

On the difference graph of a group

S. Zahirović

Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad
Serbia

AAA108, Vienna, 2026

Overview

We associate a graph with a group or an algebra

- ▶ What does the graph tell about the algebra?
- ▶ Determine the relation between the graph and the algebra.
- ▶ Describe the graph.
- ▶ **What properties does the graph have?**
- ▶ **Determine the relation between different associated graphs.**

Overview

Some of the graphs associated to groups

- ▶ Cayley graph
- ▶ commuting graph
- ▶ directed power graph
- ▶ power graph
- ▶ enhanced power graph

Overview

Some of the graphs associated to groups

- ▶ Cayley graph
- ▶ commuting graph
- ▶ directed power graph
- ▶ power graph
- ▶ enhanced power graph
- ▶ **difference graph**

Definitions

“Definition”

Cayley graph of a group...

- ▶ with directed or undirected edges...
- ▶ with labeled or unlabeled edges...

The edge set may vary as well.

Definitions

“Definition”

Cayley graph of a group...

- ▶ with directed or undirected edges...
- ▶ with labeled or unlabeled edges...

The edge set may vary as well.

Definition

The commuting graph of a group \mathbf{G} is the simple graph $\mathcal{C}(\mathbf{G})$ with vertex set $X \subseteq G$ such that $x \stackrel{c}{\sim} y$ if $xy = yx$.

Definitions

Definition

The directed power graph of a group \mathbf{G} is the simple digraph $\vec{\mathcal{G}}(\mathbf{G})$ with vertex set G such that $x \rightarrow y$ if $y \in \langle x \rangle$.

The power graph of a group \mathbf{G} is the simple graph $\mathcal{G}(\mathbf{G})$ with vertex set G such that $x \sim y$ if $y \in \langle x \rangle$ or $x \in \langle y \rangle$.

The enhanced power graph of a group \mathbf{G} is the simple graph $\mathcal{G}_e(\mathbf{G})$ with vertex set G such that $x \overset{e}{\sim} y$ if $\exists z \in G \ x, y \in \langle z \rangle$.

$$\mathcal{G}(\mathbf{G}) \subseteq \mathcal{G}_e(\mathbf{G}) \subseteq \mathcal{C}(\mathbf{G})$$

Definitions

Definition

The directed power graph of a group \mathbf{G} is the simple digraph $\vec{\mathcal{G}}(\mathbf{G})$ with vertex set G such that $x \rightarrow y$ if $y \in \langle x \rangle$.

The power graph of a group \mathbf{G} is the simple graph $\mathcal{G}(\mathbf{G})$ with vertex set G such that $x \sim y$ if $y \in \langle x \rangle$ or $x \in \langle y \rangle$.

The enhanced power graph of a group \mathbf{G} is the simple graph $\mathcal{G}_e(\mathbf{G})$ with vertex set G such that $x \overset{e}{\sim} y$ if $\exists z \in G \ x, y \in \langle z \rangle$.

$$\mathcal{G}(\mathbf{G}) \subseteq \mathcal{G}_e(\mathbf{G}) \subseteq \mathcal{C}(\mathbf{G})$$

The difference graph of a group is $\mathcal{G}_e(\mathbf{G}) \setminus \mathcal{G}(\mathbf{G})$ with isolated vertices removed.

What we want to know

- ▶ What are its cliques? When is it complete?
- ▶ Forbidden subgraphs?
- ▶ Diameter and dominating sets?
- ▶ **When does it determine the group?**
- ▶ **When do different graphs determine each other?**

Other questions regarding its:

- ▶ chromatic number
- ▶ clique number
- ▶ perfectness
- ▶ independence number
- ▶ automorphism group

Introduction of these graphs

- A. V. Kelarev, S. J. Quinn, 2000
 - ▶ introduced the directed power graph
- I. Chakrabarty, S. Ghosh, M. K. Sen, 2009
 - ▶ the power graph first studied
- G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, 2017
 - ▶ introduced the enhanced power graph

Isomorphism problem

Theorem (Cameron, Ghosh, 2011)

Let \mathbf{G} and \mathbf{H} be finite abelian groups. Then $\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \mathbf{G} \cong \mathbf{H}$.

