

Embedding monoids in residuated lattices

Paolo Aglianò agliano@live.com
with S. Ugolini and T. Kowalski

AAA 108, Wien, Feb. 6-8 2026

The problem

Problem. Given a variety V of residuated lattices, describe the (quasi)variety of its monoidal subreducts.

The problem

Problem. Given a variety V of residuated lattices, describe the (quasi)variety of its monoidal subreducts.

This problem can really be seen in triplicate:

Problem. Let V be a variety of residuated lattices.

- Describe the monoids are embeddable in a member of V .
- Describe the partially ordered monoids that are order embeddable in a member of V .
- Describe the lattice ordered monoids that are (order) embeddable in a member of V .

The low hanging fruits

Let \mathbf{M} be a pomonoid. A **nucleus** γ on \mathbf{M} is an increasing, monotone and idempotent map on M satisfying the further condition $\gamma(a)\gamma(b) \leq \gamma(ab)$. It is well known that the set $M_\gamma = \gamma(M)$ can be given a structure of pomonoid by setting $\gamma(a)\gamma(b) = \gamma(ab)$.

The low hanging fruits

Let \mathbf{M} be a pomonoid. A **nucleus** γ on \mathbf{M} is an increasing, monotone and idempotent map on M satisfying the further condition $\gamma(a)\gamma(b) \leq \gamma(ab)$. It is well known that the set $M_\gamma = \gamma(M)$ can be given a structure of pomonoid by setting $\gamma(a)\gamma(b) = \gamma(ab)$.

Moreover for any pomonoid \mathbf{M} , the power set $\mathcal{P}(M)$ can be made into a pomonoid by defining the so-called *complex product*:

$$XY = \{xy : x \in Y, y \in Y\}.$$

It is easily checked that if γ is a nucleus on $\mathcal{P}(M)$, then it is a closure operator on M . Thus $\mathcal{P}(M)_g$ coincide with the set the closed sets (i.e. those $X \subseteq M$ such that $\gamma(X) = X$), that therefore form a complete ℓ -monoid: the universe is $\gamma(\mathcal{P}(M))$, the meet is the intersection, the join is the closure of the union, the product is $X * Y = \gamma(\{xy : x \in X, y \in Y\})$ and the monoidal unit is $E = \gamma(\{1\})$. Moreover in $\gamma(\mathcal{P}(M))$ we define

$$X \setminus Y = \{a : X * \gamma(\{a\}) \subseteq Y\}$$
$$X / Y = \{a : \gamma(\{a\}) * X \subseteq Y\}.$$

It is easily checked that if γ is a nucleus on $\mathcal{P}(M)$, then it is a closure operator on M . Thus $\mathcal{P}(M)_g$ coincide with the set the closed sets (i.e. those $X \subseteq M$ such that $\gamma(X) = X$), that therefore form a complete ℓ -monoid: the universe is $\gamma(\mathcal{P}(M))$, the meet is the intersection, the join is the closure of the union, the product is $X * Y = \gamma(\{xy : x \in X, y \in Y\})$ and the monoidal unit is $E = \gamma(\{1\})$. Moreover in $\gamma(\mathcal{P}(M))$ we define

$$X \setminus Y = \{a : X * \gamma(\{a\}) \subseteq Y\}$$

$$X / Y = \{a : \gamma(\{a\}) * X \subseteq Y\}.$$

Lemma

Let \mathbf{M} be a pomonoid and γ a nucleus on \mathbf{M} . Then

$$\mathcal{D}_\gamma(\mathbf{M}) = \langle \gamma(\mathcal{P}(M)), \vee, \wedge, *, \setminus, /, E \rangle$$

is a residuated lattice and $a \mapsto \gamma(\{a\})$ is an order embedding of \mathbf{M} into $\mathcal{D}_\gamma(\mathbf{M})$.

Proposition

Every pomonoid is order embeddable in a residuated lattice. Hence the class of ℓ -monoidal subreducts of residuated lattices is the variety of ℓ -monoids.

Proposition

Every pomonoid is order embeddable in a residuated lattice. Hence the class of ℓ -monoidal subreducts of residuated lattices is the variety of ℓ -monoids.

