

Tame ω -categoricity and CSPs

Bertalan Bodor,
joint work with Manuel Bodirsky and Paolo Marimon

Rényi Institute, Budapest

Arbeitstagung Allgemeine Algebra 108, 8th February 2026

Constraint satisfaction problems

Definition

\mathfrak{B} : a structure with a finite relational signature.

$CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure \mathfrak{A} (with the same signature as \mathfrak{B})
- QUESTION: Is there a homomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$?

Constraint satisfaction problems

Definition

\mathfrak{B} : a structure with a finite relational signature.

$CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure \mathfrak{A} (with the same signature as \mathfrak{B})
- QUESTION: Is there a homomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$?

Alternative formulation

- INPUT: A primitive positive (pp) sentence φ over \mathfrak{B}
 $(\varphi \equiv \exists \exists \dots \exists (\bigwedge (\text{atomic})))$
- QUESTION: Is φ true in \mathfrak{B} ?

pp-interpretations

Expansion by pp-definable relations does not change the complexity of the CSP.

pp-interpretations

Expansion by pp-definable relations does not change the complexity of the CSP.

Definition

\mathfrak{A} pp-interprets \mathfrak{B} if

$\exists I: A^d \rightarrow B$ surjective partial map such that for all relations R of \mathfrak{B}

$$\{(a_1^1, \dots, a_d^1, \dots, a_1^k, \dots, a_d^k) : (I(a_1), \dots, I(a_k)) \in R\}$$

is pp-definable in \mathfrak{A} .

pp-interpretations

Expansion by pp-definable relations does not change the complexity of the CSP.

Definition

\mathfrak{A} pp-interprets \mathfrak{B} if

$\exists I: A^d \rightarrow B$ surjective partial map such that for all relations R of \mathfrak{B}

$$\{(a_1^1, \dots, a_d^1, \dots, a_1^k, \dots, a_d^k) : (I(a_1), \dots, I(a_k)) \in R\}$$

is pp-definable in \mathfrak{A} .

Fact

If \mathfrak{A} pp-interprets \mathfrak{B} then $\text{CSP}(\mathfrak{B})$ LOGSPACE reduces to $\text{CSP}(\mathfrak{A})$.

pp-constructions

Definition

\mathfrak{A} and \mathfrak{B} are **homomorphically equivalent** iff there are homomorphisms $\mathfrak{A} \rightarrow \mathfrak{B}$ and $\mathfrak{B} \rightarrow \mathfrak{A}$.

pp-constructions

Definition

\mathfrak{A} and \mathfrak{B} are **homomorphically equivalent** iff there are homomorphisms $\mathfrak{A} \rightarrow \mathfrak{B}$ and $\mathfrak{B} \rightarrow \mathfrak{A}$.

⦿: if \mathfrak{A} and \mathfrak{B} are homomorphically equivalent, then $\text{CSP}(\mathfrak{A}) = \text{CSP}(\mathfrak{B})$.

pp-constructions

Definition

\mathfrak{A} and \mathfrak{B} are **homomorphically equivalent** iff there are homomorphisms $\mathfrak{A} \rightarrow \mathfrak{B}$ and $\mathfrak{B} \rightarrow \mathfrak{A}$.

⦿: if \mathfrak{A} and \mathfrak{B} are homomorphically equivalent, then $\text{CSP}(\mathfrak{A}) = \text{CSP}(\mathfrak{B})$.

Definition

\mathfrak{A} **pp-constructs** \mathfrak{B} if $\mathfrak{B} \in \text{HI}_{pp}(\mathfrak{A})$, i.e., \mathfrak{B} is homomorphically equivalent to a structure pp-interpretable in \mathfrak{A} .

pp-constructions

Definition

\mathfrak{A} and \mathfrak{B} are **homomorphically equivalent** iff there are homomorphisms $\mathfrak{A} \rightarrow \mathfrak{B}$ and $\mathfrak{B} \rightarrow \mathfrak{A}$.