Theorem (Cameron, 2010)

Let \mathbf{G} and \mathbf{H} be finite groups. Then $\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H})$.

Isomorphism problem

Theorem (Bošnjak, Madarász, Z., 2019)

Let \mathbf{G} and \mathbf{H} be finite groups. Then $\mathcal{G}_e(\mathbf{G}) \cong \mathcal{G}_e(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H})$.

Corollary

Let \mathbf{G} and \mathbf{H} be finite groups. Then

$$\vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}) \Leftrightarrow \mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Leftrightarrow \mathcal{G}_e(\mathbf{G}) \cong \mathcal{G}_e(\mathbf{H}).$$

Isomorphism problem

Isomorphism problem

Isomorphism problem ...on infinite groups!

Theorem (Cameron, Guerra, Jurina, 2019)

Let \mathbf{G} and \mathbf{H} be nilpotency class 2 torsion-free groups. Then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \quad \Rightarrow \quad \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

It works with the weaker assumption, too!

Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)

Let \mathbf{G} and \mathbf{H} be groups. If \mathbf{G} is torsion-free, then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \quad \Rightarrow \quad \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)

Let \mathbf{G} and \mathbf{H} be groups. If \mathbf{G} is torsion-free, then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

Theorem (Z., 2021)

Let \mathbf{G} and \mathbf{H} be groups. If \mathbf{G} has no quasicyclic subgroup, then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)

Let \mathbf{G} and \mathbf{H} be groups. If \mathbf{G} is torsion-free, then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

Theorem (Z., 2021)

Let \mathbf{G} and \mathbf{H} be groups. If \mathbf{G} has no quasicyclic subgroup, then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

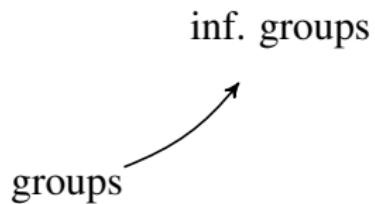
- ▶ It works for power-associative loops, too!

Why loops?

Why loops?

inf. groups

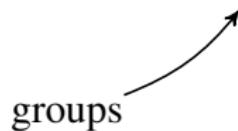
groups



Why loops?

PA groupoids

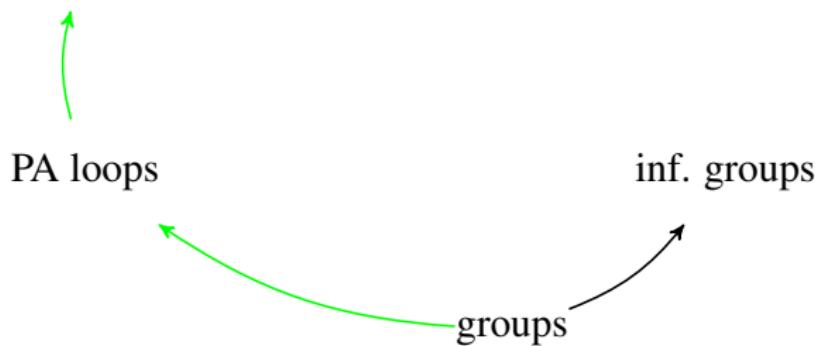
inf. groups



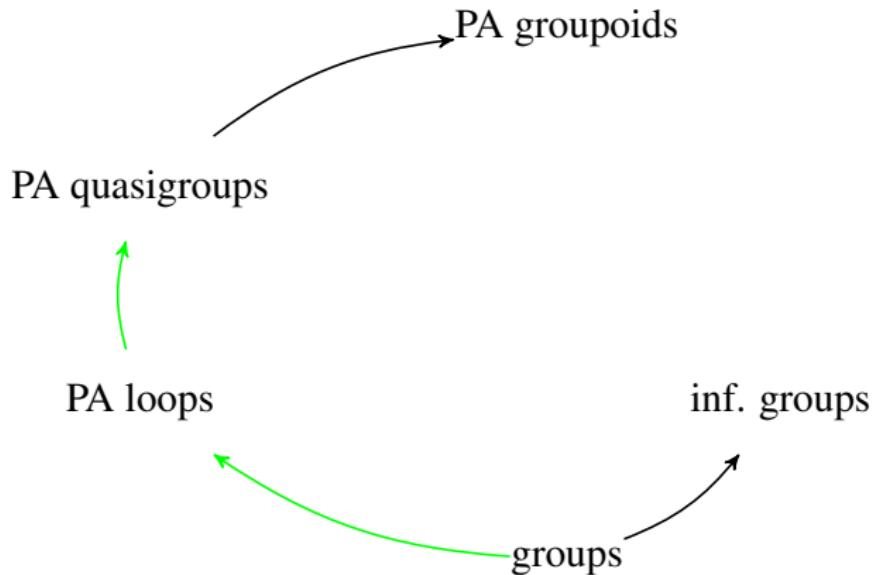
Why loops?

