

Abelian congruences in varieties with a weak difference term

Ross Willard

Waterloo (Canada)

AAA 108 – Vienna
7 February 2026

Prologue

Motivation: finite algebras with a Taylor term (and their relations).

- *idempotent*: $t(x, x, \dots, x) = x$.
- enough identities of form $t(\text{vars}) = t(\text{vars})$ implying it is not a projection.

Characterization Thm (Hobby, McKenzie, Maróti, Barto, Kozik, Siggers . . .)

Let \mathbf{A} be a finite algebra. The following are equivalent:

- ① \mathbf{A} has a **Taylor** term.
- ② \mathbf{A} has an idempotent **weak near unanimity** term (WNU):
$$w(y, x, \dots, x) = w(x, y, \dots, x) = \dots = w(x, \dots, x, y).$$
- ③ (Idempotent cyclic term, Siggers term, Zhuk term . . .)
- ④ $\text{HSP}(\mathbf{A})$ has a **weak difference term**.

This lecture is an advertisement for weak difference terms.

Part 1: Definitions

Centrality, abelian

Definition. Let $\varphi, \theta \in \text{Con}(\mathbf{A})$. We say that φ **centralizes** θ , and write

$$C(\varphi, \theta; 0) \quad \text{or} \quad [\varphi, \theta] = 0,$$

if $\forall (m+n)$ -ary term $t(\mathbf{x}, \mathbf{y})$, $\forall (a_i, b_i) \in \varphi$, $\forall (c_j, d_j) \in \theta$,

$$t(\mathbf{a}, \mathbf{c}) = t(\mathbf{a}, \mathbf{d}) \implies t(\mathbf{b}, \mathbf{c}) = t(\mathbf{b}, \mathbf{d}).$$

θ is **abelian** iff $[\theta, \theta] = 0$.

\mathbf{A} is **abelian** iff $[1, 1] = 0$.

The **centralizer** of θ is the $\underbrace{\text{largest } \varphi \in \text{Con}(\mathbf{A}) \text{ satisfying } [\varphi, \theta] = 0}_{(0 : \theta)}$.

Theorem (Gumm, Herrmann 1979)

Suppose \mathbf{A} is abelian and has a *Mal'tsev* term $p(x, y, z)$:

$$p(x, x, y) = y = p(y, x, x).$$

Fix any $e \in A$, and define

$$x + y := p(x, e, y).$$

Then:

- ① $+$ is an abelian group operation on A , with identity element e .
- ② $p(x, y, z) = x - y + z$.
- ③ Every $f \in \text{Pol}_n(\mathbf{A})$ is affine w.r.t. $(A, +)$:

$$f(x_1, \dots, x_n) = \left(\sum_{i=1}^n r_i(x_i) \right) + c$$

for some $r_i \in \text{End}(A, +)$ and $c \in A$.

(Hence \mathbf{A} is polynomially equivalent to a module.)

(**A** abelian, $p(x, x, y) = y = p(y, x, x)$, $e \in A$, $x + y := p(x, e, y)$)

Proof of $x + y = y + x$

Let $t(x, y_1, y_2) := p(y_1, x, y_2)$. Let $a, b \in A$.

Because **A** is abelian, i.e., $[1, 1] = 0$, and $(a, e), (a, b), (b, a) \in 1$, we have

$$t(\underline{a}, \underbrace{a, b}_{\substack{c \\ \longrightarrow \\ 1 \\ \longleftarrow \\ d}}) = t(\underline{a}, \underbrace{b, a}_{\substack{c \\ \longrightarrow \\ 1 \\ \longleftarrow \\ d}}) \implies t(\underline{e}, \underbrace{a, b}_{\substack{c \\ \longrightarrow \\ 1 \\ \longleftarrow \\ d}}) = t(\underline{e}, \underbrace{b, a}_{\substack{c \\ \longrightarrow \\ 1 \\ \longleftarrow \\ d}}).$$

i.e.,

$$p(a, \underline{a}, b) = p(b, \underline{a}, a) \implies \underbrace{p(a, \underline{e}, b)}_{a+b} = \underbrace{p(b, \underline{e}, a)}_{b+a}.$$

LHS is true (by Mal'tsev identities). Hence RHS is also true. □

There is an analogous theorem for abelian congruences.