⦿: if \mathfrak{A} and \mathfrak{B} are homomorphically equivalent, then $\text{CSP}(\mathfrak{A}) = \text{CSP}(\mathfrak{B})$.

Definition

\mathfrak{A} **pp-constructs** \mathfrak{B} if $\mathfrak{B} \in \text{HI}_{pp}(\mathfrak{A})$, i.e., \mathfrak{B} is homomorphically equivalent to a structure pp-interpretable in \mathfrak{A} .

Fact

If \mathfrak{A} pp-constructs \mathfrak{B} then $\text{CSP}(\mathfrak{B})$ LOGSPACE reduces to $\text{CSP}(\mathfrak{A})$.

Finite-domain CSP dichotomy

Definition

\mathcal{B} is **omniexpressive** if \mathcal{B} pp-constructs **EVERYTHING**.

Finite-domain CSP dichotomy

Definition

\mathcal{B} is **omniexpressive** if \mathcal{B} pp-constructs **EVERYTHING**.

If \mathcal{B} is omniexpressive then $\text{CSP}(\mathcal{B})$ is **NP-hard**.

Finite-domain CSP dichotomy

Definition

\mathcal{B} is **omniexpressive** if \mathcal{B} pp-constructs **EVERYTHING**.

If \mathcal{B} is omniexpressive then $\text{CSP}(\mathcal{B})$ is **NP-hard**.

Theorem (Siggers '10)

If \mathcal{B} is **finite** then \mathcal{B} not omniexpressive iff $\text{Pol}(\mathcal{B})$ contains a Siggers operation: $s(x, y, x, z, y, z) = s(y, x, z, x, z, y)$.

Finite-domain CSP dichotomy

Definition

\mathcal{B} is **omniexpressive** if \mathcal{B} pp-constructs **EVERYTHING**.

If \mathcal{B} is omniexpressive then $\text{CSP}(\mathcal{B})$ is **NP-hard**.

Theorem (Siggers '10)

If \mathcal{B} is **finite** then \mathcal{B} not omniexpressive iff $\text{Pol}(\mathcal{B})$ contains a Siggers operation: $s(x, y, x, z, y, z) = s(y, x, z, x, z, y)$.

Theorem (Bulatov; Zhuk ≈'20)

If \mathcal{B} is **finite** and not omniexpressive then $\text{CSP}(\mathcal{B})$ is in **P**.

Finite-domain CSP dichotomy

Definition

\mathcal{B} is **omniexpressive** if \mathcal{B} pp-constructs **EVERYTHING**.

If \mathcal{B} is omniexpressive then $\text{CSP}(\mathcal{B})$ is **NP-hard**.

Theorem (Siggers '10)

If \mathcal{B} is **finite** then \mathcal{B} not omniexpressive iff $\text{Pol}(\mathcal{B})$ contains a Siggers operation: $s(x, y, x, z, y, z) = s(y, x, z, x, z, y)$.

Theorem (Bulatov; Zhuk ≈'20)

If \mathcal{B} is **finite** and not omniexpressive then $\text{CSP}(\mathcal{B})$ is in **P**.

Corollary

If \mathcal{B} is **finite** then $\text{CSP}(\mathcal{B})$ is in **P** or it is **NP-complete**.

ω -categoricity

Definition (the useful one)

\mathfrak{B} is ω -categorical if $\text{Aut}(\mathfrak{B})$ has finitely many n -orbits for all $n \in \omega$.

ω -categoricity

Definition (the useful one)

\mathfrak{B} is ω -categorical if $\text{Aut}(\mathfrak{B})$ has finitely many n -orbits for all $n \in \omega$.

“Finite structures in infinite clothing.”

ω -categoricity

Definition (the useful one)

\mathfrak{B} is ω -categorical if $\text{Aut}(\mathfrak{B})$ has finitely many n -orbits for all $n \in \omega$.

“Finite structures in infinite clothing.”

