \overline{R}^n \leq \overline{R}^k (\overline{R^{-1}})^j, \end{aligned}$$

it is sufficient to show that

$$(\overline{R^{-1}})^m \overline{R}^n \leq \overline{R}^k (\overline{R^{-1}})^j \iff \overline{R}^n \underline{R}^j \leq \underline{R}^m \overline{R}^k.$$

$$\begin{aligned} &(\overline{R^{-1}})^m \overline{R}^n \leq \overline{R}^k (\overline{R^{-1}})^j \\ &\iff \overline{R}^n \leq \underline{R}^m \overline{R}^k (\overline{R^{-1}})^j \quad (\because (\overline{R^{-1}})^m \dashv \underline{R}^m) \\ &\iff \overline{R}^n \cdot \underline{R}^j \leq \underline{R}^m \overline{R}^k (\overline{R^{-1}})^j \cdot \underline{R}^j \\ &\iff \overline{R}^n \underline{R}^j \leq \underline{R}^m \overline{R}^k (\overline{R^{-1}})^j \cdot \underline{R}^j \leq \underline{R}^m \overline{R}^k \cdot \mathbf{I} = \underline{R}^m \overline{R}^k \end{aligned}$$

Remark We note that, in the modal logic K , the confluent condition above corresponds to the formula

$$\diamond^n \square^j A \rightarrow \square^m \diamond^k A,$$

that is, the formula is characterized by the relation R satisfying the condition:

If $R^m(x, y)$ and $R^n(x, z)$, then there exists t such that $R^k(y, t)$ and $R^j(z, t)$.

This expresses the correspondence between \square and \underline{R} (hence \diamond and \overline{R}).

We define some types of L -fuzzy relations according to [3, 5]:

$$R \text{ is } \textit{reflexive} \iff R(x, x) = 1;$$

$$R \text{ is } \textit{symmetric} \iff R(x, y) = R(y, x);$$

$$R \text{ is } \textit{transitive} \iff \bigvee_{z \in U} (R(x, z) \odot R(z, y)) \leq R(x, y);$$

$$R \text{ is } \textit{dense} \iff R(x, y) \leq \bigvee_{z \in U} (R(x, z) \odot R(z, y));$$

$$R \text{ is } \textit{Euclidean} \iff R(x, y) \odot R(x, z) \leq R(y, z);$$

$$R \text{ is } \textit{functional} \iff R(x, y) \odot R(x, z) \leq \omega(y, z).$$

Each property of L -fuzzy relations above can be represented only by R and R^{-1} as follows:

Proposition 8. Let R be an L -fuzzy relation. Then we have

$$R \text{ is reflexive} \iff \omega \leq R;$$

$$R \text{ is symmetric} \iff R^{-1} \leq R;$$

$$R \text{ is transitive} \iff R \circ R \leq R;$$

$$R \text{ is dense} \iff R \leq R \circ R;$$

$$R \text{ is Euclidean} \iff R^{-1} \circ R \leq R;$$

$$R \text{ is functional} \iff R^{-1} \circ R \leq \omega.$$

From our theorem, we get the following results.

Corollary Let R be an L -fuzzy relation. Then we have

$$R \text{ is reflexive} \iff I \leq \bar{R} \iff \underline{R} \leq I;$$

$$R \text{ is symmetric} \iff I \leq \underline{R} \bar{R} \iff \bar{R} \underline{R} \leq I;$$

$$R \text{ is transitive} \iff \bar{R} \bar{R} \leq \bar{R} \iff \underline{R} \leq \underline{R} \underline{R};$$

$$R \text{ is dense} \iff \bar{R} \leq \bar{R} \bar{R} \iff \underline{R} \underline{R} \leq \underline{R};$$

$$R \text{ is Euclidean} \iff \bar{R} \leq \underline{R} \bar{R} \iff \bar{R} \underline{R} \leq \underline{R};$$

$$R \text{ is functional} \iff \bar{R} \leq \underline{R}.$$

- Galatos N, Jipsen P, Kowalski T, and Ono H (2007) Residuated Lattices: an algebraic glimpse at substructural logics, *Studies in Logic and the Foundations of Mathematics*, 151, Elsevier
- Järvinen J, Kondo M (2024) Relational correspondences for L -fuzzy rough approximations defined on De Morgan Heyting algebras, *Soft Comput.* 28:903-916
- She YH, Wang GJ (2009) An axiomatic approach of fuzzy rough sets based on residuated lattices, *Comput.Math.Appl.* 58:189-201
- Yao W, Liu LX (2009) Fuzzy Galois connections on fuzzy posets, *Math. Log. Quarterly* 55:105-112
- Zhu W (2007) Generalized rough sets based on relations, *Inf. Sci.* 177:1499-1508

Thank you for your attention!