Now commutativity is clearly preserved by both the power monoid construction and by the nucleus. Hence we get at once:

Proposition

Every pomonoid is order embeddable in a residuated lattice. Hence the class of ℓ -monoidal subreducts of residuated lattices is the variety of ℓ -monoids.

Now commutativity is clearly preserved by both the power monoid construction and by the nucleus. Hence we get at once:

Proposition

Any commutative pomonoid is order embeddable in a commutative residuated lattice. Hence the class of ℓ -monoidal subreducts of commutative residuated lattices is the variety of commutative ℓ -monoids.

The Dedekind MacNeille completion

If \mathbf{M} is a pomonoid then $\downarrow X = \{b : b \leq a, \text{ for some } a \in X\}$ is a nucleus on $\mathcal{P}(M)$ which we call the **DM-nucleus**; in this case we drop the subscript γ and we call $\mathcal{D}(\mathbf{M})$ the **Dedekind-MacNeille completion** of \mathbf{M} .

The Dedekind MacNeille completion

If \mathbf{M} is a pomonoid then $\downarrow X = \{b : b \leq a, \text{ for some } a \in X\}$ is a nucleus on $\mathcal{P}(M)$ which we call the **DM-nucleus**; in this case we drop the subscript γ and we call $\mathcal{D}(\mathbf{M})$ the **Dedekind-MacNeille completion** of \mathbf{M} .

Any monoid \mathbf{M} is a pomonoid with the discrete ordering and its Dedekind MacNeille completion is just $\mathcal{P}(\mathbf{M})$. Thus:

The Dedekind MacNeille completion

If \mathbf{M} is a pomonoid then $\downarrow X = \{b : b \leq a, \text{ for some } a \in X\}$ is a nucleus on $\mathcal{P}(M)$ which we call the **DM-nucleus**; in this case we drop the subscript γ and we call $\mathcal{D}(\mathbf{M})$ the **Dedekind-MacNeille completion** of \mathbf{M} .

Any monoid \mathbf{M} is a pomonoid with the discrete ordering and its Dedekind MacNeille completion is just $\mathcal{P}(\mathbf{M})$. Thus:

Proposition

Every (commutative) monoid is embeddable in a (commutative), complete and distributive residuated lattice.

A residuated lattice or a pomonoid is **integral** if 1 is the largest element in the ordering. It is easy to see that if a monoid \mathbf{M} is integral, then so is $\mathcal{D}(\mathbf{M})$ so

A residuated lattice or a pomonoid is **integral** if 1 is the largest element in the ordering. It is easy to see that if a monoid \mathbf{M} is integral, then so is $\mathcal{D}(\mathbf{M})$ so

Proposition

Any (commutative) integral pomonoid is order embeddable in an integral (commutative) residuated lattice.

A residuated lattice or a pomonoid is **integral** if 1 is the largest element in the ordering. It is easy to see that if a monoid \mathbf{M} is integral, then so is $\mathcal{D}(\mathbf{M})$ so

Proposition

Any (commutative) integral pomonoid is order embeddable in an integral (commutative) residuated lattice.

A residuated lattice (or an ℓ -monoid) is **semilinear** if it is a subdirect product of totally ordered residuated lattices (ℓ -monoids). Clearly any semilinear variety of residuated lattices (ℓ -monoids) consists entirely of distributive residuated lattices (ℓ -monoids). Let SCIRL the variety of semilinear commutative and integral residuated lattices.

A residuated lattice or a pomonoid is **integral** if 1 is the largest element in the ordering. It is easy to see that if a monoid \mathbf{M} is integral, then so is $\mathcal{D}(\mathbf{M})$ so

Proposition

Any (commutative) integral pomonoid is order embeddable in an integral (commutative) residuated lattice.

A residuated lattice (or an ℓ -monoid) is **semilinear** if it is a subdirect product of totally ordered residuated lattices (ℓ -monoids). Clearly any semilinear variety of residuated lattices (ℓ -monoids) consists entirely of distributive residuated lattices (ℓ -monoids). Let SCIRL the variety of semilinear commutative and integral residuated lattices.

It is straightforward to check that the property of being totally ordered is preserved by the DM-nucleus.

Proposition

The class of ℓ -monoidal subreducts of SCIRL is exactly the variety of distributive, commutative and integral ℓ -monoids.

Proposition

The class of ℓ -monoidal subreducts of SCIRL is exactly the variety of distributive, commutative and integral ℓ -monoids.

