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Constraint satisfaction problems

Definition

$B: a structure with a finite relational signature.
CSP(®B) is the following decision problem.

e INPUT: a finite structure 2l (with the same signature as B)
@ QUESTION: Is there a homomorphism [ — B7?
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Constraint satisfaction problems

Definition

$B: a structure with a finite relational signature.
CSP(®B) is the following decision problem.

e INPUT: a finite structure 2l (with the same signature as B)
@ QUESTION: Is there a homomorphism [ — B7?

Alternative formulation

o INPUT: A primitive positive (pp) sentence ¢ over B

(¢ =33...3(\(atomic)))
@ QUESTION: Is ¢ true in B7?
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pp-interpretations

Expansion by pp-definable relations does not change the complexity of the
CSP.
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pp-interpretations

Expansion by pp-definable relations does not change the complexity of the
CSP.

Definition

2 pp-interprets B if
31: A — B surjective partial map such that for all relations R of B

{(al,...,a%,...,aF,...,a5) - (I(a1),...,I(ak)) € R}

is pp-definable in 2.
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pp-interpretations

Expansion by pp-definable relations does not change the complexity of the
CSP.

Definition

2 pp-interprets B if
31: A — B surjective partial map such that for all relations R of B

{(al,...,a%,...,aF,...,a5) - (I(a1),...,I(ak)) € R}

is pp-definable in 2.

If A pp-interprets B then CSP(B) LOGSPACE reduces to CSP(2).
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pp-constructions

Definition

20 and B are homomorphically equivalent iff there are homomorphisms
A — B and B — A
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pp-constructions

Definition

20 and B are homomorphically equivalent iff there are homomorphisms
A — B and B — A

@: if 2 and B are homomorphically equivalent, then CSP(2() = CSP(‘B).
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pp-constructions

Definition

20 and B are homomorphically equivalent iff there are homomorphisms
A — B and B — A

@: if 2 and B are homomorphically equivalent, then CSP(2() = CSP(‘B).

Definition

2 pp-constructs B if B € Hl,p(2A), i.e., B is homomorphically equivalent
to a structure pp-interpretable in 2.
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20 and B are homomorphically equivalent iff there are homomorphisms
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@: if 2 and B are homomorphically equivalent, then CSP(2() = CSP(‘B).

Definition

2 pp-constructs B if B € Hl,p(2A), i.e., B is homomorphically equivalent
to a structure pp-interpretable in 2.

If A pp-constructs B then CSP(B) LOGSPACE reduces to CSP(2).
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Finite-domain CSP dichotomy

Definition
B is omniexpressive it B pp-constructs EVERYTHING.
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If B is omniexpressive then CSP(8) is NP-hard.
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Finite-domain CSP dichotomy

Definition
B is omniexpressive it B pp-constructs EVERYTHING.

If B is omniexpressive then CSP(8) is NP-hard.

Theorem ( '10)

If B is finite then B not omniexpressive iff Pol(B) contains a Siggers
operation: s(x,y,x,z,y,z) =s(y,x,z,x,2,y).
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Theorem ( '10)

If B is finite then B not omniexpressive iff Pol(B) contains a Siggers
operation: s(x,y,x,z,y,z) =s(y,x,z,x,2,y).

Theorem (

If B is finite and not omniexpressive then CSP(*B) is in P.
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Finite-domain CSP dichotomy

Definition
B is omniexpressive it B pp-constructs EVERYTHING.

If B is omniexpressive then CSP(8) is NP-hard.

Theorem ( '10)

If B is finite then B not omniexpressive iff Pol(*8) contains a Siggers
operation: s(x,y,x,z,y,z) =s(y,x,z,x,2,y).

Theorem ( ~'20)
If B is finite and not omniexpressive then CSP(*B) is in P.

If B is finite then CSP(B) is in P or it is NP-complete.
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w-categoricity

Definition (the useful one)

B is w-categorical if Aut(B) has finitely many n-orbits for all n € w.
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w-categoricity

Definition (the useful one)

B is w-categorical if Aut(B) has finitely many n-orbits for all n € w.

