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Background

Foundational issues in quantum mechanics

The basic model of quantum mechanics is the
complex Hilbert space.
Can we reduce it to something simpler?

That is, can we extract from a Hilbert space H some algebraic
or relational structure that is easier to understand and allows us

to reconstruct H? )




Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

complex Hilbert spaces & certain ortholattices
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Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

complex Hilbert spaces & certain ortholattices

The minimalist approach

Excluding small dimensions, we have a correspondence:

certain sets equipped with an
orthogonality relation

complex Hilbert spaces &

Issue in both cases

What about the respective structure-preserving maps? )




Linear and projective spaces

A first step towards structural reduction of a linear space
is to switch to the projective space.



Linear and projective spaces

A first step towards structural reduction of a linear space
is to switch to the projective space.

Definition

An (irreducible) projective space (with 0) is a set P equipped

with an operation x: P x P — P(P) and a constant 0, such

that:

(P1) For any a,b € P, {0,a,b} C axb and axb contains a
further element if and only if 0, a, b are pairwise distinct.

(P2) For distinct non-zero elements ¢, d € a x b, we have
axb=cxd.

(P3) For pairwise distinct non-zero elements a, b, ¢, d, we have
axb N cxd={0}if and only if axc N bxd = {0}.




Linear and projective spaces

A first step towards structural reduction of a linear space
is to switch to the projective space.

Definition

An (irreducible) projective space (with 0) is a set P equipped

with an operation x: P x P — P(P) and a constant 0, such

that:

(P1) For any a,b € P, {0,a,b} C axb and axb contains a
further element if and only if 0, a, b are pairwise distinct.

(P2) For distinct non-zero elements ¢, d € a x b, we have
a*xb=cxd.

(P3) For pairwise distinct non-zero elements a, b, ¢, d, we have
axb N cxd={0}if and only if axc N bxd = {0}.

We call a *x b the line spanned by a and b,

and we call elements a # 0 proper.




The correspondence of objects

Coordinatisation Theorem of Projective Geometry

Let V be a linear space and let
PV) = {{u): ueV}.
For u,v € V, we put
() x (v) = {(w): w € (u,v)}.

Then P(V), equipped with * and the zero subspace {0}, is a
projective space.




The correspondence of objects

Coordinatisation Theorem of Projective Geometry

Let V be a linear space and let
PV) = {{u): ueV}.
For u,v € V, we put
() x (v) = {(w): w € (u,v)}.

Then P(V), equipped with * and the zero subspace {0}, is a
projective space.

Conversely, let P be a projective space of rank > 4. Then there
is a linear space V such that P(V) is isomorphic to P.




Structure-preserving maps

Definition
Let V1 and V5 be linear spaces over sfields £} and Fo.

We call p: Vi — V5 semilinear if
e(utv) = o(u) +¢v), w,veW

and there is a homomorphism o: F; — F5 such that

g

plou) = a’p(u), uweVi, a€F.

If o is an isomorphism, we call ¢ quasilinear.




Structure-preserving maps

Definition

Let V1 and V5 be linear spaces over sfields £} and Fo.
We call ¢: Vi — V5 semilinear if
put+v) = o) +e(), wveWn
and there is a homomorphism o: F; — F5 such that
a

olau) = a’p(u), uweVy, ac€F.

If o is an isomorphism, we call ¢ quasilinear.

Definition

Let P, and P» be projective spaces.
We call f: P, — P a projective homomorphism if, for a,b € Py,

a € bxc implies f(a) € f(b) * f(c),
£(0) = 0.




The correspondence of maps

Fundamental Theorem of Projective Geometry
(FAURE, FROLICHER)

Let : Vi — V5 be a semilinear map. Then
P(p): P(V1) = P(V2), (u) — (p(u))

is a projective homomorphism.




The correspondence of maps

Fundamental Theorem of Projective Geometry
(FAURE, FROLICHER)

Let : Vi — V5 be a semilinear map. Then
P(p): P(Vi) = P(V2), (u) = (p(u))
is a projective homomorphism.

