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The problem

Problem. Given a variety V of residuated lattices, describe the
(quasi)variety of its monoidal subreducts.

This problem can really be seen in triplicate:

Problem. Let V be a variety of residuated lattices.
• Describe the monoids are embeddable in a member of V.
• Describe the partially ordered monoids that are order embeddable in

a member of V.
• Describe the lattice ordered monoids that are (order) embeddable in

a member of V.
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The low hanging fruits

Let M be a pomonoid. A nucleus γ on M is an increasing, monotone
and idempotent map on M satisfying the further condition
γ(a)γ(b) ≤ γ(ab). It is well known that the set Mγ = γ(M) can be given
a structure of pomonoid by setting γ(a)γ(b) = γ(ab).

Moreover for any pomonoid M, the power set P(M) can be made into a
pomonoid by defining the so-called complex product:

XY = {xy : x ∈ Y , y ∈ Y }.
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It is easily checked that if γ is a nucleus on P(M), then it is a closure
operator on M. Thus P(M)g coincide with the set the closed sets (i.e.
those X ⊆ M such that γ(X ) = X ), that therefore form a complete
`-monoid: the universe is γ(P(M)), the meet is the intersection, the join
is the closure of the union, the product is X ∗Y = γ({xy : x ∈ X , y ∈ Y }
and the monoidal unit is E = γ({1}). Moreover in γ(P(M)) we define

X\Y = {a : X ∗ γ({a}) ⊆ Y }
X/Y = {a : γ({a}) ∗ X ⊆ Y }.

Lemma
Let M be a pomonoid and γ a nucleus on M. Then

Dγ(M)) = 〈γ(P(M)),∨,∧, ∗, \, /,E 〉

is a residuated lattice and a 7−→ γ({a}) is an order embedding of M into
Dγ(M).
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Proposition

Every pomonoid is order embeddable in a residuated lattice. Hence the
class of `-monoidal subreducts of residuated lattices is the variety of
`-monoids.

Now commutativity is clearly preserved by both the power monoid
construction and by the nucleus. Hence we get at once:

Proposition

Any commutative pomonoid is order embeddable in a commutative
residuated lattice. Hence the class of `-monoidal subreducts of
commutative residuated lattices is the variety of commutative `-monoids.
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The Dedekind MacNeille completion

If M is a pomonoid then ↓X = {b : b ≤ a, for some a ∈ X} is a nucleus
on P(M) which we call the DM-nucleus; in this case we drop the
subscript γ and we call D(M) the Dedekind-MacNeille completion of
M.

Any monoid M is a pomonoid with the discrete ordering and its Dedekind
McNeille completion is just P(M). Thus:

Proposition

Every (commutative) monoid is embeddable in a (commutative),
complete and distributive residuated lattice.
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A residuated lattice or a pomonoid is integral if 1 is the largest element
in the ordering. It is easy to see that if a monoid M is integral, then so is
D(M) so

Proposition

Any (commutative) integral pomonoid is order embeddable in an integral
(commutative) residuated lattice.

A residuated lattice (or an `-monoid) is semilinear if is a subdirect
product of totally ordered residuated lattices (`-monoids). Clearly any
semilinear variety of residuated lattices (`-monoids) consists entirely of
distributive residuated lattices (`-monoids). Let SCIRL the variety of
semilinear commutative and integral residuated lattices.
It is straightforward to check that the property of being totally ordered is
preserved by the DM-nucleus.
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Proposition

The class of `-monoidal subreducts of SCIRL is exactly the variety of
distributive, commutative and integral `-monoids.

Proof.
By an old result of Fuchs (1974) if M is a distributive commutative and
integral `-monoid then it is subdirectly embeddable in

∏
i∈I Mi where each Mi

is totally ordered.
By the above observation each Mi is embeddable in D(Mi ), a totally ordered
commutative and integral residuated lattice. Hence M is an `-monoidal
subreduct of B =

∏
i∈I D(Mi ). Clearly B ∈ SCIRL.

On the other hand let A be an `-monoidal subreduct of B ∈ SCIRL. Then B is
subdirectly embeddable

∏
i∈I Bi , where each Bi is totally ordered. Let B′,B′

i

the `-monoidal reducts of B,Bi , i ∈ I .
Then certainly B′ is embeddable in

∏
i∈I B

′
i and so is A. But the B′

i are totally
ordered `-monoids, so

∏
i∈I B

′
i is a distributive commutative and integral

`-monoid and so is A.
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Note that we cannot extend immediately the previous result to generic
monoids. Some work has to be done.

Let M be a commutative monoid and define a relation on M by setting

a ≤ b if and only if ∃ c such that a = bc.

Then ≤ is always a preorder; let θ be the associated equivalence relation,
and for a ∈ M we denote by ā the equivalence class of a ∈ M.

