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The notion of abelian category captures some crucial properties Ab and R-Mod
have in common.

Definition
A category C is abelian if
▶ C has a zero-object 0
▶ C has binary products A × B
▶ any arrow f in C has a factorization f = i ◦ p

X f //

p     

Y

I
>> i

>>

where p is a normal epimorphism, i is a normal monomorphism.
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When C is pointed, an arrow A
p // // P is a normal epimorphism if it is the

cokernel of some arrow in C : there is an i such that

I i //

��

A

p
����

0 // P

is a pushout.

In the categories Ab of abelian groups and R-Mod of R-modules
▶ normal epimorphism = surjective homomorphism.
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An arrow K // k // A is called a normal monomorphism if it is the kernel of some
arrow in C. This means that there is an f : A → B such that

K // k //

��

A

f
��

0 // B

is a pullback.

Groups
In the category Grp : normal monomorphism = normal subgroup inclusion

Abelian groups
In the category Ab : any monomorphism k : K → A is normal !
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The category Ab of abelian groups is abelian :

▶ Ab has a 0
▶ the product A × B exists for any A,B
▶ any homomorphism f in Ab has a factorization f = i ◦ p

X f //

p "" ""

Y

f (X )
<< i

<<

where p is a normal epimorphism and i a normal monomorphism.
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Examples
Ab, R-Mod, Ab(Comp) are all abelian categories.

What about the category Grp of groups?
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Grp is not abelian :
▶ Grp has a 0-object : the trivial group {1}
▶ the direct product A × B exists

▶ Problem : an arrow f in Grp does not have a factorization f = i ◦ p

X f //

p !! !!

Y

f (X )
i

==

with p a normal epimorphism and i is a normal monomorphism.
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Question : is there a list of simple axioms to conceptually understand some typical
properties the categories Grp, Rng, LieK have in common?

Roughly speaking, the problem is to find the “fourth proportional” in

Ab : abelian category = Grp :?

Aim : find an axiomatic context for
▶ Noether’s isomorphism theorems
▶ non-abelian homological algebra
▶ radical and torsion theories
▶ commutator theory
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Historical remarks
▶ S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. (1950)

▶ D. Buchsbaum, Exact categories and duality, Trans. A.M.S. (1955)
▶ A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math.

J. (1957)
▶ Several axiomatic proposals of “non-abelian contexts” :

S. A. Amitsur (1954), A.G. Kurosh (1959),
P. Higgins (1956), A. Frölich (1961), S.A. Huq (1968), M. Gerstenhaber
(1970), O. Wyler (1971), G. Orzech (1972), etc.
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Definition (G. Janelidze, L. Márki, W.Tholen, J. Pure Appl. Algebra, 2002)
A finitely complete category C is semi-abelian if

▶ C has a 0-object
▶ C has binary coproducts A + B
▶ C is (Barr)-exact : a) any morphism factors as a regular epimorphism

(=quotient) followed by a monomorphism ;
b) regular epimorphisms are pullback stable,
c) any equivalence relation is a kernel pair.

▶ C is (Bourn)-protomodular : the Split Short Five Lemma holds in C

0 // K

u
��

k // A

v
��

f
// B

soo

w
��

0 // K ′
k ′
// A′

f ′
// B′

s′oo

u,w isomorphisms ⇒ v isomorphism.
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Examples
Grp, Rng, LieK (more generally, any variety of Ω-groups in the sense of P. Higgins)

Grp(Comp), C∗-Alg, HopfK ,coc , etc.

Any abelian category ! In particular : Ab, R-Mod, Ab(Comp), etc.

Remark
In semi-abelian categories the Noether isomorphism theorems hold. Moreover,
one can develop non-abelian homological algebra and commutator theory.
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In a semi-abelian category the canonical morphism Σ from A + B to A × B is only
a normal epimorphism (not an isomorphism !)

A × B
p2

""

p1

||
A

i1 ""

B

i2||
A + B

Σ

OOOO

A semi-abelian category is not additive ! In particular : A × B ̸∼= A ⊕ B.
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The “general idea” :
Whereas

abelian = exact + additive,

the “non-additive” version of this “equation” is

semi-abelian = exact + 0 + protomodular.

One replaces the “additivity” with the validity of the “Split Short Five Lemma”.
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Any semi-abelian category C contains the abelian category Ab(C) of its (internal)
abelian groups as a Birkhoff subcategory

Ab(C)
U
⊥ // C
aboo

where the universal quotient is

A // ab(A) = A
[A,A] ,

with [A,A] the largest (categorical) commutator.
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The varieties that are abelian are the categories of R-modules over a unitary ring.
Among varieties of universal algebras, which are the ones that are semi-abelian?

