On the difference graph of a group
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Overview

We associate a graph with a group or an algebra

» What does the graph tell about the algebra?

» Determine the relation between the graph and the algebra.
» Describe the graph.

» What properties does the graph have?

» Determine the relation between different associated graphs.
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Some of the graphs associated to groups

» Cayley graph
» commuting graph

» directed power graph
» power graph
>

enhanced power graph
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Definitions

“Definition”

Cayley graph of a group...
» with directed on undirected edges...
» with labeled or unlabeled edges...

The edge set may vary as well.



Definitions

“Definition”

Cayley graph of a group...
» with directed on undirected edges...
» with labeled or unlabeled edges...

The edge set may vary as well.
Definition

The commuting graph of a group G is the simple graph C(G) with
vertex set X C G such that x ~ y if xy = yx.



Definitions

Definition

The directed power graph of a group G is the simple digraph G(G) with
vertex set G such that x — y if y € (x).

The power graph of a group G is the simple graph G(G) with vertex set
G such that x ~ y if y € (x) or x € (y).

The enhanced power graph of a group G is the simple graph G,(G) with
vertex set G such thatx ~ yif 3z € G x,y € (z).

9(G) € G.(G) € C(G)



Definitions

Definition

The directed power graph of a group G is the simple digraph G(G) with
vertex set G such that x — y if y € (x).

The power graph of a group G is the simple graph G(G) with vertex set
G such that x ~ y if y € (x) or x € (y).

The enhanced power graph of a group G is the simple graph G,(G) with
vertex set G such thatx ~ yif 3z € G x,y € (z).

9(G) € G.(G) € C(G)

The difference graph of a group is G.(G) \ G(G) with isolated vertices
removed.



What we want to know

What are its cliques? When is it complete?

>

» Forbidden subgraphs?

» Diameter and dominating sets?

» When does it determine the group?

» When do different graphs determine each other?
Other questions regarding its:

» chromatic number

» clique number

» perfectness

» independence number

» automorphism group



Introduction of these graphs

[3 A. V. Kelarev, S. J. Quinn, 2000

» introduced the directed power graph

@ I. Chakrabarty, S. Ghosh, M. K. Sen, 2009

» the power graph first studied

@ G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi,
2017

» introduced the enhanced power graph



Isomorphism problem

Theorem (Cameron, Ghosh, 2011)
Let G and H be finite abelian groups. Then G(G) = G(H) = G =2 H.

Theorem (Cameron, 2010)
Let G and M be finite groups. Then G(G) = G(H) = G(G)

12

G(H).



Isomorphism problem

Theorem (Bosnjak, Madarész, Z., 2019)
Let G and H be finite groups. Then Go(G) = G.(H) = G(G)

—

(H).

12

Corollary
Let G and H be finite groups. Then

GG =GH) & GG =ZGH) & G.(G)=G.(H).



Isomorphism problem
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Isomorphism problem
...on infinite groups!

Theorem (Cameron, Guerra, Jurina, 2019)
Let G and H be nilpotency class 2 torsion-free groups. Then

— —

G(G)=GgH) = G(G)=GH).

It works with the weaker assumption, too!



Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)
Let G and H be groups. If G is torsion-free, then

— —

G(G)=gH) = §G(G)=g(H).
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—

G(G)=GMH) = G(G)=G(H).



Isomorphism problem on infinite groups

Theorem (Z., 2022 & 2021)
Let G and H be groups. If G is torsion-free, then

— —

G(G)=gH) = §G(G)=g(H).

Theorem (Z., 2021)
Let G and H be groups. If G is has no quasicyclic subgroup, then

—

G(G)=GMH) = G(G)=G(H).

» It works for power-associative loops, too!
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Isomorphism problem on infinite groups

Theorem (Jafari, Z., 2023)
Let G and H be nilpotent groups non of which is a Priifer group. Then

— —

G(G)=GgH) = G(G)=gGH).

Theorem (BoSnjak, Madarasz, Z., 2024)
Let G and H be any groups. Then

G(G)=gH) = G.(G)=G.(H).



Back to finite!

We should be able to prove that D(G) = D(H) = G(G) = G(H)!




Isomorphism problem

> D(Ds) = D(Q12)
Therefore, D(G) = D(H) # G(G) = G(H).

Theorem
Let G and H be finite abelian groups whose orders have exactly two
prime divisors. Then

D(G)=DH) = G=H.



Diameter

Theorem (Biswas, Cameron, Das, Dey, 2024)

If G is a finite non-p-group with nontrivial center, then

diam(D(D)) < 6.



Diameter

Theorem (Biswas, Cameron, Das, Dey, 2024)

If G is a finite non-p-group with nontrivial center, then

diam(D(D)) < 6.

Theorem (Biswas, Cameron, Das, Dey, 2024)
If G is a finite nilpotent non-p-group, then

diam(D(D)) < 4.



Diameter

Theorem (Ma, Z., Zigerovié, 2026+)
Let G be a finite nilpotent non-p-group. Then,

2, ifexp(G) is a square-free number;
diam(D(G)) =< 4, if Gisa VU-group;
3, otherwise.

(V-groups defined in the paper.)

Corollary (Ma, Z., Zigerovié, 2026+)
Let G be an abelian non-p-group. Then
2, ifexp(G) is a square-free number;

diam(D(G)) = | 4, ifCp xCp <Gy
3, otherwise.
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