Folklore theorem for abelian congruences

Suppose $\theta \in \text{Con}(\mathbf{A})$ is abelian, and \mathbf{A} has an idempotent term $d(x, y, z)$ whose restriction $d|_C$ to each θ -class C is Mal'tsev.¹

Then:

- ① Each θ -class C can be turned into an abelian group (same recipe): pick $e \in C$, define $x + y := d(x, e, y)$.
- ② The restriction of any polynomial to an n -tuple of θ -classes is affine with respect to the abelian groups on the classes and the target class.

$A =$	$(C_1, +)$	$(C_2, +)$	$(C_3, +)$	$(C_4, +)$	$(\theta\text{-classes})$
	$\bullet e_1$	$e_2 \bullet$			

¹ I.e., $d(x, x, y) = y = d(y, x, x)$ whenever $x \stackrel{\theta}{\equiv} y$.

(Generalizing Gumm's "difference term" for congruence modular varieties):

Definition (Kearnes 1995, Lipparini 1996)

Let $d(x, y, z)$ be a 3-ary term.

We say that $d(x, y, z)$ is a **weak difference** term (or **WD** term) ...

- ... for an algebra \mathbf{A} if it is idempotent and its restriction to any class of any abelian congruence of \mathbf{A} is Mal'tsev.¹
- ... for a variety if it is a WD term for every algebra in the variety.

Note: this definition is not in terms of identities.

¹ The "real" definition requires that this property hold not only for \mathbf{A} , but also for every homomorphic image of \mathbf{A} .

Having a WD term gives us:

- ① Abelian groups on classes of abelian congruences (Folklore Theorem).
- ② Some technical properties of abelian congruences, similar to the congruence modular case, such as:

Technical Lemma

Suppose \mathbf{A} belongs to a variety with a WD term, $\theta \in \text{Con}(\mathbf{A})$, θ is abelian.

- ① $\theta \vee \delta = \delta \circ \theta \circ \delta$ for all $\delta \in \text{Con}(\mathbf{A})$.
- ② $C(\theta, \theta; \delta)$ for all $\delta \leq \theta$.
- ③ $(a, b) \in \theta \implies \text{Cg}(a, b) = \{(f(a), f(b)) : f \in \text{Pol}_1(\mathbf{A})\}$.

The proofs are elementary. For example:

(1). We must show $\theta \circ \delta \circ \theta \subseteq \delta \circ \theta \circ \delta$. Assume $a \stackrel{\theta}{\equiv} x \stackrel{\delta}{\equiv} y \stackrel{\theta}{\equiv} b$. Then

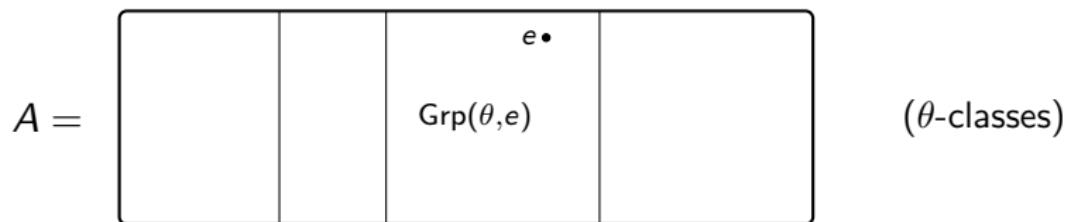
$$a = d(a, x, x) \stackrel{\delta}{\equiv} d(a, y, y) \stackrel{\theta}{\equiv} d(x, y, b) \stackrel{\delta}{\equiv} d(y, y, b) = b.$$

Part 2: Focus on the abelian groups

Notation

Assume $d(x, y, z)$ is a WD term for \mathbf{A} .

Let $\theta \in \text{Con}(\mathbf{A})$ be abelian, $e \in A$, and $C = e/\theta$.



Notation:

$\boxed{\text{Grp}(\theta, e)}$ denotes $(C, +)$ where $x + y := d(x, e, y)$.