Theorem (D. Bourn and G. Janelidze, Theory Appl. Categories, 2003)
A variety V of universal algebras is semi-abelian if and only if its theory has a
unique constant 0, an n-ary term β, and n + 1 binary terms αi(x , y) such that

αi(x , x) = 0

for any i ∈ {1, · · · ,n}, and

β(α1(x , y), · · · , αn(x , y), y) = x .

Example
In the variety Grp of groups β(x , y) = x + y and α1(x , y) = x − y .
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Remark
The varieties having the terms satisfying these identities had already been
considered by A. Ursini (Algebra Universalis, 1994), under the name of classically
ideal determined varieties.

A. Ursini and P. Aglianò developed a natural commutator theory for ideals in these
varieties, and in the more general subtractive varieties.

Besides the varieties of groups, rings, associative algebras, Lie algebras, etc.
there are some classically ideal determined varieties of importance in logic, such
as the variety of Heyting semilattices.
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Homology of Skew Braces
L. Guarnieri and L. Vendramin (Math. Comp., 2017) introduced the structure of
skew (left) brace, that produce bijective solutions of the Yang-Baxter equation, i.e.
pairs (X , r) such that X is a set, and r : X × X → X × X is bijective and satisfies

(r × IdX ) · (IdX × r) · (r × IdX ) = (IdX × r) · (r × IdX ) · (IdX × r).

Definition
A skew brace is a set A with two group structures, (A,+) and (A, ◦) such that

a ◦ (b + c) = a ◦ b − a + a ◦ c, ∀a,b, c ∈ A.

The solutions of the Y.-B. equation are given by r : A × A → A × A defined by

r(a,b) = (−a + a ◦ b, (−a + a ◦ b)′ ◦ a ◦ b),

where (−a + a ◦ b)′ is the inverse of −a + a ◦ b for the ◦ operation.
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Remark
SKB is a semi-abelian variety of algebras : β(x , y) = x + y and α1(x , y) = x − y .

SKB contains the variety Grp of groups as a subvariety : any group (G,+) can be
seen as a skew brace (G,+,+). Up to this identification of (G,+) with (G,+,+),
one has the adjunction

Grp
U
⊥ // SKB
Foo
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SKB contains the variety of RadRng of radical rings as a subvariety :

RadRng
U
⊥ // SKB,
Foo

which is determined by the identities

(a + b) ◦ c = a ◦ c − c + b ◦ c

and
a + b = b + a.

Note that the “◦” operation of a radical ring (A,+, ·) is defined by

a ◦ b = a + a · b + b.
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We have the following subvarieties :

SKB

��

⊥
//
RadRngoo

��
Grp

⊣

OO

⊥
//
Aboo

⊣

OO

One can then study the homology of skew braces with “coefficients” in each of the
subvarieties RadRng, Grp and Ab.
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Definition
A subset R of a skew brace (A,+, ◦) is an ideal if R ◁ (A,+), R ◁ (A, ◦), and

a + R = a ◦ R ∀a ∈ A.

Given any skew brace (A,+, ◦) the universal group associated with it is the
quotient

A // A
A∗A

where
A ∗ A = ⟨a ∗ b | a ∈ A,b ∈ A⟩A

and
a ∗ b = −a + a ◦ b − b.
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Given any ideal R of (A,+, ◦), we define

[R,A]Grp = ⟨{a ∗ b,b ∗ a, c + b ∗ a − c | a ∈ R,b ∈ A, c ∈ A}⟩A.

Given any free presentation

0 // R // F // A // 0

of a skew brace (A,+, ◦), the expression

R ∩ (F ∗ F )

[R,F ]Grp

turns out to be independent of the chosen free presentation.
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Given two free presentations

0 // R // F // A // 0

and
0 // R′ // F ′ // A // 0

of the skew brace (A,+, ◦), one always has the isomorphism

R ∩ (F ∗ F )

[R,F ]Grp

∼=
R′ ∩ (F ′ ∗ F ′)

[R′,F ′]Grp
.



For any skew brace (A,+, ◦) with free presentation

0 // R // F // A // 0 (1)

one then defines
H1(A) :=

A
A ∗ A

and
H2(A) :=

R ∩ (F ∗ F )

[R,F ]Grp
.