Proof.

By an old result of Fuchs (1974) if M is a distributive commutative and integral ℓ -monoid then it is subdirectly embeddable in $\prod_{i \in I} M_i$ where each M_i is totally ordered.

Proposition

The class of ℓ -monoidal subreducts of SCIRL is exactly the variety of distributive, commutative and integral ℓ -monoids.

Proof.

By an old result of Fuchs (1974) if \mathbf{M} is a distributive commutative and integral ℓ -monoid then it is subdirectly embeddable in $\prod_{i \in I} \mathbf{M}_i$ where each \mathbf{M}_i is totally ordered.

By the above observation each \mathbf{M}_i is embeddable in $D(\mathbf{M}_i)$, a totally ordered commutative and integral residuated lattice. Hence \mathbf{M} is an ℓ -monoidal subreduct of $\mathbf{B} = \prod_{i \in I} D(\mathbf{M}_i)$. Clearly $\mathbf{B} \in \text{SCIRL}$.

Proposition

The class of ℓ -monoidal subreducts of SCIRL is exactly the variety of distributive, commutative and integral ℓ -monoids.

Proof.

By an old result of Fuchs (1974) if \mathbf{M} is a distributive commutative and integral ℓ -monoid then it is subdirectly embeddable in $\prod_{i \in I} \mathbf{M}_i$ where each \mathbf{M}_i is totally ordered.

By the above observation each \mathbf{M}_i is embeddable in $D(\mathbf{M}_i)$, a totally ordered commutative and integral residuated lattice. Hence \mathbf{M} is an ℓ -monoidal subreduct of $\mathbf{B} = \prod_{i \in I} D(\mathbf{M}_i)$. Clearly $\mathbf{B} \in \text{SCIRL}$.

On the other hand let \mathbf{A} be an ℓ -monoidal subreduct of $\mathbf{B} \in \text{SCIRL}$. Then \mathbf{B} is subdirectly embeddable $\prod_{i \in I} \mathbf{B}_i$, where each \mathbf{B}_i is totally ordered. Let $\mathbf{B}', \mathbf{B}'_i$ the ℓ -monoidal reducts of \mathbf{B}, \mathbf{B}_i , $i \in I$.

Proposition

The class of ℓ -monoidal subreducts of SCIRL is exactly the variety of distributive, commutative and integral ℓ -monoids.

Proof.

By an old result of Fuchs (1974) if \mathbf{M} is a distributive commutative and integral ℓ -monoid then it is subdirectly embeddable in $\prod_{i \in I} \mathbf{M}_i$ where each \mathbf{M}_i is totally ordered.

By the above observation each \mathbf{M}_i is embeddable in $D(\mathbf{M}_i)$, a totally ordered commutative and integral residuated lattice. Hence \mathbf{M} is an ℓ -monoidal subreduct of $\mathbf{B} = \prod_{i \in I} D(\mathbf{M}_i)$. Clearly $\mathbf{B} \in \text{SCIRL}$.

On the other hand let \mathbf{A} be an ℓ -monoidal subreduct of $\mathbf{B} \in \text{SCIRL}$. Then \mathbf{B} is subdirectly embeddable $\prod_{i \in I} \mathbf{B}_i$, where each \mathbf{B}_i is totally ordered. Let $\mathbf{B}', \mathbf{B}'_i$ the ℓ -monoidal reducts of $\mathbf{B}, \mathbf{B}_i, i \in I$.

Then certainly \mathbf{B}' is embeddable in $\prod_{i \in I} \mathbf{B}'_i$ and so is \mathbf{A} . But the \mathbf{B}'_i are totally ordered ℓ -monoids, so $\prod_{i \in I} \mathbf{B}'_i$ is a distributive commutative and integral ℓ -monoid and so is \mathbf{A} . □

Note that we cannot extend immediately the previous result to generic monoids. Some work has to be done.

Note that we cannot extend immediately the previous result to generic monoids. Some work has to be done.

Let \mathbf{M} be a commutative monoid and define a relation on M by setting

$$a \leq b \quad \text{if and only if} \quad \exists c \text{ such that } a = bc.$$

Then \leq is always a preorder; let θ be the associated equivalence relation, and for $a \in M$ we denote by \bar{a} the equivalence class of $a \in M$.

