

# On automorphisms of the endomorphism semigroup of the free monogenic dimonoid

Zhuchok Yurii

Luhansk Taras Shevchenko National University, Poltava, UKRAINE

Johannes Kepler University Linz, Linz, AUSTRIA

AAA 108 — Arbeitstagung Allgemeine Algebra  
Vienna, February 7, 2026

## 1.1. The problem of B.I. Plotkin

Let  $\Theta$  be a variety of algebras and  $\Theta^0$  the category of all free in  $\Theta$  algebras  $W = W(X)$ , where  $X$  is finite.

*The main problem* is to describe  $\text{Aut}(\Theta^0)$  for a given  $\Theta$ .

This problem about automorphisms of the monoid  $\text{End}(A)$ , for a free algebra  $A$ , was raised by B.I. Plotkin in his papers on universal algebraic geometry:

- Seven Lectures on the Universal Algebraic Geometry, Preprint, Inst. of Math., Hebrew University, 2000.
- Problems in algebra inspired by universal algebraic geometry, Fundam. Prikl. Mat., 2004, Vol. **10**, no. 3, 181–197.

## 1.2. The known results

For the variety of groups:

- E. Formanek, *A question of B. Plotkin about the semigroup of endomorphisms of a free group*, Proc. American Math. Society, **130** (2001), 935–937.

For varieties of semigroups and monoids:

- G. Mashevitsky, B.M. Schein, *Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup*, Proc. AMS, Vol. **131** (2003), No. 6, 1655–1660.

For the variety of Lie algebras:

- G. Mashevitzky, B. Plotkin, E. Plotkin, *Automorphisms of the category of free Lie algebras*, J. Algebra, Vol. **282** (2004), 490–512.

## 1.2. The known results

For varieties of commutative and associative algebras:

- A. Berzins, *The group of automorphisms of the semigroup of endomorphisms of free commutative and free associative algebras*, Internat. J. Algebra Comput., Vol. **17** (2007), No. 5-6, 941–949.

For the variety of commutative dimonoids ( $g$ -dimonoids):

- Yu.V. Zhuchok, *Automorphisms of the endomorphism semigroup of a free commutative  $g$ -dimonoid*, Algebra Discrete Math., Vol. **21** (2016), No. 2, 309–324.
- Yu.V. Zhuchok, *Automorphisms of the endomorphism semigroup of a free commutative dimonoid*, Communic. Algebra, Vol. **45** (2017), No. 9, 3861–3871.

## 1.2. The known results

For the variety of dimonoids:

- Yu.V. Zhuchok, *Automorphisms of the category of free dimonoids*, J. Algebra, Vol. **657** (2024), no. 1, 883–895.

For the variety of nilpotent groups:

- A. Tsurkov., *Automorphisms of the category of the free nilpotent groups of the fixed class of nilpotency*, Internat. J. Algebra Comput., Vol. **17** (2007), No. 5-6, 1273–1281.

In general, for algebras of arbitrary varieties:

- G. Mashevitzky, B. Plotkin, E. Plotkin, *Automorphisms of categories of free algebras of varieties*, Electronic Research Announcements of the AMS, Vol. **8** (2002), 1–10.

## 2.1. The notion of a dimonoid

- J.-L. Loday, *Dialgebras and related operads*, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7–66.

### Definition

An algebra  $(D, \dashv, \vdash)$  with two binary associative operations  $\dashv$  and  $\vdash$  is called a *dimonoid* if for all  $x, y, z \in D$ ,

$$\begin{aligned}(D_1) \quad & (x \dashv y) \dashv z = x \dashv (y \vdash z), \\(D_2) \quad & (x \vdash y) \dashv z = x \vdash (y \dashv z), \\(D_3) \quad & (x \dashv y) \vdash z = x \vdash (y \vdash z).\end{aligned}$$

An element  $e$  of dimonoid  $(D, \dashv, \vdash)$  is called a *bar-unit* if  $e \dashv x = x = x \vdash e$  for all  $x \in D$ .