H1 and H2 are the first and second homology functors.
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Theorem (M. G., T. Letourmy, L. Vendramin, J. Pure Appl. Algebra 2025)
Any short exact sequence

0 // K // A f // B // 0 (2)

of skew braces - with A ∼= F
R and B ∼= G

S - induces a 5-term exact sequence

R∩(F∗F )
[R,F ]Grp

H2(f ) // S∩(G∗G)
[S,G]Grp

// K
[K ,A]Grp

// A
A∗A

H1(f ) // B
B∗B

// 0

Remark
This exact sequence is similar to the Stallings-Stammbach exact sequence in
group theory, where [R,F ]Grp is replaced by [R,F ], and G ∗ G by [G,G].
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The subvariety of radical rings
Radical rings form a subvariety RadRng of the variety SKB of skew braces.
Given elements a,b, c in a skew brace (A,+, ◦) we define their “right distributor” :

[a,b, c] = (a + b) ◦ c − b ◦ c + c − a ◦ c.

We call radicalator [A,A]RadRng of A the following additive subgroup :

[A,A]RadRng = ⟨{[a,b, c], [a,b]+ | a,b, c ∈ A}⟩A.

Lemma
[A,A]RadRng is an ideal of (A,+, ◦), and the quotient

A
ηA // A

[A,A]RadRng

gives the universal radical ring associated with (A,+, ◦).
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This means that, given any homomorphism f : A → B from a skew brace (A,+, ◦)

to a radical ring (B,+, ◦), there is a unique homomorphism A
[A,A]RadRng

f // B

making the following triangle commute :

A
ηA //

∀f
##

A
[A,A]RadRng

∃!f
��

B

Given an ideal R of a skew brace (A,+, ◦), one defines the commutator
[R,A]RadRng as follows :

[R,A]RadRng = ⟨{[a,b, c], [c,a,b], [b, c,a], [a,b]+ | a ∈ R,b, c ∈ A}⟩A.
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The subvariety of abelian groups

We consider the subvariety Ab of abelian groups : Ab
U
⊥ // SKB,
Foo

where, given any

skew brace (A,+, ◦), the relevant commutator is

[A,A]Ab = ⟨{[a,b]+,a ∗ b | a ∈ A,b ∈ A}⟩A.

The quotient of A by this ideal yields the universal abelian group associated with

the skew brace (A,+, ◦) : for any homomorphism A f // B to an abelian group
(B,+,+) there is a unique homomorphism f s. t. the following triangle commutes :

A
ηA //

∀f
!!

A
[A,A]Ab

∃!f
��

B
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For any ideal I of a skew brace (A,+, ◦) one sets

[I,A]Ab = ⟨{[a,b]+,a ∗ b, [a,b]◦ | a ∈ I,b ∈ A}⟩A.

The subgroup [I,A]Ab is actually an ideal of (A,+, ◦).

Lemma
[I,A]Ab = [I,A]Huq, where [I,A]Huq is the Huq commutator of I and A.

The Huq commutator [I,A]Huq is the smallest ideal J of (A,+, ◦) such that the
composite homomorphism

I × A c // A
qJ // A/J

is a homomorphism of skew braces, where c(i ,a) = i + a (for any i ∈ I, a ∈ A),
and qJ : A → A/J is the canonical quotient of A by J.
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Theorem (M. G., T. Letourmy, L. Vendramin, J. Pure Appl. Algebra 2025)
Any short exact sequence

0 // K // A f // B // 0

of skew braces - with free presentations A ∼= F
R and B ∼= G

S - induces a 5-term
exact sequence

R∩([F ,F ]Ab)
[R,F ]Ab

H2(f ) // S∩[G,G]Ab
[S,G]Ab

// K
[K ,A]Ab

// A
[A,A]Ab

H1(f ) // B
[B,B]Ab

// 0

Finally, one can define the lower central series A0 = A, A1 = [A,A]Ab, ... ,

An+1 = [A,An]Ab, ∀n ≥ 1.
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By applying similar methods as the ones above to the short exact sequence

0 // An // A f // A
An

// 0

in SKB we get the following

Theorem (M. G., T. Letourmy, L. Vendramin, J. Pure Applied Algebra 2025)
Let f : A → B be a morphism of skew braces. If

▶ the homomorphism H1(f ) : H1(A)
∼= // H1(B) is an isomorphism,

▶ the homomorphism H2(f ) : H2(A) // H2(B) is surjective,

then, for any n ≥ 1, the induced homomorphism

A
An

∼= // B
Bn

is an isomorphism.
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Final remarks
• It would be interesting to establish Hopf formulae for the higher-order

homology of skew braces by using the Categorical Galois theory developed
by G. Janelidze (J. Algebra, 1990).

• There are many other applications of these methods allowing one to use
commutators to compute the homology of other algebraic and topological
structures, such as crossed modules, compact groups, internal n-groupoids,
etc. (T. Everaert, M.G. and T. Van der Linden, Adv. Math., 2008, and
N. Egner, J. Algebra, 2026)

• These results have a natural counterpart in the categories of cocommutative
Hopf algebras (M.G. and A. Sciandra, Annali Matem. Pura Applicata, 2026).
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