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Overview

We associate a graph with a group or an algebra

▶ What does the graph tell about the algebra?
▶ Determine the relation between the graph and the algebra.
▶ Describe the graph.
▶ What properties does the graph have?
▶ Determine the relation between different associated graphs.



Overview

Some of the graphs associated to groups

▶ Cayley graph
▶ commuting graph
▶ directed power graph
▶ power graph
▶ enhanced power graph

▶ difference graph
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Definitions

“Definition”
Cayley graph of a group...
▶ with directed on undirected edges...
▶ with labeled or unlabeled edges...

The edge set may vary as well.

Definition
The commuting graph of a group G is the simple graph C(G) with
vertex set X ⊆ G such that x c∼ y if xy = yx.
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Definitions

Definition
The directed power graph of a group G is the simple digraph G⃗(G) with
vertex set G such that x → y if y ∈ ⟨x⟩.
The power graph of a group G is the simple graph G(G) with vertex set
G such that x ∼ y if y ∈ ⟨x⟩ or x ∈ ⟨y⟩.
The enhanced power graph of a group G is the simple graph Ge(G) with
vertex set G such that x e∼ y if ∃z ∈ G x, y ∈ ⟨z⟩.

G(G) ⊆ Ge(G) ⊆ C(G)

The difference graph of a group is Ge(G) \ G(G) with isolated vertices
removed.
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What we want to know

▶ What are its cliques? When is it complete?
▶ Forbidden subgraphs?
▶ Diameter and dominating sets?
▶ When does it determine the group?
▶ When do different graphs determine each other?

Other questions regarding its:

▶ chromatic number
▶ clique number
▶ perfectness
▶ independence number
▶ automorphism group



Introduction of these graphs

A. V. Kelarev, S. J. Quinn, 2000

▶ introduced the directed power graph

I. Chakrabarty, S. Ghosh, M. K. Sen, 2009

▶ the power graph first studied

G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi,
2017

▶ introduced the enhanced power graph



Isomorphism problem

Theorem (Cameron, Ghosh, 2011)
Let G and H be finite abelian groups. Then G(G) ∼= G(H) ⇒ G ∼= H.

Theorem (Cameron, 2010)
Let G and H be finite groups. Then G(G) ∼= G(H) ⇒ G⃗(G) ∼= G⃗(H).



Isomorphism problem

Theorem (Bošnjak, Madarász, Z., 2019)
Let G and H be finite groups. Then Ge(G) ∼= Ge(H) ⇒ G⃗(G) ∼= G⃗(H).

Corollary
Let G and H be finite groups. Then

G⃗(G) ∼= G⃗(H) ⇔ G(G) ∼= G(H) ⇔ Ge(G) ∼= Ge(H).



Isomorphism problem

...on infinite groups!

Theorem (Cameron, Guerra, Jurina, 2019)
Let G and H be nilpotency class 2 torsion-free groups. Then

G(G) ∼= G(H) ⇒ G⃗(G) ∼= G⃗(H).

It works with the weaker assumption, too!
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Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)
Let G and H be groups. If G is torsion-free, then

G(G) ∼= G(H) ⇒ G⃗(G) ∼= G⃗(H).

Theorem (Z., 2021)
Let G and H be groups. If G is has no quasicyclic subgroup, then

G(G) ∼= G(H) ⇒ G⃗(G) ∼= G⃗(H).

▶ It works for power-associative loops, too!
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Isomorphism problem on infinite groups

Theorem (Jafari, Z., 2023)
Let G and H be nilpotent groups non of which is a Prüfer group. Then

G(G) ∼= G(H) ⇒ G⃗(G) ∼= G⃗(H).

Theorem (Bošnjak, Madarász, Z., 2024)
Let G and H be any groups. Then

G(G) ∼= G(H) ⇒ Ge(G) ∼= Ge(H).



Back to finite!

We should be able to prove that D(G) ∼= D(H) ⇒ G(G) ∼= G(H)!



Isomorphism problem

▶ D(D6) ∼= D(Q12)

Therefore, D(G) ∼= D(H) ̸⇒ G(G) ∼= G(H).

Theorem
Let G and H be finite abelian groups whose orders have exactly two
prime divisors. Then

D(G) ∼= D(H) ⇒ G ∼= H.



Diameter

Theorem (Biswas, Cameron, Das, Dey, 2024)
If G is a finite non-p-group with nontrivial center, then

diam(D(D)) ≤ 6.

Theorem (Biswas, Cameron, Das, Dey, 2024)
If G is a finite nilpotent non-p-group, then

diam(D(D)) ≤ 4.
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Diameter

Theorem (Ma, Z., Žigerović, 2026+)
Let G be a finite nilpotent non-p-group. Then,

diam(D(G)) =


2, if exp(G) is a square-free number;
4, if G is a Ψ-group;
3, otherwise.

(Ψ-groups defined in the paper.)

Corollary (Ma, Z., Žigerović, 2026+)
Let G be an abelian non-p-group. Then

diam(D(G)) =


2, if exp(G) is a square-free number;
4, if Cp2 × Cp2 ≤ G;
3, otherwise.
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