## 2.2. Relationships of dimonoids with other algebras

### Semigroups

If operations of a dimonoid coincide, then it becomes a semigroup. Dimonoids have relationships with interassociativity for semigroups originated by Drouzy, strong interassociativity for semigroups introduced by Gould and Richardson, P-related semigroups considered by Hewitt and Zuckerman and  $n$ -tuple semigroups.

### Dialgebras

Dialgebras are vector spaces over a field equipped with two binary associative operations satisfying the dimonoid axioms. With the help of properties of free dimonoids, free dialgebras were described and a cohomology of dialgebras was investigated by J.-L.Loday.

## 2.2. Relationships of dimonoids with other algebras

### Duplexes and doppelalgebras

The notion of a doppelalgebra was considered by Richter in the context of algebraic K-theory. It is a vector space over a field equipped with two binary linear associative operations  $\dashv$  and  $\vdash$  satisfying the axioms

$$(x \vdash y) \dashv z = x \vdash (y \dashv z), \quad (x \dashv y) \vdash z = x \dashv (y \vdash z).$$

### Generalized dimonoids

$g$ -dimonoid is a dimonoid without  $(D_2)$   $(x \vdash y) \dashv z = x \vdash (y \dashv z)$ .  
Free  $g$ -dimonoids were constructed by Yu.Movsisyan, S.Davidov and M.Safaryan (2014).

## 2.2. Relationships of dimonoids with other algebras

### Digroups

A nonempty set  $G$  equipped with two binary operations  $\dashv$  and  $\vdash$ , a unary operation  $^{-1}$ , and a nullary operation  $1$ , is called a *digroup* if the following conditions hold:

$(G_1)$   $(G, \dashv)$  and  $(G, \vdash)$  are semigroups,

$(G_2)$   $x \vdash (x \dashv z) = (x \vdash x) \dashv z$ ,

$(G_3)$   $1 \vdash x = x = x \dashv 1$ ,

$(G_4)$   $x \vdash x^{-1} = 1 = x^{-1} \dashv x$ .

An element  $x^{-1}$  is said to be *inverse* to  $x$  with respect to  $1$ .

## 2.2. Relationships of dimonoids with other algebras

### Trioids and trialgebras

A dimonoid  $(D, \dashv, \vdash)$  with associative operation  $\perp$  is a *trioid* if

$$\begin{aligned}(x \dashv y) \dashv z &= x \dashv (y \perp z), \\ (x \perp y) \dashv z &= x \perp (y \dashv z), \\ (x \dashv y) \perp z &= x \perp (y \vdash z), \\ (x \vdash y) \perp z &= x \vdash (y \perp z), \\ (x \perp y) \vdash z &= x \vdash (y \vdash z).\end{aligned}$$

An trialgebra is a vector space equipped with three binary associative operations satisfying the trioid axioms. Trialgebras appeared first in the paper of Loday and Ronco as a non-commutative version of Poisson algebras.

## 2.2. Relationships of dimonoids with other algebras

### Leibniz algebras

A vector space  $L$  over a field with a binary operation  $[,]$  is called *Leibniz algebra* if  $[[a, b], c] = [a, [b, c]] - [b, [a, c]]$  for all  $a, b, c \in L$ .

It is well-known that for Lie algebras there is a notion of a universal enveloping associative algebra. Loday found a universal enveloping algebra for Leibniz algebras which are a non-commutative variation of Lie algebras. Dialgebras play a role of such object. The identities for dimonoids are chosen in such a way that the new operation

$$[x, y] = x \dashv y - y \vdash x$$

converts a dialgebra into a Leibniz algebra.

## 2.3. Examples of dimonoids

### Example

Let  $X$  be an arbitrary nonempty nonsingleton set. Define

$$x \dashv y = x, \quad x \vdash y = y.$$

Then  $(X, \dashv, \vdash)$  is a dimonoid in which every element is a bar-unit.