Lemma
If M is a commutative monoid then θ is a congruence on M and
M/θ = M is an integral pomonoid with largest element 1̄.
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A commutative monoid M is naturally ordered if θ is the trivial
congruence, i.e. ≤ is a partial order. By the Lemma the partial order is
compatible and M is a pomonoid;

Lemma
For a commutative monoid M the following are equivalent

1 M is naturally ordered;
2 M satisfies the quasiequation

x ≈ yz & y ≈ xw ⇒ x ≈ y . (N)

Hence naturally ordered commutative monoids form a quasivariety,
denoted by NCM.

Theorem
The class of monoidal subreducts of the variety of commutative and
integral residuated lattices is exactly NCM.
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`-monoids and `-groups

People were quick to realize that Steinitz’s argument for proving that
every integral domain embeds into a field [ really showed that any
commutative cancellative monoid is embeddable in an abelian group.

Since this condition is clearly also necessary this solves completely the
problems for abelian groups: the class of the monoidal subreducts of
abelian groups is the quasivariety of commutative cancellative monoids.

A pomonoid (`-monoid) M is order cancellative if, for any a, b, c ∈ M,
ab ≤ ac or ba ≤ ca implies b ≤ c . It is obvious that any order
cancellative pomonoid is cancellative in the usual sense. The proof of the
following ordered version of Steinitz’s result is straightforward.

Theorem
An abelian pomonoid M is order embeddable in a pogroup if and only if
it is order cancellative. In particular an abelian `-monoid is order
embeddable in an `-group if and only if it is order cancellative.
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Negative cones

Remark
There is an abelian pomonoid M that is cancellative but not order
cancellative. Hence M is not embeddable in any pogroup but its
monoidal reduct is embeddable in a group.

The negative cone of an `-group G is {a ∈ G : a ≤ 1}. Any negative
cone of an `-group is an order cancellative residuated lattice.

Negative cones of abelian `-groups are really cancellative hoops, i.e.
commutative, prelinear and order cancellative residuated lattices that are
also divisible, i.e. satisfy the further equation (x → y)x ≈ x ∧ y . Let’s
denote this variety by C.

Proposition

The class of pomonoidal (`-monoidal) subreducts of C is the class of all
integral, abelian and order cancellative pomonoids (the quasivariety of all
abelian and order cancellative `-monoids).
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cancellative. Hence M is not embeddable in any pogroup but its
monoidal reduct is embeddable in a group.

The negative cone of an `-group G is {a ∈ G : a ≤ 1}. Any negative
cone of an `-group is an order cancellative residuated lattice.

Negative cones of abelian `-groups are really cancellative hoops, i.e.
commutative, prelinear and order cancellative residuated lattices that are
also divisible, i.e. satisfy the further equation (x → y)x ≈ x ∧ y . Let’s
denote this variety by C.
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Example (Bahls-Galatos-Cole-Tsinakis 2003)

There is totally ordered, order cancellative, abelian and integral
residuated lattice that is not embeddable in the negative cone of an
`-group but whose pomonoidal reduct is .

Let M be the free abelian monoid generated by x and y ; if we set a usual
x0 = y0 = 1, then the elements of M are of the form x iy j , i , j ∈ N. Let’s
order M in this way

1 > x > y > x2 > xy > y2 > x3 > x2y > xy2 > y3 > x4 > . . . .

Then M is an integral totally ordered abelian pomonoid that is also order
cancellative, so it is order embeddable in the negative cone of an `-group.
However it is also a lattice and it can be made into a residuated lattice L,
since the → is totally determined by ∨ and ·.
However it cannot be embedded in the negative cone of an `-group since
it is not divisible:

(x → y)x = x2 6= y = x ∧ y .
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Note that if we remove cancellativity, then the previous result does not
work any more.

It is easy to check that if L is a divisible CIRL and e ∈ L is idempotente,
then e ∧ a = ea for all a ∈ M. This implies at once that any pomonoidal
subreduct of L must satisfy the quasiequation

z2 ≈ z & x ≤ z ⇒ xz ≈ x .

Here is an example of a totally ordered commutative CIRL whose
pomonoidal subreduct does not satisfy the quasiequation. For instance
the 5-element CIRL ordered by 1 > a > b > c > d whose multiplication
table is

a b c d 1
a a d d d a
b d d d d b
c d d d d c
d d d d d d
1 a b c d 1

Here a = a2, b ≤ a but ab = d < b.
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Final thoughts

Two paths:
• continue to study the combination of the power monoid and the

nucleus construction which we have exploited only minimally; there
is a sizable body of work involving nuclei that tackle questions that
are tangential to ours;

• in case of `-monoids and `-groups we might try to follows the
classical path which led to the complete solution (by Mal’cev and
Lambek independently) of the problem of embedding a monoid in a
group. There are results in this direction too; for instance an ordered
analogue of the famouse Ore’s result has been proved by Montagna
and Tsinakis (2010).
We also have some more general results, too technical to explain
here, which seem to hint to a complete solution of the problem.
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THANK YOU!
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