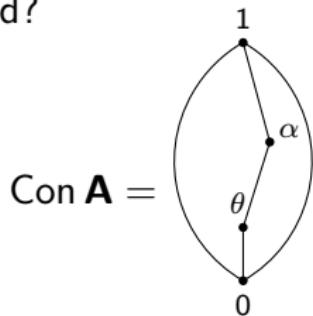
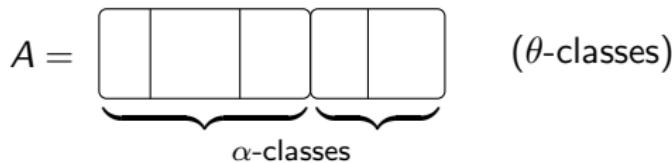
1980s notation: $M(\theta, e)$

(\mathbf{A} has a WD term, θ is abelian)

Question: how are groups on different θ -classes related?

Let $\alpha = (0 : \theta)$.

Group θ -classes together if they are in the same α -class.



Theorem (Gumm 1983)

If \mathbf{A} belongs to a congruence modular variety, then

$$\text{Grp}(\theta, e) \cong \text{Grp}(\theta, e') \text{ whenever } e \stackrel{\alpha}{\equiv} e'.$$

How does Gumm's result generalize (if at all) to WD term varieties?

Answer #1:

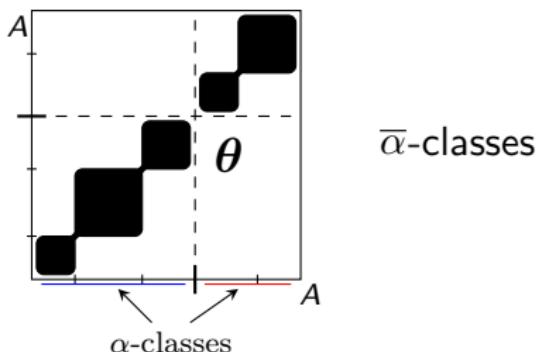
It doesn't generalize.

Answer #2: Sing, muse, a story from ancient times . . .

Assume \mathbf{A} is in a variety with a WD term, θ is abelian, $\alpha = (0 : \theta)$.

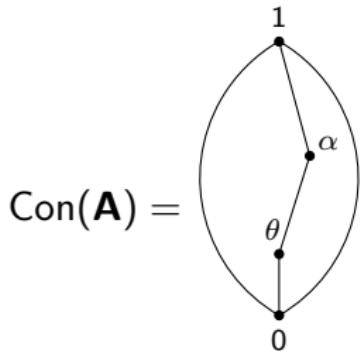
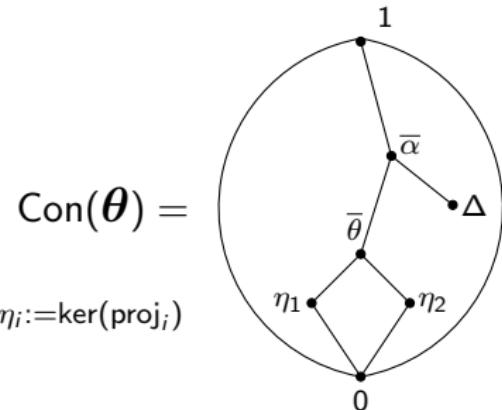
(Following Hagemann & Herrmann 1979):

- Let $\theta :=$ the subalgebra of \mathbf{A}^2 with universe θ .



- θ itself has congruences, including: η_1 (kernel of 1st projection), η_2 , $\overline{\theta}$ (classes are squares of θ -classes), $\overline{\alpha}$

$(\theta$ abelian, $\alpha := (0 : \theta)$, in a variety with a WD term)



Easy Fact: $\bar{\theta}$ is abelian.

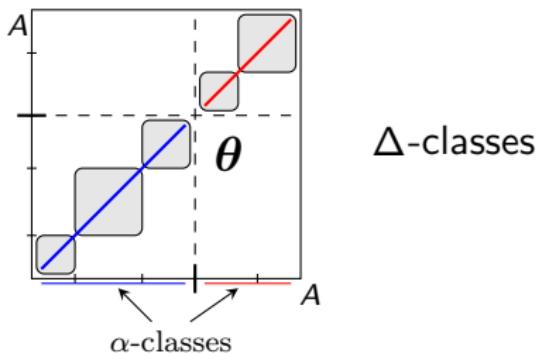
(Hagemann & Herrmann): $[\alpha, \theta] = 0 \iff \theta$ has a congruence $\Delta \leq \bar{\alpha}$ where for each α -class E , the diagonal 0_E is a Δ -class.