Theorem (Bodirsky, Nešetřil '03)

If \mathfrak{B} is ω -categorical, then the complexity of $\text{CSP}(\mathfrak{B})$ is uniquely determined by $\text{Pol}(\mathfrak{B})$.

Model-complete cores

Definition

\mathfrak{A} is a **model-complete core** iff $\overline{\text{Aut}(\mathfrak{A})} = \text{End}(\mathfrak{A})$.

Model-complete cores

Definition

\mathfrak{A} is a **model-complete core** iff $\overline{\text{Aut}(\mathfrak{A})} = \text{End}(\mathfrak{A})$.

Remark: in general we have $\overline{\text{Aut}(\mathfrak{A})} \subseteq \text{Emb}(\mathfrak{A}) \subseteq \text{End}(\mathfrak{A})$.

Model-complete cores

Definition

\mathfrak{A} is a **model-complete core** iff $\overline{\text{Aut}(\mathfrak{A})} = \text{End}(\mathfrak{A})$.

Remark: in general we have $\overline{\text{Aut}(\mathfrak{A})} \subseteq \text{Emb}(\mathfrak{A}) \subseteq \text{End}(\mathfrak{A})$.

Theorem (Bodirsky '05)

Every ω -categorical structure is homomorphically equivalent to a model-complete core.

This is unique up to isomorphism, and again ω -categorical.

Infinite-domain CSP dichotomy

Theorem (Barto, Pinsker '20)

\mathfrak{B} is an ω -categorical model-complete core which is not omniexpressive.

Then $\text{Pol}(\mathfrak{B})$ contains a *pseudo-Siggers* operation:

$$(\alpha \circ s)(x, y, x, z, y, z) = (\beta \circ s)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\text{Aut}(\mathfrak{A})}.$$

Infinite-domain CSP dichotomy

Theorem (Barto, Pinsker '20)

\mathfrak{B} is an ω -categorical model-complete core which is not omniexpressive. Then $\text{Pol}(\mathfrak{B})$ contains a *pseudo-Siggers* operation:
 $(\alpha \circ s)(x, y, x, z, y, z) = (\beta \circ s)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\text{Aut}(\mathfrak{A})}$.

Conjecture (Bodirsky, Pinsker)

If \mathfrak{B} is FOROFBHS* and \mathfrak{B} is not omniexpressive then $\text{CSP}(\mathfrak{B})$ is in **P**.

*first-order reduct of a finitely bounded homogeneous structure

Infinite-domain CSP dichotomy

Theorem (Barto, Pinsker '20)

\mathfrak{B} is an ω -categorical model-complete core which is not omniexpressive. Then $\text{Pol}(\mathfrak{B})$ contains a *pseudo-Siggers* operation:
 $(\alpha \circ s)(x, y, x, z, y, z) = (\beta \circ s)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\text{Aut}(\mathfrak{A})}$.

Conjecture (Bodirsky, Pinsker)

If \mathfrak{B} is FOROFBHS* and \mathfrak{B} is not omniexpressive then $\text{CSP}(\mathfrak{B})$ is in **P**.

Corollary

If \mathfrak{B} FOROFBHS* then $\text{CSP}(\mathfrak{B})$ is in **P** or it is **NP**-complete.

*first-order reduct of a finitely bounded homogeneous structure

Infinite-domain CSP dichotomy

Known CSP dichotomies

Solved for

- reducts of $(\mathbb{N}; =)$ (Bodirsky, Kára '08)
- reducts of $(\mathbb{Q}; <)$ (Bodirsky, Kára '09)
- reducts of the homogeneous binary branching C-structure (Bodirsky, Jonsson, Pham '16)
- reducts of homogeneous graphs (Bodirsky, Martin, Pinsker, Pongrácz '19)
- reducts of the random poset (Kompatscher, Pham '18)
- reducts of unary ω -categorical structures (Bodirsky, Mottet '18)
- MMSNPs (Bodirsky, Madelaine, Mottet '18)
- reducts of the random tournament (Mottet, Pinsker '21)
- first-order expansions of the homogeneous RCC5 structure (Bodirsky, B. '21)
- hereditarily cellular structures (B. '22)
- first-order expansions of powers of $(\mathbb{Q}; <)$ (Bodirsky, Jonsson, Martin, Mottet, Semanišinová '22)
- reducts of random uniform hypergraphs (Mottet, Nagy, Pinsker '23)
- reducts of Johnson graphs (Bodirsky, B. '25)

Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

- Identify more restrictive classes of structures (resembling finite structures even more).

Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

- Identify more restrictive classes of structures (resembling finite structures even more).
- Look up the literature and find classification results.

Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

- Identify more restrictive classes of structures (resembling finite structures even more).
- Look up the literature and find classification results.
- Refine these results in the context of CSPs. (We need to understand polymorphisms!)

Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

- Identify more restrictive classes of structures (resembling finite structures even more).
- Look up the literature and find classification results.
- Refine these results in the context of CSPs. (We need to understand polymorphisms!)
- Solve the dichotomy for “building blocks” (primitive structures).

Infinite-domain CSP dichotomy

A systematic approach

Recipe for a more systematic approach

- Identify more restrictive classes of structures (resembling finite structures even more).
- Look up the literature and find classification results.
- Refine these results in the context of CSPs. (We need to understand polymorphisms!)
- Solve the dichotomy for “building blocks” (primitive structures).
- Put the pieces together. (???)

Infinite-domain CSP dichotomy

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- ① Stability, NIP, NSOP, etc.

Infinite-domain CSP dichotomy

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- ① Stability, NIP, NSOP, etc.
- ② Orbit growth conditions
 $(\text{Aut}(\mathfrak{B}) \curvearrowright B^{(n)}, \text{Aut}(\mathfrak{B}) \curvearrowright \binom{B}{n})$

Infinite-domain CSP dichotomy

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- ① Stability, NIP, NSOP, etc.
- ② Orbit growth conditions
 $(\text{Aut}(\mathfrak{B}) \curvearrowright B^{(n)}, \text{Aut}(\mathfrak{B}) \curvearrowright \binom{B}{n})$
- ③ From second-order logic: MMSNP, GMSNP

Infinite-domain CSP dichotomy

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- ① Stability, NIP, NSOP, etc.
- ② Orbit growth conditions
 $(\text{Aut}(\mathfrak{B}) \curvearrowright B^{(n)}, \text{Aut}(\mathfrak{B}) \curvearrowright \binom{B}{n})$
- ③ From second-order logic: MMSNP, GMSNP
- ④ First-order interpretability in certain structures; mostly $(\mathbb{N}; =)$ or $(\mathbb{Q}; <)$.

Interpretation of structures

Definition

\mathfrak{A} first-order interprets \mathfrak{B} if

$\exists I: A^d \rightarrow B$ surjective partial map such that for all relations R of \mathfrak{B}

$$\{(a_1^1, \dots, a_d^1, \dots, a_1^k, \dots, a_d^k) : (I(a_1), \dots, I(a_k)) \in R\}$$

is first-order definable in \mathfrak{A} .

Interpretation of structures

Definition

\mathfrak{A} first-order interprets \mathfrak{B} if

$\exists I: A^d \rightarrow B$ surjective partial map such that for all relations R of \mathfrak{B}

$$\{(a_1^1, \dots, a_d^1, \dots, a_1^k, \dots, a_d^k) : (I(a_1), \dots, I(a_k)) \in R\}$$

is first-order definable in \mathfrak{A} .

Notation

$I_{fo}(\mathfrak{A})$: structures first-order interpretable in \mathfrak{A} .

