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Background

Foundational issues in quantum mechanics

The basic model of quantum mechanics is the

complex Hilbert space.

Can we reduce it to something simpler?

That is, can we extract from a Hilbert space H some algebraic
or relational structure that is easier to understand and allows us
to reconstruct H?



Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

complex Hilbert spaces ⇄ certain ortholattices

The minimalist approach

Excluding small dimensions, we have a correspondence:

complex Hilbert spaces ⇄
certain sets equipped with an
orthogonality relation

Issue in both cases

What about the respective structure-preserving maps?
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Linear and projective spaces

A first step towards structural reduction of a linear space
is to switch to the projective space.

Definition

An (irreducible) projective space (with 0) is a set P equipped
with an operation ⋆ : P × P → P(P ) and a constant 0, such
that:

(P1) For any a, b ∈ P , {0, a, b} ⊆ a ⋆ b and a ⋆ b contains a
further element if and only if 0, a, b are pairwise distinct.

(P2) For distinct non-zero elements c, d ∈ a ⋆ b, we have
a ⋆ b = c ⋆ d.

(P3) For pairwise distinct non-zero elements a, b, c, d, we have
a ⋆ b ∩ c ⋆ d = {0} if and only if a ⋆ c ∩ b ⋆ d = {0}.

We call a ⋆ b the line spanned by a and b,
and we call elements a ̸= 0 proper.
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The correspondence of objects

Coordinatisation Theorem of Projective Geometry

Let V be a linear space and let

P (V ) = {⟨u⟩ : u ∈ V }.

For u, v ∈ V , we put

⟨u⟩ ⋆ ⟨v⟩ = {⟨w⟩ : w ∈ ⟨u, v⟩}.

Then P (V ), equipped with ⋆ and the zero subspace {0}, is a
projective space.

Conversely, let P be a projective space of rank ⩾ 4. Then there
is a linear space V such that P (V ) is isomorphic to P .
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Structure-preserving maps
Definition

Let V1 and V2 be linear spaces over sfields F1 and F2.

We call φ : V1 → V2 semilinear if

φ(u+ v) = φ(u) + φ(v), u, v ∈ V1

and there is a homomorphism σ : F1 → F2 such that

φ(αu) = ασφ(u), u ∈ V1, α ∈ F1.

If σ is an isomorphism, we call φ quasilinear.

Definition

Let P1 and P2 be projective spaces.

We call f : P1 → P2 a projective homomorphism if, for a, b ∈ P1,

a ∈ b ⋆ c implies f(a) ∈ f(b) ⋆ f(c),

f(0) = 0.
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The correspondence of maps

Fundamental Theorem of Projective Geometry
(Faure, Frölicher)

Let φ : V1 → V2 be a semilinear map. Then

P (φ) : P (V1) → P (V2), ⟨u⟩ 7→ ⟨φ(u)⟩

is a projective homomorphism.

Conversely, let f : P (V1) → P (V2) be a projective
homomorphism whose image is not contained in a line.

Then there is a semilinear map φ : V1 → V2 such that f = P (φ).
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Hermitian spaces and orthosets

Definition

A ⋆-sfield is an sfield F equipped with
an involutorial antiautomorphism ⋆ : F → F .

A Hermitian space is a linear space H over an ⋆-sfield F
together with a product (· | ·) : H ×H → F such that, for any
u, v, w ∈ H and α, β ∈ F :

(αu+ βv |w) = α (u |w) + β (v |w) ,
(w |αu+ βv) = (w |u) α⋆ + (w | v) β⋆,
(u | v) = (v |u)⋆ ,
(u |u) = 0 implies u = 0.
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Orthosets

Definition

An orthoset is a set X equipped with a binary relation ⊥
and a constant 0 such that:

a ⊥ b implies b ⊥ a,

a ⊥ a only if a = 0,

0 ⊥ a for any a ∈ X.

In case a ⊥ b we say that a is orthogonal to b.
We call elements a ̸= 0 proper.

The supremum of the cardinalities of sets of mutually
orthogonal elements is the rank of X.

Example

Let H be a Hermitian space. Then P (H), equipped with the
usual orthogonality relation ⊥ and with ⟨0⟩, is an orthoset.
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The correspondence of objects

Definition

An orthoset X is called linear if, for
any distinct proper elements
a and b, there is a proper element c
such that

exactly one of b and c is
orthogonal to a and

{a, b}⊥ = {a, c}⊥.

Coordinatisation Theorem for Linear Orthosets
(J. Paseka, Th.V.)

Let H be a Hermitian space. Then P (H), together with ⊥ and
⟨0⟩, is a linear orthoset.

Conversely, let X be a linear orthoset of rank ⩾ 4. Then there
is a Hermitian space H such that P (H) is isomorphic to X.
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Structure-preserving maps

Definition

We call a linear map φ : H1 → H2 between Hermitian spaces
adjointable if there is a linear map φ∗ : H2 → H1 such that

(φ(u) | v) = (u |φ∗(v)) for any u ∈ H1 and v ∈ H2.

Example

A linear map between Hilbert spaces is adjointable iff
it is continuous.

Definition

We call a map f : X → Y between orthosets adjointable if there
is a map g : Y → X such that, for any x ∈ X and y ∈ Y ,

f(x) ⊥ y if and only if x ⊥ g(y).



Structure-preserving maps

Definition

We call a linear map φ : H1 → H2 between Hermitian spaces
adjointable if there is a linear map φ∗ : H2 → H1 such that

(φ(u) | v) = (u |φ∗(v)) for any u ∈ H1 and v ∈ H2.