Answer #2: Sing a story from ancient times ...

Assume \mathbf{A} is in a variety with a WD term, θ is abelian, $\alpha = (0 : \theta)$.

(Following Hagemann & Herrmann 1979):

- Let $\theta :=$ the subalgebra of \mathbf{A}^2 with universe θ .

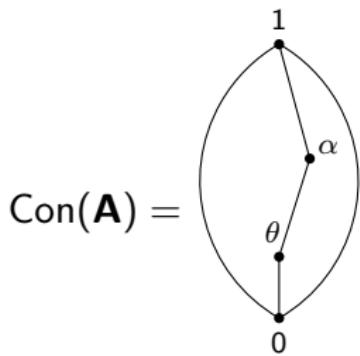
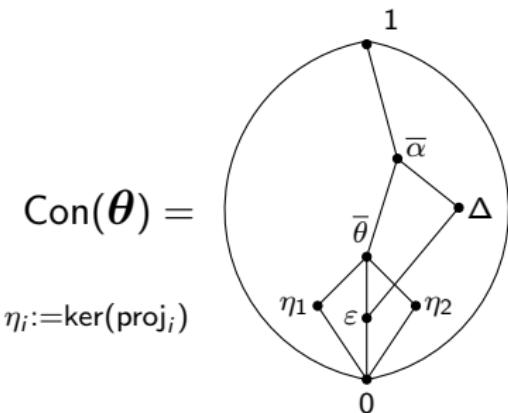


- θ itself has congruences, including: η_1 (kernel of 1st projection), η_2 , $\bar{\theta}$ (classes are squares of θ -classes), $\bar{\alpha}$, and $\Delta \leq \bar{\alpha}$ where

$$E \text{ an } \alpha\text{-class} \implies 0_E \text{ a } \Delta\text{-class.}$$

- Intuition: $(a, b) \stackrel{\Delta}{\equiv} (a', b')$ should mean $a - b = a' - b'$.

$(\theta$ abelian, $\alpha := (0 : \theta)$, in a variety with a WD term)



Easy Fact: $\bar{\theta}$ is abelian.

(Hagemann & Herrmann): $[\alpha, \theta] = 0 \iff \theta$ has a congruence $\Delta \leq \bar{\alpha}$ where for each α -class E , the diagonal 0_E is a Δ -class.

Clearly $\bar{\theta} \vee \Delta = \bar{\alpha}$. Let $\varepsilon := \bar{\theta} \wedge \Delta$ (see picture).

Technical Lemma $\implies C(\bar{\theta}, \bar{\theta}; \varepsilon)$ and $\bar{\alpha} = \Delta \circ \bar{\theta} \circ \Delta \implies C(\bar{\alpha}, \bar{\alpha}; \Delta)$

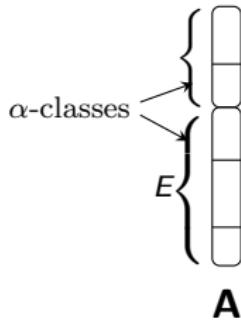
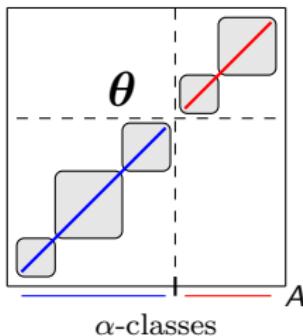
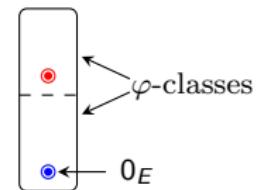
Conclusion: In θ/Δ , $\bar{\alpha}/\Delta$ is an abelian congruence.