Problem with interpretations

Facts

- $\mathbb{I}_{\text{fo}}((\mathbb{N}; =))$ is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)

Problem with interpretations

Facts

- ☺ $I_{fo}((\mathbb{N}; =))$ is not closed under taking model-complete core.
(**Bodirsky, B., Marimon '25**)
- ☺ Model-completes core of structures in $I_{fo}((\mathbb{N}; =))$ are interpretable in $(\mathbb{Q}; <)$. (**Lachlan '87+Bodirsky, B., Marimon '25**)

Problem with interpretations

Facts

- $\mathbb{I}_{\text{fo}}((\mathbb{N}; =))$ is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)
- $\mathbb{I}_{\text{fo}}((\mathbb{N}; =))$ are interpretable in $(\mathbb{Q}; <)$.
(Lachlan '87 + Bodirsky, B., Marimon '25)
- $\mathbb{I}_{\text{fo}}((\mathbb{Q}; <))$ is not closed under taking model-complete core.
(Bodirsky, B., Marimon '25)

Lachlan's class

Definition/Theorem (Lachlan '87)

$\mathfrak{B} \in \mathcal{D}$ (Lachlan's class) iff

- $\mathfrak{B} \in \mathcal{I}_{fo}(\mathbb{Q}; <)$, and
- no preorder with infinite chains is definable on tuples in \mathfrak{B} (NSOP).

Lachlan's class

Definition/Theorem (Lachlan '87)

$\mathfrak{B} \in \mathcal{D}$ (Lachlan's class) iff

- $\mathfrak{B} \in \mathbf{I}_{\mathbf{fo}}(\mathbb{Q}; <)$, and
- no preorder with infinite chains is definable on tuples in \mathfrak{B} (NSOP).

Fact (Bodirsky, B., Marimon '25)

\mathcal{D} is closed under taking model-complete cores.

Lachlan's class

Definition/Theorem (Lachlan '87)

$\mathfrak{B} \in \mathcal{D}$ (Lachlan's class) iff

- $\mathfrak{B} \in \mathsf{I}_{\mathsf{fo}}(\mathbb{Q}; <)$, and
- no preorder with infinite chains is definable on tuples in \mathfrak{B} (NSOP).

Fact (Bodirsky, B., Marimon '25)

\mathcal{D} is closed under taking model-complete cores.

$\mathsf{I}_{\mathsf{fo}}(\mathbb{N}; =) \subset \mathcal{D} \subset \mathsf{I}_{\mathsf{fo}}(\mathbb{Q}; <)$.

Theorem (Cherlin, Lachlan, Harrington '85+ Bodirsky, B., Marimon '26+)

TFAE.

- ➊ $\mathcal{B} \in \mathcal{D}$ and primitive.

Theorem (Cherlin, Lachlan, Harrington '85+ Bodirsky, B., Marimon '26+)

TFAE.

- ① $\mathfrak{B} \in \mathcal{D}$ and primitive.
- ③ $\text{Aut}(\mathfrak{B}) \simeq (\text{Sym}(\mathbb{N}) \curvearrowright \binom{\mathbb{N}}{k}) \wr G$ with the primitive action where $G \leq S_n$ transitive.

Theorem (Cherlin, Lachlan, Harrington '85+ Bodirsky, B., Marimon '26+)

TFAE.

- ① $\mathfrak{B} \in \mathcal{D}$ and primitive.
- ② $\mathfrak{B} \in \mathcal{I}_{\text{fo}}((\mathbb{N}; =))$ and \mathfrak{B} is primitive.
- ③ $\text{Aut}(\mathfrak{B}) \simeq (\text{Sym}(\mathbb{N}) \curvearrowright \binom{\mathbb{N}}{k}) \wr G$ with the primitive action where $G \leq S_n$ transitive.