### Example

Let  $V$  be a finite dimensional vector space and  $\varphi : V \rightarrow V$  be an idempotent linear operator. Define two operations  $\dashv, \vdash$  on  $V$  by

$$x \dashv y = x\varphi + y, \quad x \vdash y = x + y\varphi$$

for all  $x, y \in V$ . Then  $(V, \dashv, \vdash)$  is a dimonoid.

## 2.4. The construction of a free dimonoid

Let  $X$  be an arbitrary set,  $\overline{X} = \{\overline{x} \mid x \in X\}$  and

$$Y_n^{(1)} = \underbrace{\overline{X} \times \overline{X} \times \dots \times \overline{X}}_n, \dots, Y_n^{(n)} = \underbrace{X \times X \times \dots \times X}_n.$$

We denote the union of  $n$  copies  $Y_n^{(i)}$ ,  $1 \leq i \leq n$ , of  $X^n$  by  $Y_n$  and let  $Fd(X) = \bigcup_{n \geq 1} Y_n$ . Define operations  $\dashv$  and  $\vdash$  on  $Fd(X)$  by

$$(x_1, \dots, \overline{x_i}, \dots, x_m) \dashv (y_1, \dots, \overline{y_j}, \dots, y_n) = (x_1, \dots, \overline{x_i}, \dots, x_m, y_1, \dots, y_n),$$

$$(x_1, \dots, \overline{x_i}, \dots, x_m) \vdash (y_1, \dots, \overline{y_j}, \dots, y_n) = (x_1, \dots, x_m, y_1, \dots, \overline{y_j}, \dots, y_n).$$

The algebra  $\mathfrak{F}\mathfrak{d}_X = (Fd(X), \dashv, \vdash)$  is a free dimonoid.

## 2.5. An isomorphism (crossed isomorphism) of dimonoids

We use  $x_1 \dots \bar{x_i} \dots x_k$  instead of  $(x_1, \dots, \bar{x_i}, \dots, x_k) \in \mathfrak{Fd}_X$ .

It is known, any  $\omega = x_1 \dots \bar{x_i} \dots x_k \in Fd(X)$  can be uniquely represented in the canonical form as  $\omega = \bar{x_1} \vdash \dots \vdash \bar{x_i} \dashv \dots \dashv \bar{x_k}$ .

### Definition

Let  $\mathfrak{D}_1 = (D_1, \dashv_1, \vdash_1)$  and  $\mathfrak{D}_2 = (D_2, \dashv_2, \vdash_2)$  be arbitrary dimonoids. A mapping  $\varphi : D_1 \rightarrow D_2$  is called a *homomorphism (a crossed homomorphism)* of  $\mathfrak{D}_1$  into  $\mathfrak{D}_2$  if for all  $x, y \in D_1$ ,

$$(x \dashv_1 y)\varphi = x\varphi \dashv_2 y\varphi, \quad (x \vdash_1 y)\varphi = x\varphi \vdash_2 y\varphi$$

$$((x \dashv_1 y)\varphi = x\varphi \vdash_2 y\varphi, \quad (x \vdash_1 y)\varphi = x\varphi \dashv_2 y\varphi).$$

### 3.1. The mirror types of permutations of $\mathfrak{F}\mathfrak{d}_X$

#### Lemma

Let  $X$  and  $Y$  be arbitrary nonempty sets. Every bijection  $\varphi : X \rightarrow Y$  induces an isomorphism  $\varepsilon_\varphi$ , a crossed anti-isomorphism  $\varepsilon_\varphi^*$ , and bijections  $\varepsilon'_\varphi$  and  $\varepsilon_\varphi^\circ$  of the free dimonoid  $\mathfrak{F}\mathfrak{d}_X$  into the free dimonoid  $\mathfrak{F}\mathfrak{d}_Y$  such that for all  $\omega = x_1 \dots \overline{x_i} \dots x_k \in \text{Fd}(X)$ ,