Note that we cannot extend immediately the previous result to generic monoids. Some work has to be done.

Let \mathbf{M} be a commutative monoid and define a relation on M by setting

$$a \leq b \quad \text{if and only if} \quad \exists c \text{ such that } a = bc.$$

Then \leq is always a preorder; let θ be the associated equivalence relation, and for $a \in M$ we denote by \bar{a} the equivalence class of $a \in M$.

Lemma

If \mathbf{M} is a commutative monoid then θ is a congruence on \mathbf{M} and $\mathbf{M}/\theta = \overline{\mathbf{M}}$ is an integral pomonoid with largest element $\bar{1}$.

A commutative monoid \mathbf{M} is naturally ordered if θ is the trivial congruence, i.e. \leq is a partial order. By the Lemma the partial order is compatible and \mathbf{M} is a pomonoid;

A commutative monoid \mathbf{M} is naturally ordered if θ is the trivial congruence, i.e. \leq is a partial order. By the Lemma the partial order is compatible and \mathbf{M} is a pomonoid;

Lemma

For a commutative monoid \mathbf{M} the following are equivalent

- 1 \mathbf{M} is naturally ordered;
- 2 \mathbf{M} satisfies the quasiequation

$$x \approx yz \ \& \ y \approx xw \quad \Rightarrow \quad x \approx y. \quad (\text{N})$$

Hence naturally ordered commutative monoids form a quasivariety, denoted by NCM.

A commutative monoid \mathbf{M} is naturally ordered if θ is the trivial congruence, i.e. \leq is a partial order. By the Lemma the partial order is compatible and \mathbf{M} is a pomonoid;

Lemma

For a commutative monoid \mathbf{M} the following are equivalent

- 1 \mathbf{M} is naturally ordered;
- 2 \mathbf{M} satisfies the quasiequation

$$x \approx yz \ \& \ y \approx xw \quad \Rightarrow \quad x \approx y. \quad (\text{N})$$

Hence naturally ordered commutative monoids form a quasivariety, denoted by NCM.

Theorem

The class of monoidal subreducts of the variety of commutative and integral residuated lattices is exactly NCM.

ℓ -monoids and ℓ -groups

People were quick to realize that Steinitz's argument for proving that every integral domain embeds into a field [really showed that any commutative cancellative monoid is embeddable in an abelian group.

ℓ -monoids and ℓ -groups

People were quick to realize that Steinitz's argument for proving that every integral domain embeds into a field [really showed that any commutative cancellative monoid is embeddable in an abelian group.

Since this condition is clearly also necessary this solves completely the problems for abelian groups: the class of the monoidal subreducts of abelian groups is the quasivariety of commutative cancellative monoids.

ℓ -monoids and ℓ -groups

People were quick to realize that Steinitz's argument for proving that every integral domain embeds into a field [really showed that any commutative cancellative monoid is embeddable in an abelian group.

Since this condition is clearly also necessary this solves completely the problems for abelian groups: the class of the monoidal subreducts of abelian groups is the quasivariety of commutative cancellative monoids.

A pomonoid (ℓ -monoid) \mathbf{M} is **order cancellative** if, for any $a, b, c \in M$, $ab \leq ac$ or $ba \leq ca$ implies $b \leq c$. It is obvious that any order cancellative pomonoid is cancellative in the usual sense. The proof of the following *ordered* version of Steinitz's result is straightforward.

ℓ -monoids and ℓ -groups

People were quick to realize that Steinitz's argument for proving that every integral domain embeds into a field [really showed that any commutative cancellative monoid is embeddable in an abelian group.

Since this condition is clearly also necessary this solves completely the problems for abelian groups: the class of the monoidal subreducts of abelian groups is the quasivariety of commutative cancellative monoids.

A pomonoid (ℓ -monoid) \mathbf{M} is **order cancellative** if, for any $a, b, c \in M$, $ab \leq ac$ or $ba \leq ca$ implies $b \leq c$. It is obvious that any order cancellative pomonoid is cancellative in the usual sense. The proof of the following *ordered* version of Steinitz's result is straightforward.

Theorem

An abelian pomonoid \mathbf{M} is order embeddable in a pogroup if and only if it is order cancellative. In particular an abelian ℓ -monoid is order embeddable in an ℓ -group if and only if it is order cancellative.

