

Adjointable maps between Hermitian spaces and between orthosets

Thomas Vetterlein

Institute for Mathematical Methods in Medicine und Data Based Modelling
Johannes Kepler University (Linz, Austria)

Joint work with Jan Paseka

Arbeitstagung Allgemeine Algebra,
Vienna, 7 February 2026

Der Wissenschaftsfonds.

This work is supported by the Austrian Science Fund (FWF): project 10.55776/PIN5424624.

Background

Foundational issues in quantum mechanics

The basic model of quantum mechanics is the
complex Hilbert space.

Can we reduce it to something simpler?

That is, can we extract from a Hilbert space H some algebraic or relational structure that is easier to understand and allows us to reconstruct H ?

Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

complex Hilbert spaces \rightleftarrows certain ortholattices

Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

$$\text{complex Hilbert spaces} \quad \Leftrightarrow \quad \text{certain ortholattices}$$

The minimalist approach

Excluding small dimensions, we have a correspondence:

$$\text{complex Hilbert spaces} \quad \Leftrightarrow \quad \text{certain sets equipped with an orthogonality relation}$$

Approaches to structural reduction

The logico-algebraic approach

Excluding small dimensions, we have a correspondence:

$$\text{complex Hilbert spaces} \quad \Leftrightarrow \quad \text{certain ortholattices}$$

The minimalist approach

Excluding small dimensions, we have a correspondence:

$$\text{complex Hilbert spaces} \quad \Leftrightarrow \quad \text{certain sets equipped with an orthogonality relation}$$

Issue in both cases

What about the respective structure-preserving maps?

Linear and projective spaces

A first step towards structural reduction of a linear space is to switch to the projective space.

Linear and projective spaces

A first step towards structural reduction of a linear space is to switch to the projective space.

Definition

An (irreducible) projective space (with 0) is a set P equipped with an operation $\star: P \times P \rightarrow \mathcal{P}(P)$ and a constant 0, such that:

- (P1) For any $a, b \in P$, $\{0, a, b\} \subseteq a \star b$ and $a \star b$ contains a further element if and only if $0, a, b$ are pairwise distinct.
- (P2) For distinct non-zero elements $c, d \in a \star b$, we have $a \star b = c \star d$.
- (P3) For pairwise distinct non-zero elements a, b, c, d , we have $a \star b \cap c \star d = \{0\}$ if and only if $a \star c \cap b \star d = \{0\}$.

Linear and projective spaces

A first step towards structural reduction of a linear space is to switch to the projective space.

Definition

An (irreducible) projective space (with 0) is a set P equipped with an operation $\star: P \times P \rightarrow \mathcal{P}(P)$ and a constant 0, such that:

- (P1) For any $a, b \in P$, $\{0, a, b\} \subseteq a \star b$ and $a \star b$ contains a further element if and only if $0, a, b$ are pairwise distinct.
- (P2) For distinct non-zero elements $c, d \in a \star b$, we have $a \star b = c \star d$.
- (P3) For pairwise distinct non-zero elements a, b, c, d , we have $a \star b \cap c \star d = \{0\}$ if and only if $a \star c \cap b \star d = \{0\}$.

We call $a \star b$ the line spanned by a and b , and we call elements $a \neq 0$ proper.

The correspondence of objects

Coordinatisation Theorem of Projective Geometry

Let V be a linear space and let

$$P(V) = \{\langle u \rangle : u \in V\}.$$

For $u, v \in V$, we put

$$\langle u \rangle \star \langle v \rangle = \{\langle w \rangle : w \in \langle u, v \rangle\}.$$

Then $P(V)$, equipped with \star and the zero subspace $\{0\}$, is a projective space.

The correspondence of objects

Coordinatisation Theorem of Projective Geometry

Let V be a linear space and let

$$P(V) = \{\langle u \rangle : u \in V\}.$$

For $u, v \in V$, we put

$$\langle u \rangle \star \langle v \rangle = \{\langle w \rangle : w \in \langle u, v \rangle\}.$$

Then $P(V)$, equipped with \star and the zero subspace $\{0\}$, is a projective space.