“Finite structures in infinite clothing.”
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w-categoricity

Definition (the useful one)

B is w-categorical if Aut(B) has finitely many n-orbits for all n € w.

“Finite structures in infinite clothing.”

If B is w-categorical, then the complexity of CSP(B) is uniquely
determined by Pol(B).
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Model-complete cores

Definition

2 is a model-complete core iff Aut(2() = End(2).
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Model-complete cores

Definition

2 is a model-complete core iff Aut(2() = End(2).

Remark: in general we have Aut(2() C Emb(2() C End(2).
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Model-complete cores

Definition

2 is a model-complete core iff Aut(2() = End(2).

Remark: in general we have Aut(2() C Emb(2() C End(2).

Theorem ( '05)

Every w-categorical structure is homomorphically equivalent to a
model-complete core.

This is unique up to isomorphism, and again w-categorical.
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Infinite-domain CSP dichotomy

B is an w-categorical model-complete core which is not omniexpressive.
Then Pol(B) contains a pseudo-Siggers operation:

(aos)(x,y,x,2,y,2) = (Bos)y,x,z,x,2,y) - a, f € Aut(2A).
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Infinite-domain CSP dichotomy

B is an w-categorical model-complete core which is not omniexpressive.
Then Pol(B) contains a pseudo-Siggers operation:
(xos)(x,y,x,z,y,z) =(Bos)y,x,z,x,z,y) : o, 5 € Aut(2).

Conjecture (
If B is FOROFBHS* and B is not omniexpressive then CSP(*B) is in P.

*first-order reduct of a finitely bounded homogeneous structure
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Infinite-domain CSP dichotomy

B is an w-categorical model-complete core which is not omniexpressive.
Then Pol(B) contains a pseudo-Siggers operation:
(xos)(x,y,x,z,y,z) =(Bos)y,x,z,x,z,y) : o, 5 € Aut(2).

Conjecture ( )
If B is FOROFBHS* and B is not omniexpressive then CSP(*B) is in P.

If B FOROFBHS* then CSP(B) is in P or it is NP-complete.

*first-order reduct of a finitely bounded homogeneous structure
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Infinite-domain CSP dichotomy

Known CSP dichotomies

Solved for

reducts of (N; =) (Bodirsky, Kara '08)
reducts of (Q; <) (Bodirsky, Kéra '09)

reducts of the homogeneous binary branching C-structure (Bodirsky,
Jonsson, Pham '16)

reducts of homogeneous graphs (Bodirsky, Martin, Pinsker, Pongrécz '19)
reducts of the random poset (Kompatscher, Pham '18)

reducts of unary w-categorical structures (Bodirsky, Mottet '18)
MMSNPs (Bodirsky, Madelaine, Mottet '18)

reducts of the random tournament (Mottet, Pinsker '21)

first-order expansions of the homogeneous RCC5 structure (Bodirsky, B. '21)
hereditarily cellular structures (B. '22)

first-order expansions of powers of (Q; <) (Bodirsky, Jonsson, Martin,
Mottet, Semanisinovd '22)

reducts of random uniform hypergraphs (Mottet, Nagy, Pinsker '23)
reducts of Johnson graphs (Bodirsky, B. '25)
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Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

o Identify more restrictive classes of structures (resembling finite
structures even more).
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Recipe for a more systematic approach

o Identify more restrictive classes of structures (resembling finite
structures even more).

@ Look up the literature and find classification results.

@ Refine these results in the context of CSPs. (We need to understand
polymorphisms!)
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A systematic approach

Recipe for a more systematic approach

o Identify more restrictive classes of structures (resembling finite
structures even more).

@ Look up the literature and find classification results.

@ Refine these results in the context of CSPs. (We need to understand
polymorphisms!)

@ Solve the dichotomy for “building blocks” (primitive structures).
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Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

o Identify more restrictive classes of structures (resembling finite
structures even more).

@ Look up the literature and find classification results.

@ Refine these results in the context of CSPs. (We need to understand
polymorphisms!)