$(\theta$ abelian, $\alpha := (0 : \theta)$, in a variety with a WD term)

(Following Freese 1983): Define

$\mathbf{D}(\theta) := \theta / \Delta$ the “**difference algebra** for θ ”

$\varphi := \overline{\alpha} / \Delta$ the “**derived congruence**” (abelian)



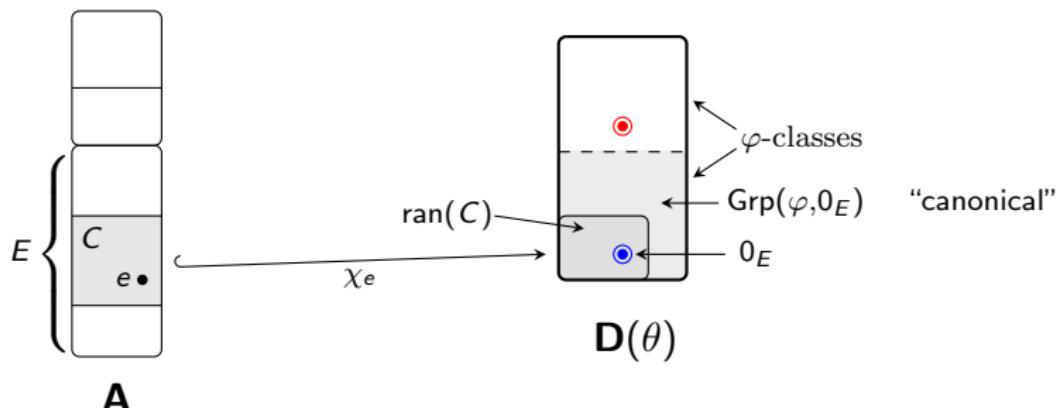
$$\mathbf{D}(\theta) := \theta / \Delta$$

This wisdom of the ancients (known previously in congruence modular varieties) works in any variety with a WD term.

Application # 1: coherent abelian groups

Fix an α -class E .

For each θ -class $C \subseteq E$, define $\boxed{\text{ran}(C) := C^2/\Delta}$, the “range of C .”



Given $e \in C$, define $\chi_e : C \rightarrow \text{ran}(C)$ by $\boxed{x \mapsto (x, e)/\Delta}$.

Embedding Lemma

- ① χ_e is an embedding $\text{Grp}(\theta, e) \hookrightarrow \text{Grp}(\varphi, 0_E)$ whose range is $\text{ran}(C)$.
- ② $\forall (a, b) \in C^2, (a, b)/\Delta = \chi_e(a) - \chi_e(b)$ in $\text{Grp}(\varphi, 0_E)$.
- ③ The set of ranges of θ -classes in E is a directed set of subgroups of $\text{Grp}(\varphi, 0_E)$ whose union is $\text{Grp}(\varphi, 0_E)$.

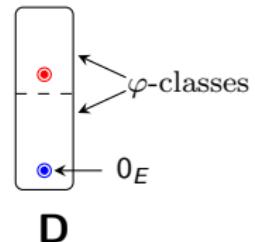
Application #2: From abelian groups to vector spaces

(\mathbf{A} in a variety with a WD term, θ abelian, $\alpha := (0 : \theta)$, $\mathbf{D} = \mathbf{D}(\theta) := \theta/\Delta$, $\varphi := \overline{\alpha}/\Delta$)

Let $T_0 := \{0_E : E \text{ an } \alpha\text{-class}\}$.

T_0 is a transversal for φ , and $T_0 \leq \mathbf{D}$.

Let $O : \mathbf{D} \rightarrow \mathbf{T}_0$ be the corresponding retraction.



Define:

$$F := \{\lambda \in \text{End}(\mathbf{D}) : \lambda(\varphi) \subseteq \varphi \text{ and } \varphi|_{T_0} = \text{id}_{T_0}\}.$$