Negative cones

Remark

There is an abelian pomonoid \mathbf{M} that is cancellative but not order cancellative. Hence \mathbf{M} is not embeddable in any pogroup but its monoidal reduct is embeddable in a group.

Negative cones

Remark

There is an abelian pomonoid \mathbf{M} that is cancellative but not order cancellative. Hence \mathbf{M} is not embeddable in any pogroup but its monoidal reduct is embeddable in a group.

The **negative cone** of an ℓ -group \mathbf{G} is $\{a \in G : a \leq 1\}$. Any negative cone of an ℓ -group is an order cancellative residuated lattice.

Negative cones

Remark

There is an abelian pomonoid \mathbf{M} that is cancellative but not order cancellative. Hence \mathbf{M} is not embeddable in any pogroup but its monoidal reduct is embeddable in a group.

The **negative cone** of an ℓ -group \mathbf{G} is $\{a \in G : a \leq 1\}$. Any negative cone of an ℓ -group is an order cancellative residuated lattice.

Negative cones of abelian ℓ -groups are really *cancellative hoops*, i.e. commutative, prelinear and order cancellative residuated lattices that are also divisible, i.e. satisfy the further equation $(x \rightarrow y)x \approx x \wedge y$. Let's denote this variety by \mathcal{C} .

Negative cones

Remark

There is an abelian pomonoid \mathbf{M} that is cancellative but not order cancellative. Hence \mathbf{M} is not embeddable in any pogroup but its monoidal reduct is embeddable in a group.

The **negative cone** of an ℓ -group \mathbf{G} is $\{a \in G : a \leq 1\}$. Any negative cone of an ℓ -group is an order cancellative residuated lattice.

Negative cones of abelian ℓ -groups are really *cancellative hoops*, i.e. commutative, prelinear and order cancellative residuated lattices that are also divisible, i.e. satisfy the further equation $(x \rightarrow y)x \approx x \wedge y$. Let's denote this variety by \mathbf{C} .

Proposition

The class of pomonoidal (ℓ -monoidal) subreducts of \mathbf{C} is the class of all integral, abelian and order cancellative pomonoids (the quasivariety of all abelian and order cancellative ℓ -monoids).

Example (Bahls-Galatos-Cole-Tsinakis 2003)

There is totally ordered, order cancellative, abelian and integral residuated lattice that is not embeddable in the negative cone of an ℓ -group but whose pomonoidal reduct is .

Example (Bahls-Galatos-Cole-Tsinakis 2003)

There is totally ordered, order cancellative, abelian and integral residuated lattice that is not embeddable in the negative cone of an ℓ -group but whose pomonoidal reduct is .

Let \mathbf{M} be the free abelian monoid generated by x and y ; if we set a usual $x^0 = y^0 = 1$, then the elements of \mathbf{M} are of the form $x^i y^j$, $i, j \in \mathbb{N}$. Let's order \mathbf{M} in this way

$$1 > x > y > x^2 > xy > y^2 > x^3 > x^2y > xy^2 > y^3 > x^4 > \dots$$

Example (Bahls-Galatos-Cole-Tsinakis 2003)

There is totally ordered, order cancellative, abelian and integral residuated lattice that is not embeddable in the negative cone of an ℓ -group but whose pomonoidal reduct is .

Let \mathbf{M} be the free abelian monoid generated by x and y ; if we set a usual $x^0 = y^0 = 1$, then the elements of \mathbf{M} are of the form $x^i y^j$, $i, j \in \mathbb{N}$. Let's order \mathbf{M} in this way

$$1 > x > y > x^2 > xy > y^2 > x^3 > x^2y > xy^2 > y^3 > x^4 > \dots$$

Then \mathbf{M} is an integral totally ordered abelian pomonoid that is also order cancellative, so it is order embeddable in the negative cone of an ℓ -group. However it is also a lattice and it can be made into a residuated lattice \mathbf{L} , since the \rightarrow is totally determined by \vee and \cdot .

Example (Bahls-Galatos-Cole-Tsinakis 2003)

There is totally ordered, order cancellative, abelian and integral residuated lattice that is not embeddable in the negative cone of an ℓ -group but whose pomonoidal reduct is .