Lachlan's class

Primitive structures

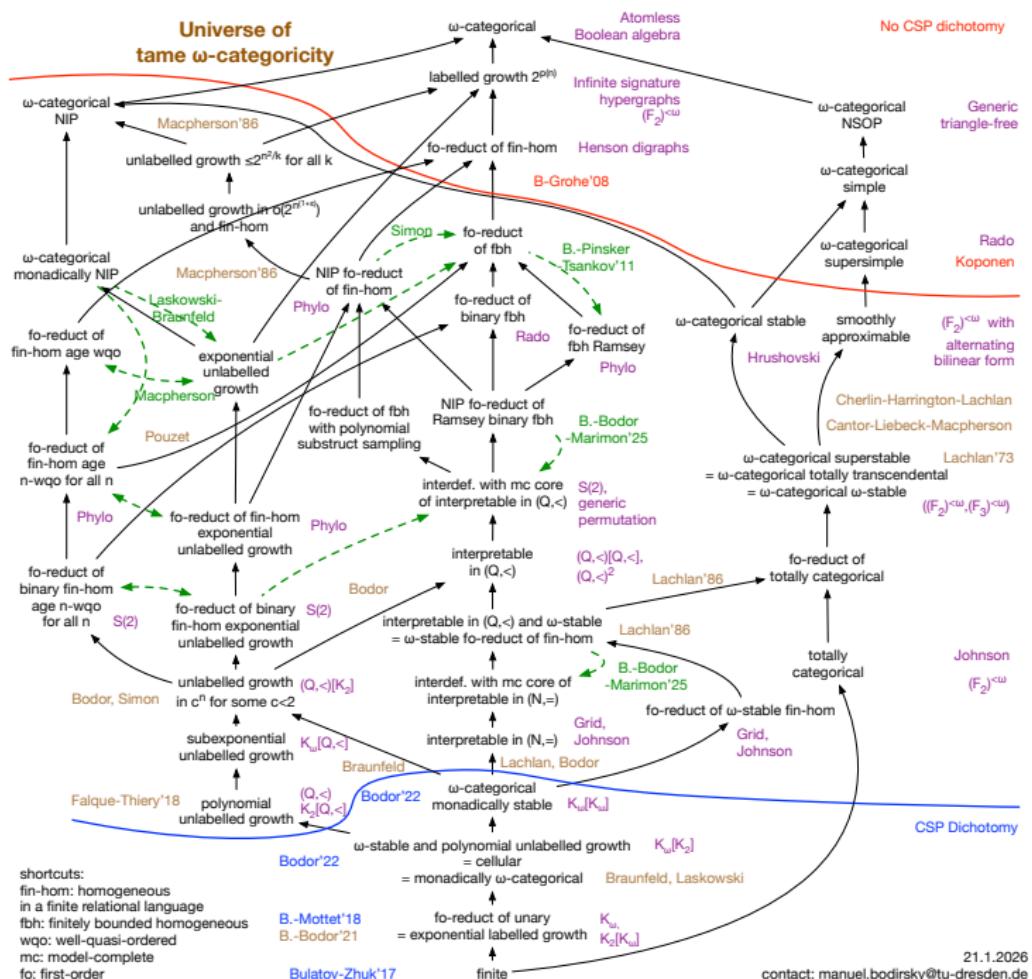
Theorem (Cherlin, Lachlan, Harrington '85+ Bodirsky, B., Marimon '26+)

TFAE.

- ① $\mathfrak{B} \in \mathcal{D}$ and primitive.
- ② $\mathfrak{B} \in \mathcal{I}_{\text{fo}}((\mathbb{N}; =))$ and \mathfrak{B} is primitive.
- ③ $\text{Aut}(\mathfrak{B}) \simeq (\text{Sym}(\mathbb{N}) \curvearrowright \binom{\mathbb{N}}{k}) \wr G$ with the primitive action where $G \leq S_n$ transitive.

Theorem (Bodirsky, B., Marimon '26+)

Every model-complete core as in item ③ is omniexpressive unless $n = k = 1$ (independent of its polymorphisms).



Model theoretical tameness: the picture

Link to the picture:

<https://wwwpub.zih.tu-dresden.de/~bodirsky/Tame-omega-categoricity.pdf>