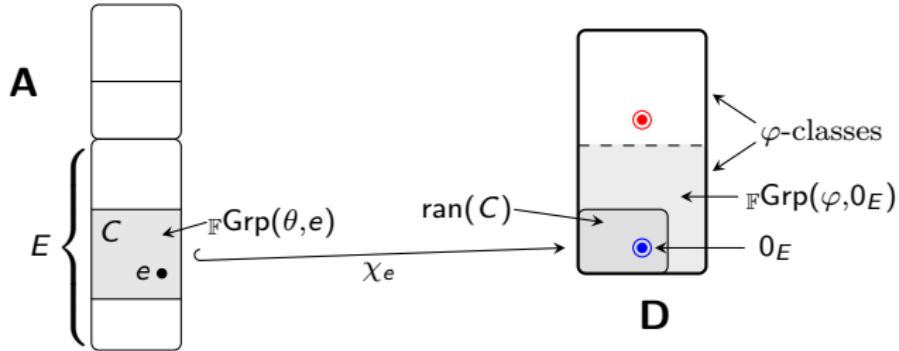
Define $+$ on F by

$$(\lambda + \mu)(x) := d(\lambda(x), O(x), \mu(x)).$$

Theorem

- ① $\lambda, \mu \in F \implies \lambda + \mu \in F$.
- ② $\mathbb{F} := (F, +, \circ, O, \text{id}_D)$ is a unital ring, which acts naturally on each group $\text{Grp}(\varphi, 0_E)$, making it a left \mathbb{F} -module ${}_{\mathbb{F}}\text{Grp}(\varphi, 0_E)$.

(\mathbf{A} in a variety with a WD term, θ abelian, $\alpha := (0 : \theta)$, $\mathbf{D} := \theta/\Delta$, $\varphi := \overline{\alpha}/\Delta$)



Theorem

Assume additionally that $0 \prec \theta$. Then:

- ① \mathbb{F} is a division ring. (Hence $\mathbb{F}\text{Grp}(\varphi, 0_E)$ is a vector space.)
- ② For each θ -class $C \subseteq E \in A/\alpha$, $\text{ran}(C)$ is a subspace of $\mathbb{F}\text{Grp}(\varphi, 0_E)$.

Via χ_e , each θ -class C naturally inherits an \mathbb{F} -vector space structure!

Payoff: rectangular critical relations
(if enough time)

Let $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ be a subdirect relation of finite algebras \mathbf{A}_i .

① R is **critical** if it is

- ▶ meet-irreducible in the lattice of subuniverses of $\mathbf{A}_1 \times \cdots \times \mathbf{A}_n$, and
- ▶ indecomposable, i.e., $R \neq \text{proj}_I(R) \times \text{proj}_{[n] \setminus I}(R)$ for all $\emptyset \neq I \subset [n]$.

② R is **rectangular** if (blah blah blah).

③ R is **completely functional** if each coordinate is determined by the remaining coordinates:

$$\forall i \in [n], \quad \left. \begin{array}{l} (\mathbf{r}, a, \mathbf{s}) \in R \\ (\mathbf{r}, b, \mathbf{s}) \in R \end{array} \right\} \quad \begin{array}{c} \uparrow \\ i \end{array} \implies a = b.$$

Rectangular critical relations played an important role in:

- Kearnes & Szendrei (2012), congruence modular case
- Zhuk (2017, 2020), “naked” special WNU case

Their study reduces to completely functional critical relations of arity ≥ 3 .

Theorem

Suppose $\mathbf{A}_1, \dots, \mathbf{A}_n$ are finite algebras in a locally finite Taylor variety, $n \geq 3$, and $R \leq_{sd} \mathbf{A}_1 \times \dots \times \mathbf{A}_n$ is completely functional and critical.

- ① Each \mathbf{A}_i is subdirectly irreducible.
- ② The monolith θ_i of \mathbf{A}_i is abelian.
- ③ $\mathbf{D}(\theta_1) \cong \dots \cong \mathbf{D}(\theta_n)$.
- ④ If \mathbb{F}_i is the division ring associated to θ_i , then $\mathbb{F}_1 \cong \dots \cong \mathbb{F}_n$.

Thus we may consider every θ_i -class of each \mathbf{A}_i to be a vector space over a common finite field \mathbb{F} .

Let R^* be the unique upper cover of R in $\text{Sub}(\mathbf{A}_1 \times \dots \times \mathbf{A}_n)$.

- ⑤ Relative to R^* , R is “locally” the solution set of a single \mathbb{F} -linear equation.

For details, see slides from my BLAST 2025 Tutorial, lecture #3.

To learn more

- ① R. Willard, Abelian congruences and similarity in varieties with a weak difference term, arXiv:2502.20517 (v3), 2026.
- ② _____, Zhuk's bridges, centrality, and similarity, arXiv:2503.03551 (v2), 2026.
- ③ _____, BLAST 2025 tutorial slides,
<https://math.colorado.edu/blast/2025/schedule.html>

Thank you!