$$\omega \varepsilon_\varphi = x_1 \varphi \dots \overline{x_i \varphi} \dots x_k \varphi,$$

$$\omega \varepsilon_\varphi^* = x_k \varphi \dots \overline{x_i \varphi} \dots x_1 \varphi,$$

$$\omega \varepsilon'_\varphi = x_1 \varphi \dots \overline{x_{k-i+1} \varphi} \dots x_k \varphi,$$

$$\omega \varepsilon_\varphi^\circ = x_k \varphi \dots \overline{x_{k-i+1} \varphi} \dots x_1 \varphi.$$

**Remark.** None of the mappings  $\varepsilon'_\varphi, \varepsilon_\varphi^\circ$  of this lemma is either an isomorphism or a crossed anti-isomorphism of  $\mathfrak{F}\mathfrak{d}_X$  into  $\mathfrak{F}\mathfrak{d}_Y$ .

### 3.2. The mirror types of automorphisms of $End(\mathfrak{F}\mathfrak{d}_X)$

#### Lemma

Let  $\mathfrak{F}\mathfrak{d}_X$  and  $\mathfrak{F}\mathfrak{d}_Y$  be the free dimonoids on  $X$  and  $Y$  respectively, and  $\xi$  an isomorphism or a crossed anti-isomorphism of  $\mathfrak{F}\mathfrak{d}_X$  into  $\mathfrak{F}\mathfrak{d}_Y$  or  $\xi \in \{\varepsilon'_\varphi, \varepsilon_\varphi^\circ\}$ . Then the mapping

$$\Phi : f \mapsto f\Phi = \xi^{-1}f\xi, \quad f \in End(\mathfrak{F}\mathfrak{d}_X)$$

is an isomorphism of  $End(\mathfrak{F}\mathfrak{d}_X)$  into  $End(\mathfrak{F}\mathfrak{d}_Y)$ .

Let  $id_X$  be the identity transformation of  $X$ . By the lemma,

$$f\Phi_1 = (\varepsilon_{id_X}^*)^{-1}f\varepsilon_{id_X}^*, \quad f\Phi_2 = (\varepsilon'_{id_X})^{-1}f\varepsilon'_{id_X}, \quad f\Phi_3 = (\varepsilon_{id_X}^\circ)^{-1}f\varepsilon_{id_X}^\circ$$

for all  $f \in End(\mathfrak{F}\mathfrak{d}_X)$  are automorphisms of  $End(\mathfrak{F}\mathfrak{d}_X)$ .

### 3.3. The Klein four-group of automorphisms

By  $K_4$  we denote the Klein four-group, i.e., it's a direct product of two groups  $C_2$ ,  $\Phi_0$  is the identity automorphism of  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$ .

#### Lemma

$G = \{\Phi_i \mid 0 \leq i \leq 3\}$  is a group with respect to the composition of permutations isomorphic to the Klein four-group  $K_4$ .

It is clear,  $G = \langle \Phi_1, \Phi_2 \mid \Phi_1^2 = \Phi_2^2 = (\Phi_1\Phi_2)^2 = \Phi_0 \rangle \cong K_4$ .

Let  $\mathfrak{F}\mathfrak{d}_X$  be the free dimonoid on  $X$ . Each endomorphism  $\Phi$  of  $\mathfrak{F}\mathfrak{d}_X$  is uniquely determined by a mapping  $\varphi : \overline{X} \rightarrow \text{Fd}(X)$ . Really, to define  $\Phi$ , it suffices for all  $u = u_1 \dots \overline{u_i} \dots u_n \in \text{Fd}(X)$  to put

$$u\Phi = \overline{u_1}\varphi \vdash \dots \vdash \overline{u_i}\varphi \dashv \dots \dashv \overline{u_n}\varphi.$$

### 3.4. The constant endomorphisms of $\mathfrak{F}\mathfrak{d}_X$

#### Definition

Let  $u \in Fd(X)$ . An endomorphism  $\theta_u \in End(\mathfrak{F}\mathfrak{d}_X)$  is called *constant* if  $\bar{x}\theta_u = u$  for all  $x \in X$ .