Let \mathbf{M} be the free abelian monoid generated by x and y ; if we set a usual $x^0 = y^0 = 1$, then the elements of \mathbf{M} are of the form $x^i y^j$, $i, j \in \mathbb{N}$. Let's order \mathbf{M} in this way

$$1 > x > y > x^2 > xy > y^2 > x^3 > x^2y > xy^2 > y^3 > x^4 > \dots$$

Then \mathbf{M} is an integral totally ordered abelian pomonoid that is also order cancellative, so it is order embeddable in the negative cone of an ℓ -group. However it is also a lattice and it can be made into a residuated lattice \mathbf{L} , since the \rightarrow is totally determined by \vee and \cdot .

However it cannot be embedded in the negative cone of an ℓ -group since it is not divisible:

$$(x \rightarrow y)x = x^2 \neq y = x \wedge y.$$

Note that if we remove cancellativity, then the previous result does not work any more.

Note that if we remove cancellativity, then the previous result does not work any more.

It is easy to check that if \mathbf{L} is a divisible CIRL and $e \in L$ is idempotent, then $e \wedge a = ea$ for all $a \in M$. This implies at once that any pomonoidal subreduct of \mathbf{L} must satisfy the quasiequation

$$z^2 \approx z \ \& \ x \leq z \quad \Rightarrow \quad xz \approx x.$$

Note that if we remove cancellativity, then the previous result does not work any more.

It is easy to check that if \mathbf{L} is a divisible CIRL and $e \in L$ is idempotent, then $e \wedge a = ea$ for all $a \in M$. This implies at once that any pomonoidal subreduct of \mathbf{L} must satisfy the quasiequation

$$z^2 \approx z \ \& \ x \leq z \quad \Rightarrow \quad xz \approx x.$$

Here is an example of a totally ordered commutative CIRL whose pomonoidal subreduct does not satisfy the quasiequation. For instance the 5-element CIRL ordered by $1 > a > b > c > d$ whose multiplication table is

	a	b	c	d	1
a	a	d	d	d	a
b	d	d	d	d	b
c	d	d	d	d	c
d	d	d	d	d	d
1	a	b	c	d	1

Note that if we remove cancellativity, then the previous result does not work any more.

It is easy to check that if \mathbf{L} is a divisible CIRL and $e \in L$ is idempotent, then $e \wedge a = ea$ for all $a \in M$. This implies at once that any pomonoidal subreduct of \mathbf{L} must satisfy the quasiequation

$$z^2 \approx z \ \& \ x \leq z \quad \Rightarrow \quad xz \approx x.$$

Here is an example of a totally ordered commutative CIRL whose pomonoidal subreduct does not satisfy the quasiequation. For instance the 5-element CIRL ordered by $1 > a > b > c > d$ whose multiplication table is

	a	b	c	d	1
a	a	d	d	d	a
b	d	d	d	d	b
c	d	d	d	d	c
d	d	d	d	d	d
1	a	b	c	d	1

Here $a = a^2$, $b \leq a$ but $ab = d < b$.

Final thoughts

Two paths:

- continue to study the combination of the power monoid and the nucleus construction which we have exploited only minimally; there is a sizable body of work involving nuclei that tackle questions that are tangential to ours;

Final thoughts

Two paths:

- continue to study the combination of the power monoid and the nucleus construction which we have exploited only minimally; there is a sizable body of work involving nuclei that tackle questions that are tangential to ours;
- in case of ℓ -monoids and ℓ -groups we might try to follow the classical path which led to the complete solution (by Mal'cev and Lambek independently) of the problem of embedding a monoid in a group. There are results in this direction too; for instance an ordered analogue of the famous Ore's result has been proved by Montagna and Tsinakis (2010).

Final thoughts

Two paths:

- continue to study the combination of the power monoid and the nucleus construction which we have exploited only minimally; there is a sizable body of work involving nuclei that tackle questions that are tangential to ours;
- in case of ℓ -monoids and ℓ -groups we might try to follow the classical path which led to the complete solution (by Mal'cev and Lambek independently) of the problem of embedding a monoid in a group. There are results in this direction too; for instance an ordered analogue of the famous Ore's result has been proved by Montagna and Tsinakis (2010).

We also have some more general results, too technical to explain here, which seem to hint to a complete solution of the problem.

THANK YOU!