Conversely, let P be a projective space of rank ≥ 4 . Then there is a linear space V such that $P(V)$ is isomorphic to P .

Structure-preserving maps

Definition

Let V_1 and V_2 be linear spaces over fields F_1 and F_2 .

We call $\varphi: V_1 \rightarrow V_2$ **semilinear** if

$$\varphi(u + v) = \varphi(u) + \varphi(v), \quad u, v \in V_1$$

and there is a homomorphism $\sigma: F_1 \rightarrow F_2$ such that

$$\varphi(\alpha u) = \alpha^\sigma \varphi(u), \quad u \in V_1, \quad \alpha \in F_1.$$

If σ is an isomorphism, we call φ **quasilinear**.

Structure-preserving maps

Definition

Let V_1 and V_2 be linear spaces over fields F_1 and F_2 .

We call $\varphi: V_1 \rightarrow V_2$ **semilinear** if

$$\varphi(u + v) = \varphi(u) + \varphi(v), \quad u, v \in V_1$$

and there is a homomorphism $\sigma: F_1 \rightarrow F_2$ such that

$$\varphi(\alpha u) = \alpha^\sigma \varphi(u), \quad u \in V_1, \quad \alpha \in F_1.$$

If σ is an isomorphism, we call φ **quasilinear**.

Definition

Let P_1 and P_2 be projective spaces.

We call $f: P_1 \rightarrow P_2$ a **projective homomorphism** if, for $a, b \in P_1$,

$$a \in b \star c \text{ implies } f(a) \in f(b) \star f(c),$$

$$f(0) = 0.$$

The correspondence of maps

Fundamental Theorem of Projective Geometry (FAURE, FRÖLICHER)

Let $\varphi: V_1 \rightarrow V_2$ be a semilinear map. Then

$$P(\varphi): P(V_1) \rightarrow P(V_2), \langle u \rangle \mapsto \langle \varphi(u) \rangle$$

is a projective homomorphism.

The correspondence of maps

Fundamental Theorem of Projective Geometry (FAURE, FRÖLICHER)

Let $\varphi: V_1 \rightarrow V_2$ be a semilinear map. Then

$$P(\varphi): P(V_1) \rightarrow P(V_2), \langle u \rangle \mapsto \langle \varphi(u) \rangle$$

is a projective homomorphism.

Conversely, let $f: P(V_1) \rightarrow P(V_2)$ be a projective homomorphism whose image is not contained in a line.

Then there is a semilinear map $\varphi: V_1 \rightarrow V_2$ such that $f = P(\varphi)$.

Definition

A **\star -sfield** is an sfield F equipped with an involutorial antiautomorphism $\star: F \rightarrow F$.

Definition

A **\star -sfield** is an sfield F equipped with an involutorial antiautomorphism $\star: F \rightarrow F$.

A **Hermitian space** is a linear space H over an \star -sfield F together with a product $(\cdot | \cdot) : H \times H \rightarrow F$ such that, for any $u, v, w \in H$ and $\alpha, \beta \in F$:

$$\begin{aligned}(\alpha u + \beta v | w) &= \alpha (u | w) + \beta (v | w), \\(w | \alpha u + \beta v) &= (w | u) \alpha^* + (w | v) \beta^*, \\(u | v) &= (v | u)^*, \\(u | u) &= 0 \text{ implies } u = 0.\end{aligned}$$

Definition

An **orthoset** is a set X equipped with a binary relation \perp and a constant 0 such that:

- $a \perp b$ implies $b \perp a$,
- $a \perp a$ only if $a = 0$,
- $0 \perp a$ for any $a \in X$.

Definition

An **orthoset** is a set X equipped with a binary relation \perp and a constant 0 such that:

- $a \perp b$ implies $b \perp a$,
- $a \perp a$ only if $a = 0$,
- $0 \perp a$ for any $a \in X$.