@ Solve the dichotomy for “building blocks” (primitive structures).

e Put the pieces together. (777)
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Infinite-domain CSP dichotomy

Tame w-categoricity

More restrictive classes of w-categorical structures to consider:
© Stability, NIP, NSOP, etc.

Bertalan Bodor (Rényi Institute, Budapest) Tameness and CSPs AAA108, 8th February 2026



Infinite-domain CSP dichotomy

Tame w-categoricity

More restrictive classes of w-categorical structures to consider:
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@ Orbit growth conditions
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@ Orbit growth conditions
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Infinite-domain CSP dichotomy

Tame w-categoricity

More restrictive classes of w-categorical structures to consider:
@ Stability, NIP, NSOP, etc.
@ Orbit growth conditions
(Aut(B) ~ B, Aut(B) ~ (5))
© From second-order logic: MMSNP, GMSNP

© First-order interpretability in certain structures; mostly (N; =) or

(Q:<).
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Interpretation of structures

Definition
2 first-order interprets B if
31: AY — B surjective partial map such that for all relations R of B

{(a,...,ak, ..., &k, ...,ak) - (I(a1),. .., I(ak)) € R}

is first-order definable in 2.
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Interpretation of structures

QA first-order interprets B if
31: AY — B surjective partial map such that for all relations R of B

{(a,...,ak, ..., &k, ...,ak) - (I(a1),. .., I(ak)) € R}

is first-order definable in 2.

lt5(2A): structures first-order interpretable in 2.
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Problem with interpretations

@ @ Ig((N;=)) is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)
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Problem with interpretations

@ @ Ig((N;=)) is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)

@ © Model-completes core of structures in l¢,((N; =)) are interpretable
in (Q; <). (Lachlan '87+Bodirsky, B., Marimon '25)
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Problem with interpretations

@ @ Ig((N;=)) is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)

@ © Model-completes core of structures in l¢,((N; =)) are interpretable
in (Q; <). (Lachlan '87+Bodirsky, B., Marimon '25)

® @ l5((Q; <)) is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)
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Lachlan’s class

Definition/Theorem (

B € D (Lachlan’s class) iff
e B e lp(Q; <), and
@ no preorder with infinite chains is definable on tuples in B (NSOP).
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Lachlan’s class

Definition/Theorem ( '87)

B € D (Lachlan’s class) iff
e B e lp(Q; <), and
@ no preorder with infinite chains is definable on tuples in B (NSOP).

D is closed under taking model-complete cores.
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Lachlan’s class

Definition/Theorem ( '87)

B € D (Lachlan’s class) iff
e B e lp(Q; <), and
@ no preorder with infinite chains is definable on tuples in B (NSOP).

D is closed under taking model-complete cores.

l(N; =) C D C 15,(Q; <).
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Lachlan’s class

Primitive structures

Theorem (

'26+)
TFAE.
Q B € D and primitive.
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Lachlan’s class

Primitive structures

Theorem (

'26+)
TFAE.
Q B € D and primitive.

@ Aut(B) ~ (Sym(N) ~ (T)) ! G with the primitive action where
G < S,, transitive.
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Lachlan’s class

Primitive structures

Theorem (

'26+)
TFAE.

Q B € D and primitive.
Q@ B < 14,((N;=)) and B is primitive.

@ Aut(B) ~ (Sym(N) ~ (T)) ! G with the primitive action where
G < S,, transitive.
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Lachlan’s class

Primitive structures

Theorem (

'26+)
TFAE.

@ B € D and primitive.
Q@ B < 14,((N;=)) and B is primitive.

@ Aut(B) ~ (Sym(N) ~ (T)) ! G with the primitive action where
G < S,, transitive.

Theorem ( '26+4)

Every model-complete core as in item @ is omniexpressive unless
n = k =1 (independent of its polymorphisms).
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Tameness and CSPs

CSP Dichotomy
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Model theoretical tameness: the picture

Link to the picture:

https://wwwpub.zih.tu-dresden.de/~bodirsky/Tame-omega-categoricity.pdf
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