PA groupoids

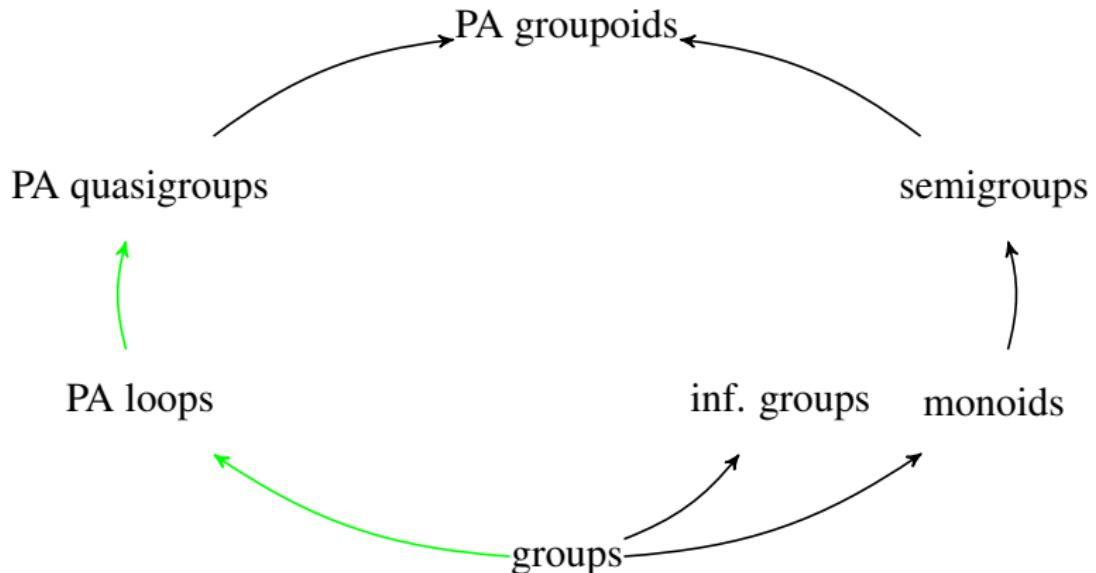
PA quasigroups



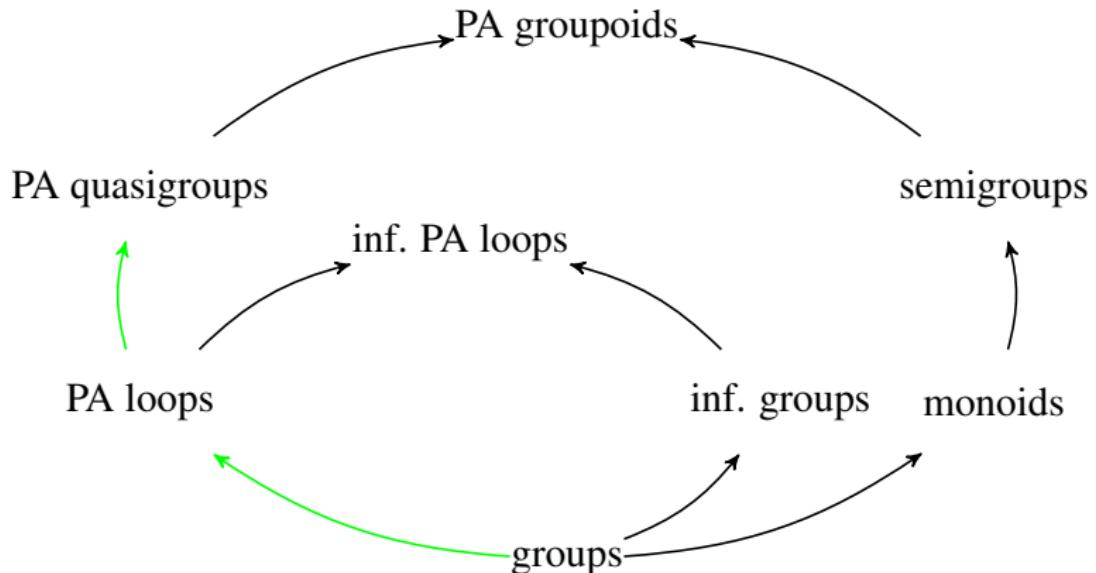
Why loops?