#### Lemma

- (i) An endomorphism  $f$  of  $\mathfrak{F}\mathfrak{d}_X$  is constant if and only if  $\psi f = f$  for all  $\psi \in Aut(\mathfrak{F}\mathfrak{d}_X)$ .
- (ii) An endomorphism  $f$  of  $\mathfrak{F}\mathfrak{d}_X$  is constant idempotent if and only if  $f = \theta_{\bar{x}}$  for some  $x \in X$ .

#### Definition

An automorphism  $\Psi$  of the endomorphism monoid  $End(\mathfrak{F}\mathfrak{d}_X)$  of the free dimonoid  $\mathfrak{F}\mathfrak{d}_X$  is called *stable* if  $\theta_{\bar{x}}\Psi = \theta_{\bar{x}}$  for all  $x \in X$ .

### 3.5. The stable automorphisms of $\text{End}(\mathfrak{F}\mathfrak{d}_X)$

#### Lemma

Let  $\Psi$  be a stable automorphism of  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$ ,  $g \in \text{End}(\mathfrak{F}\mathfrak{d}_X)$  and  $x \in X$ . Then the following equalities hold:

- (i)  $\theta_u \Psi = \theta_v$  implies  $c(u) = c(v)$ ;
- (ii)  $|\bar{x}g| = |\bar{x}(g\Psi)|$ .

#### Corollary

Let  $\Psi$  be a stable automorphism of the endomorphism monoid  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$  and  $x_1, x_2 \in X$  are distinct. Then

$$\theta_{\bar{x_1}x_2} \Psi \in \{\theta_{\bar{x_1}x_2}, \theta_{x_1\bar{x_2}}, \theta_{\bar{x_2}x_1}, \theta_{x_2\bar{x_1}}\}.$$

### 3.5. The stable automorphisms of $\text{End}(\mathfrak{F}\mathfrak{d}_X)$

#### Lemma

Let  $\Psi$  be a stable automorphism of the endomorphism monoid  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$  and  $x_1, x_2 \in X$  are distinct. Then

- (i)  $\theta_{\overline{x_1}x_2}\Psi = \theta_{\overline{x_1}x_2}$  and  $\theta_{x_1\overline{x_2}}\Psi = \theta_{x_1\overline{x_2}}$  implies that  $\Psi = \Phi_0$ ;
- (ii)  $\theta_{\overline{x_1}x_2}\Psi = \theta_{x_2\overline{x_1}}$  and  $\theta_{x_1\overline{x_2}}\Psi = \theta_{\overline{x_2}x_1}$  implies that  $\Psi = \Phi_1$ ;
- (iii)  $\theta_{\overline{x_1}x_2}\Psi = \theta_{x_1\overline{x_2}}$  and  $\theta_{x_1\overline{x_2}}\Psi = \theta_{\overline{x_1}x_2}$  implies that  $\Psi = \Phi_2$ ;
- (iv)  $\theta_{\overline{x_1}x_2}\Psi = \theta_{\overline{x_2}x_1}$  and  $\theta_{x_1\overline{x_2}}\Psi = \theta_{x_2\overline{x_1}}$  implies that  $\Psi = \Phi_3$ .

#### Lemma

Do not exist stable automorphisms of the endomorphism monoid  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$  distinct from  $\Phi_i$ , where  $0 \leq i \leq 3$ .