Conversely, let f: P(V1) — P(Va) be a projective
homomorphism whose image is not contained in a line.

Then there is a semilinear map ¢: Vi — V5 such that f = P(¢p).

v
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A x-sfield is an sfield F' equipped with
an involutorial antiautomorphism *: F' — F.




Hermitian spaces and orthosets

Definition
A x-sfield is an sfield F' equipped with
an involutorial antiautomorphism *: F' — F.

A Hermitian space is a linear space H over an x-sfield F'
together with a product (-|-) : H x H — F such that, for any
w,v,w € H and o, B € F:

(au+Bu|w) = a (u|w)+ 8 (v]w),
(w]au+Bv) = (w|u) a* + (w|v) B,
(ulv) = (v]w)",
(

u|w) = 0 implies u = 0.




Orthosets

Definition

An orthoset is a set X equipped with a binary relation L
and a constant 0 such that:

@ a L bimplies b L a,
@ a Ll aonlyifa=0,

@ 0L aforanyacX.
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Orthosets

Definition

An orthoset is a set X equipped with a binary relation L
and a constant 0 such that:

@ a L bimplies b L a,
@ a Ll aonlyifa=0,
@ 0L aforanyacX.

In case a L b we say that a is orthogonal to b.
We call elements a # 0 proper.

The supremum of the cardinalities of sets of mutually
orthogonal elements is the rank of X.

Example

Let H be a Hermitian space. Then P(H), equipped with the
usual orthogonality relation L and with (0), is an orthoset.




The correspondence of objects

Definition

An orthoset X is called linear if, for
any distinct proper elements

a and b, there is a proper element ¢
such that e

e exactly one of b and c is
orthogonal to a and

o {a,b}*+ = {a,c}*t.
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The correspondence of objects

Definition

An orthoset X is called linear if, for
any distinct proper elements

a and b, there is a proper element ¢ b
such that /c’

e exactly one of b and c is
orthogonal to a and

o {a,b}* = {a,c}*.

Coordinatisation Theorem for Linear Orthosets
(J. PASEKA, TH.V.)

Let H be a Hermitian space. Then P(H), together with 1 and
(0), is a linear orthoset.

Conversely, let X be a linear orthoset of rank > 4. Then there
is a Hermitian space H such that P(H) is isomorphic to X.
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Definition

We call a linear map ¢: H; — Hs between Hermitian spaces
adjointable if there is a linear map ¢*: Hy — Hj such that

(p(u)|v) = (u|p*(v)) for any u € Hy and v € Hy.
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adjointable if there is a linear map ¢*: Hy — Hi such that

(p(u)|v) = (u|p*(v)) for any u € Hy and v € Hy.

A linear map between Hilbert spaces is adjointable iff
it is continuous.
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Definition
We call a map f: X — Y between orthosets adjointable if there
is a map ¢g: Y — X such that, for any x € X and y € Y,

f(z) Ly if and only if z L g(y).




The correspondence of maps: the easy direction

Proposition
Let ¢: Hy — Hs be an adjointable linear map between
Hermitian spaces.

Then P(¢p) is adjointable and its adjoint is P(p)* = P(¢*).




The correspondence of maps: the easy direction

Proposition
Let ¢: Hy — Hs be an adjointable linear map between
Hermitian spaces.

Then P(¢p) is adjointable and its adjoint is P(p)* = P(¢*).

Proof. For any u € Hy and v € Hs, we have



Consequences of adjointability

Lemma
Let f: X — Y be an adjointable map between orthosets. Then
e for any A C X, we have f(A+1) C f(A)*+, and

e f(0)=0.
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Consequences of adjointability

Lemma
Let f: X — Y be an adjointable map between orthosets. Then
e for any A C X, we have f(A+1) C f(A)*+, and

e f(0)=0.

In particular, we then have

F({a,b}+) S {f(a), FO)}

for any a,b € X, hence:

Corollary

Any adjointable map f: P(H;) — P(H3) between orthosets is a
projective homomorphism.




The correspondence of maps: the non-trivial direction

Lemma

Let ¢: Hi — Hs and ¢: Hy — Hj be semilinear maps

such that P(¢) and P(¢)) form an adjoint pair.