Why loops?



Why loops?



Isomorphism problem on infinite groups

Theorem (Jafari, Z., 2023)

Let \mathbf{G} and \mathbf{H} be nilpotent groups non of which is a Prüfer group. Then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \vec{\mathcal{G}}(\mathbf{G}) \cong \vec{\mathcal{G}}(\mathbf{H}).$$

Theorem (Bošnjak, Madarász, Z., 2024)

Let \mathbf{G} and \mathbf{H} be any groups. Then

$$\mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H}) \Rightarrow \mathcal{G}_e(\mathbf{G}) \cong \mathcal{G}_e(\mathbf{H}).$$

Back to finite!

We should be able to prove that $\mathcal{D}(\mathbf{G}) \cong \mathcal{D}(\mathbf{H}) \Rightarrow \mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H})$!

Isomorphism problem

- ▶ $\mathcal{D}(\mathbf{D}_6) \cong \mathcal{D}(\mathbf{Q}_{12})$

Therefore, $\mathcal{D}(\mathbf{G}) \cong \mathcal{D}(\mathbf{H}) \not\Rightarrow \mathcal{G}(\mathbf{G}) \cong \mathcal{G}(\mathbf{H})$.

Theorem

Let \mathbf{G} and \mathbf{H} be finite abelian groups whose orders have exactly two prime divisors. Then

$$\mathcal{D}(\mathbf{G}) \cong \mathcal{D}(\mathbf{H}) \Rightarrow \mathbf{G} \cong \mathbf{H}.$$

Diameter

Theorem (Biswas, Cameron, Das, Dey, 2024)

If \mathbf{G} is a finite non- p -group with nontrivial center, then

$$\text{diam}(\mathcal{D}(\mathbf{D})) \leq 6.$$

Diameter

Theorem (Biswas, Cameron, Das, Dey, 2024)

If \mathbf{G} is a finite non- p -group with nontrivial center, then

$$\text{diam}(\mathcal{D}(\mathbf{D})) \leq 6.$$

Theorem (Biswas, Cameron, Das, Dey, 2024)

If \mathbf{G} is a finite nilpotent non- p -group, then

$$\text{diam}(\mathcal{D}(\mathbf{D})) \leq 4.$$

Diameter

Theorem (Ma, Z., Žigerović, 2026+)

Let \mathbf{G} be a finite nilpotent non- p -group. Then,

$$\text{diam}(\mathcal{D}(G)) = \begin{cases} 2, & \text{if } \exp(\mathbf{G}) \text{ is a square-free number;} \\ 4, & \text{if } \mathbf{G} \text{ is a } \Psi\text{-group;} \\ 3, & \text{otherwise.} \end{cases}$$

(Ψ -groups defined in the paper.)

Corollary (Ma, Z., Žigerović, 2026+)

Let G be an abelian non- p -group. Then

$$\text{diam}(\mathcal{D}(\mathbf{G})) = \begin{cases} 2, & \text{if } \exp(G) \text{ is a square-free number;} \\ 4, & \text{if } \mathbf{C}_{p^2} \times \mathbf{C}_{p^2} \leq \mathbf{G}; \\ 3, & \text{otherwise.} \end{cases}$$