## 4.1. End-perfect and End-semiperfect algebras

### Definition

For an algebra  $A$ , an automorphism  $\Phi : \text{End}(A) \rightarrow \text{End}(A)$  is *quasi-inner* if there exists a permutation  $\alpha \in S(A)$  such that  $\beta\Phi = \alpha^{-1}\beta\alpha$  for all  $\beta \in \text{End}(A)$ . If  $\alpha \in \text{Aut}(A)$ , then  $\Phi$  is *inner*.

### Definition

A free algebra  $F \in \Theta$  is called *End-perfect* (*End-semiperfect*) [2] if every automorphism of  $\text{End}(F)$  is inner (respectively, quasi-inner).

### Example

For example, the free groups are End-perfect, and the free semigroups and the free monoids are End-semiperfect.

## 4.2. End-semiperfectness of free dimonoids

### Theorem

(Zhuchok Yu., 2024) Let  $X$  be an arbitrary set with  $|X| \geq 2$ . Every isomorphism  $\Phi : \text{End}(\mathfrak{F}\mathfrak{d}_X) \rightarrow \text{End}(\mathfrak{F}\mathfrak{d}_Y)$  is induced either by the isomorphism  $\varepsilon_f$  or by the crossed anti-isomorphism  $\varepsilon_f^*$ , or the bijections  $\varepsilon'_f, \varepsilon_f^\circ$  of  $\mathfrak{F}\mathfrak{d}_X$  into  $\mathfrak{F}\mathfrak{d}_Y$  for a uniquely determined bijection  $f : X \rightarrow Y$ .

### Corollary

The free dimonoids  $\mathfrak{F}\mathfrak{d}_X$  are End-semiperfect algebras.

The permutations of the monoid  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$  defined by

$\eta E_f = \varepsilon_f^{-1} \eta \varepsilon_f$ ,  $\eta(\Phi_i E_f) = (\varepsilon_{id_X}^\alpha \varepsilon_f)^{-1} \eta(\varepsilon_{id_X}^\alpha \varepsilon_f)$ , where  $f \in S(X)$ ,  $i \in \{1, 2, 3\}$ ,  $\alpha \in \{*, ', \circ\}$ , are quasi-inner automorphisms.

## 4.3. The automorphism group of $End(\mathfrak{F}\mathfrak{d}_X)$ , $|X| \geq 2$

### Theorem

(Zhuchok Yu., 2024) The group  $Aut(End(\mathfrak{F}\mathfrak{d}_X))$ ,  $|X| \geq 2$ , is isomorphic to the direct product of the Klein four-group  $K_4$  and the symmetric group  $S(X)$ .

### Definition

For an arbitrary algebra  $\mathfrak{A}$ , the quotient-group of  $Aut(End(\mathfrak{A}))$  by the inner automorphism group  $Inn(End(\mathfrak{A}))$  is called *outer automorphism group* and it is denoted by  $Out(End(\mathfrak{A}))$ .

### Corollary

$Out(End(\mathfrak{F}\mathfrak{d}_X))$  is isomorphic to the Klein four-group  $K_4$ .

## 5.1. The free monogenic dimonoid

### Proposition

(Zhuchok A., 2011) Let  $N$  be the set of all natural numbers. Define on the set  $S = \{(a; b) \in N \times N \mid a \geq b\}$  two binary associative operations  $\prec$  and  $\succ$  as follows:

$$(a; b) \prec (c; d) = (a + c; b),$$

$$(a; b) \succ (c; d) = (a + c; a + d).$$

Then the free dimonoid  $(Fd_1, \dashv, \vdash)$  of rank 1 is isomorphic to the algebra  $(S, \prec, \succ)$ .

## 5.2. Endomorphisms of a free dimonoid of rank 1

### Theorem

(Zhuchok Yu., 2014) For any  $(k; l) \in S$  a transformation  $\xi_{k,l}$  of the free dimonoid  $(\text{Fd}_1, \dashv, \vdash)$  defined by  $(a; b)\xi_{k,l} = (ak; (b-1)k + l)$  is a monomorphism. And every endomorphism of  $(\text{Fd}_1, \dashv, \vdash)$  has the above form.