Example

A linear map between Hilbert spaces is adjointable iff
it is continuous.

Definition

We call a map f : X → Y between orthosets adjointable if there
is a map g : Y → X such that, for any x ∈ X and y ∈ Y ,

f(x) ⊥ y if and only if x ⊥ g(y).



Structure-preserving maps

Definition

We call a linear map φ : H1 → H2 between Hermitian spaces
adjointable if there is a linear map φ∗ : H2 → H1 such that

(φ(u) | v) = (u |φ∗(v)) for any u ∈ H1 and v ∈ H2.

Example

A linear map between Hilbert spaces is adjointable iff
it is continuous.

Definition

We call a map f : X → Y between orthosets adjointable if there
is a map g : Y → X such that, for any x ∈ X and y ∈ Y ,

f(x) ⊥ y if and only if x ⊥ g(y).



The correspondence of maps: the easy direction

Proposition

Let φ : H1 → H2 be an adjointable linear map between
Hermitian spaces.

Then P (φ) is adjointable and its adjoint is P (φ)∗ = P (φ∗).

Proof. For any u ∈ H1 and v ∈ H2, we have

P (φ)(⟨u⟩) ⊥ ⟨v⟩
iff φ(u) ⊥ v

iff (φ(u) | v) = 0

iff (u |φ∗(v)) = 0

iff u ⊥ φ∗(v)

iff ⟨u⟩ ⊥ P (φ∗)(⟨v⟩).
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Consequences of adjointability

Lemma

Let f : X → Y be an adjointable map between orthosets. Then

for any A ⊆ X, we have f(A⊥⊥) ⊆ f(A)⊥⊥, and

f(0) = 0.

In particular, we then have

f({a, b}⊥⊥) ⊆ {f(a), f(b)}⊥⊥

for any a, b ∈ X, hence:

Corollary

Any adjointable map f : P (H1) → P (H2) between orthosets is a
projective homomorphism.
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The correspondence of maps: the non-trivial direction

Lemma

Let φ : H1 → H2 and ψ : H2 → H1 be semilinear maps
such that P (φ) and P (ψ) form an adjoint pair.
Assume furthermore that φ spans a subspace of dimension ⩾ 2.
Then φ is quasilinear.

Theorem (J. Paseka, Th.V.)

Let H1 and H2 be Hermitian spaces.
Let f : P (H1) → P (H2) be an adjointable map of rank ⩾ 3.

Then there is a quasilinear map φ : H1 → H2

such that f = P (φ).
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Adjointability of the inducing map

Theorem (J. Paseka, Th.V.)

Let φ : H1 → H2 be a linear map between Hermitian spaces.

Then φ is adjointable if and only if P (φ) is adjointable.

Corollary

For a linear map φ : H1 → H2 between Hilbert spaces, the
following are equivalent:

φ is continuous;

φ is bounded;

φ is adjointable;

P (φ) is adjointable.
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Preservation of orthogonality

Definition

An orthoisomorphism is a bijection f : X → Y between
orthosets such that

x ⊥ y if and only if f(x) ⊥ f(y)

for any x, y ∈ X.

Proposition

Let f : X → Y be a bijection between orthosets. Then f is an
orthoisomorphism if and only if f and f−1 form an adjoint pair.
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Piziak’s Theorem

Theorem (R.Piziak; J. Paseka, Th.V.)

Let H1 be an at least 2-dimensional linear space over F1,
equipped with a non-degenerate sesquilinear form (· | ·)1,
and let H2 be a linear space over F2 equipped with a
sesquilinear form (· | ·)2.
Let φ : H1 → H2 be a semilinear map with associated
homomorphism σ and assume that

u ⊥ v implies φ(u) ⊥ φ(v)

for any u, v ∈ H1.

Then there is a unique λ ∈ F2 such that

(φ(u) |φ(v))2 = (u | v)1
σ λ

for any u, v ∈ H1.



Wigner’s Theorem for Hermitian spaces

Definition

We call a bijection φ : H1 → H2 between Hermitian spaces
quasiunitary if

φ is quasilinear with associated isomorphism σ and

there is a λ ∈ F2 \ {0} such that

(φ(u) |φ(v))2 = (u | v)1
σ λ

for any u, v ∈ H1.

Theorem (J. Paseka, Th.V.)

Let H1 and H2 be at least 3-dimensional Hermitian spaces, and
let f : P (H1) → P (H2) be an orthoisomorphism.
Then there is a quasiunitary map φ : H1 → H2

such that f = P (φ).
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Conclusion

Let H1, H2 be Hermitian spaces and
let P (H1), P (H2) be the associated orthosets.

The relationship between the structure-preserving maps
H1 → H2 and P (H1) → P (H2) is not perfect but we may notice:

A map f : P (H1) → P (H2) is adjointable if there is another
map g : P (H2) → P (H1) such that

f(⟨u⟩) ⊥ ⟨v⟩ iff ⟨u⟩ ⊥ g(⟨v⟩)

for any u ∈ H1 and v ∈ H2. Provided the rank is ⩾ 3, f is
induced by a quasilinear map from H1 to H2.

A map f : P (H1) → P (H2) is an orthoismorphism if

⟨u⟩ ⊥ ⟨v⟩ iff f(⟨u⟩) ⊥ f(⟨v⟩).

Provided that dimensions are ⩾ 3, f is induced by a
quasiunitary map from H1 to H2.
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