Assume furthermore that ¢ spans a subspace of dimension > 2.
Then ¢ is quasilinear.




The correspondence of maps: the non-trivial direction

Lemma

Let ¢: Hi — Hs and ¢: Hs — H; be semilinear maps

such that P(¢) and P(¢)) form an adjoint pair.

Assume furthermore that ¢ spans a subspace of dimension > 2.
Then ¢ is quasilinear.

Theorem (J. PAsExa, TH.V.)
Let H1 and Hy be Hermitian spaces.
Let f: P(H;) — P(H2) be an adjointable map of rank > 3.

Then there is a quasilinear map ¢: H; — H»
such that f = P(¢p).




Adjointability of the inducing map

Theorem (J. Paseka, TH.V.)

Let ¢: Hy — H> be a linear map between Hermitian spaces.

Then ¢ is adjointable if and only if P(y) is adjointable.




Adjointability of the inducing map

Theorem (J. Paseka, TH.V.)

Let ¢: Hy — H> be a linear map between Hermitian spaces.

Then ¢ is adjointable if and only if P(y) is adjointable.

Corollary

For a linear map ¢: H; — Hy between Hilbert spaces, the
following are equivalent:

@ ( is continuous;

@ ¢ is bounded;

e ¢ is adjointable;

e P(yp) is adjointable.
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An orthoisomorphism is a bijection f: X — Y between
orthosets such that

x L yif and only if f(x) L f(y)
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Preservation of orthogonality

Definition

An orthoisomorphism is a bijection f: X — Y between
orthosets such that

x L yif and only if f(x) L f(y)

for any z,y € X.

Proposition

Let f: X — Y be a bijection between orthosets. Then f is an
orthoisomorphism if and only if f and f~! form an adjoint pair.




Piziak’s Theorem

Theorem (R. PiziAk; J. PASEKA, TH.V.)

Let H; be an at least 2-dimensional linear space over F1,
equipped with a non-degenerate sesquilinear form (- |-);,
and let Hy be a linear space over Fb equipped with a
sesquilinear form (- |-),.

Let ¢: Hy — Hs be a semilinear map with associated
homomorphism ¢ and assume that

u L v implies p(u) L ¢(v)

for any u,v € H;.
Then there is a unique A € F5 such that

(o) [p(v))y = (ufv),” A

for any u,v € Hj.




Wigner’s Theorem for Hermitian spaces

Definition
We call a bijection ¢: Hy — Hs between Hermitian spaces
quasiunitary if

@ ¢ is quasilinear with associated isomorphism o and

o thereis a A € I, \ {0} such that

(@) [p(v)y = (u]v),” A

for any u,v € Hj.




Wigner’s Theorem for Hermitian spaces

Definition
We call a bijection ¢: Hy — Hs between Hermitian spaces
quasiunitary if

@ ¢ is quasilinear with associated isomorphism o and

o thereis a A € I, \ {0} such that

(@) [p(v)y = (u]v),” A

for any u,v € Hj.

Theorem (J. PASEKA, TH.V.)

Let Hi and Hs be at least 3-dimensional Hermitian spaces, and
let f: P(Hy) — P(H2) be an orthoisomorphism.

Then there is a quasiunitary map ¢: H; — Ha

such that f = P(p).
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Conclusion

Let Hy, Hy be Hermitian spaces and
let P(Hy), P(H2) be the associated orthosets.

The relationship between the structure-preserving maps
Hy — Hs and P(H;) — P(H>) is not perfect but we may notice:

e A map f: P(Hy) — P(H>) is adjointable if there is another
map g: P(Hz) — P(H;) such that

f((w)) L () iff (u) L g((v))

for any uw € H; and v € Hy. Provided the rank is > 3, f is
induced by a quasilinear map from H; to Hs.

e A map f: P(H,) — P(Hz2) is an orthoismorphism if

() L (v) iff f({u)) L f((0))-

Provided that dimensions are > 3, f is induced by a
quasiunitary map from H; to Hos.