Consider a binary operation  $\circ$  on  $S$  defined as follows:

$$(a; b) \circ (c; d) = (ac; (b-1)c + d).$$

### Theorem

(Zhuchok Yu., 2014) The endomorphism semigroup  $\text{End}(\text{Fd}_1)$  of the free dimonoid  $(\text{Fd}_1, \dashv, \vdash)$  is isomorphic to the semigroup  $(S, \circ)$ .

## 5.3. Some properties of $(S, \circ)$

For every  $a \in N$ , let  $S_a = \{(a, k) \in S \mid k \leq a\}$ .

### Lemma

Define a relation  $\rho$  on the semigroup  $(S, \circ)$  by the rule

$(a, b)\rho(c, d) \Leftrightarrow a = c$ . Then  $\rho$  is a congruence and the quotient  $(S, \circ)/\rho \cong (N, \cdot)$ .

It is known that  $\text{Aut}(N, \cdot)$  is isomorphic to the symmetric group  $S(P)$  defined on the set  $P$  of all prime numbers.

### Corollary

Let  $\Phi$  be an arbitrary automorphism of the semigroup  $(S, \circ)$ . Then for any  $a \in N$ , we have  $\Phi(S_a) = S_a$ .

## 5.4. Automorphisms of $(S, \circ)$

Let  $\Phi_0$  be the identity automorphism of the semigroup  $(S, \circ)$ .

### Lemma

*Define a transformation  $\Phi_1$  of the semigroup  $(S, \circ)$  by the rule  $\Phi_1(a, b) = (a, a - b + 1)$ . Then  $\Phi_1$  is an automorphism of the semigroup  $(S, \circ)$ .*

### Theorem

*Let  $\Phi$  be an arbitrary automorphism of the semigroup  $(S, \circ)$ . Then*

- (i)  $\Phi(2, 1) = (2, 1)$  implies that  $\Phi = \Phi_0$ ,*
- (ii)  $\Phi(2, 1) = (2, 2)$  implies that  $\Phi = \Phi_1$ .*

## 5.5. The automorphism group of $\text{End}(\mathfrak{F}\mathfrak{d}_X)$

Let  $K_4$  be the Klein four-group,  $C_2$  is a two-element group.

### Theorem

*Automorphism group of the endomorphisms semigroup of the free dimonoid  $\mathfrak{F}\mathfrak{d}_X$  is isomorphic to the group  $C_2$  if  $X$  is singleton, and it is isomorphic to the direct product of the Klein four-group  $K_4$  with the symmetric group  $S(X)$  if  $|X| \geq 2$ , i.e.*

$$\text{Aut}(\text{End}(\mathfrak{F}\mathfrak{d}_X)) \cong \begin{cases} C_2, & |X| = 1, \\ K_4 \times S(X), & |X| \geq 2. \end{cases}$$

## References

-  J.-L. Loday: *Dialgebras and related operads*, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7–66.
-  Zhitomirski G.: Automorphisms of the semigroup of all endomorphisms of free algebras.  
<https://doi.org/10.48550/arXiv.math/0510230>, 17 p. (2005)
-  G. Mashevitzky, B. Plotkin, E. Plotkin: Automorphisms of categories of free algebras of varieties. *Electronic Research Announcements of the AMS*, Vol. 8 (2002), 1–10.
-  Zhuchok Yu.V.: Automorphisms of the category of free dimonoids. *Journal of Algebra* 657, no. 2, 883–895 (2024).

- 1. Introduction
- 2. The free dimonoid  $\mathfrak{F}\mathfrak{d}_X$
- 3. Some auxiliary statements
- 4. The automorphism group of  $\text{End}(\mathfrak{F}\mathfrak{d}_X)$ ,  $|X| \geq 2$
- 5. The monogenic case

THANK YOU FOR ATTENTION!