In case $a \perp b$ we say that a is **orthogonal** to b .

We call elements $a \neq 0$ **proper**.

Orthosets

Definition

An **orthoset** is a set X equipped with a binary relation \perp and a constant 0 such that:

- $a \perp b$ implies $b \perp a$,
- $a \perp a$ only if $a = 0$,
- $0 \perp a$ for any $a \in X$.

In case $a \perp b$ we say that a is **orthogonal** to b .

We call elements $a \neq 0$ **proper**.

The supremum of the cardinalities of sets of mutually orthogonal elements is the **rank** of X .

Orthosets

Definition

An **orthoset** is a set X equipped with a binary relation \perp and a constant 0 such that:

- $a \perp b$ implies $b \perp a$,
- $a \perp a$ only if $a = 0$,
- $0 \perp a$ for any $a \in X$.

In case $a \perp b$ we say that a is **orthogonal** to b .

We call elements $a \neq 0$ **proper**.

The supremum of the cardinalities of sets of mutually orthogonal elements is the **rank** of X .

Example

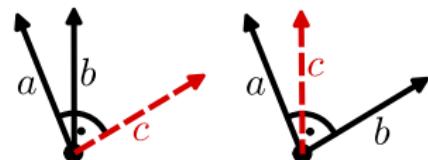
Let H be a Hermitian space. Then $P(H)$, equipped with the usual orthogonality relation \perp and with $\langle 0 \rangle$, is an orthoset.

The correspondence of objects

Definition

An orthoset X is called **linear** if, for any distinct proper elements a and b , there is a proper element c such that

- exactly one of b and c is orthogonal to a and
- $\{a, b\}^\perp = \{a, c\}^\perp$.

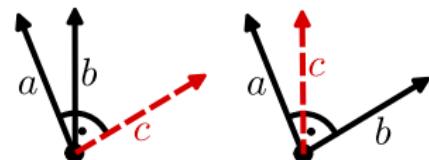


The correspondence of objects

Definition

An orthoset X is called **linear** if, for any distinct proper elements a and b , there is a proper element c such that

- exactly one of b and c is orthogonal to a and
- $\{a, b\}^\perp = \{a, c\}^\perp$.



Coordinatisation Theorem for Linear Orthosets (J. PASEKA, TH.V.)

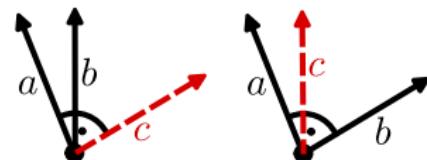
Let H be a Hermitian space. Then $P(H)$, together with \perp and $\langle 0 \rangle$, is a linear orthoset.

The correspondence of objects

Definition

An orthoset X is called **linear** if, for any distinct proper elements a and b , there is a proper element c such that

- exactly one of b and c is orthogonal to a and
- $\{a, b\}^\perp = \{a, c\}^\perp$.



Coordinatisation Theorem for Linear Orthosets (J. PASEKA, TH.V.)

Let H be a Hermitian space. Then $P(H)$, together with \perp and $\langle 0 \rangle$, is a linear orthoset.

Conversely, let X be a linear orthoset of rank ≥ 4 . Then there is a Hermitian space H such that $P(H)$ is isomorphic to X .

Structure-preserving maps

Definition

We call a linear map $\varphi: H_1 \rightarrow H_2$ between Hermitian spaces **adjointable** if there is a linear map $\varphi^*: H_2 \rightarrow H_1$ such that

$$(\varphi(u) | v) = (u | \varphi^*(v)) \quad \text{for any } u \in H_1 \text{ and } v \in H_2.$$

Structure-preserving maps

Definition

We call a linear map $\varphi: H_1 \rightarrow H_2$ between Hermitian spaces **adjointable** if there is a linear map $\varphi^*: H_2 \rightarrow H_1$ such that

$$(\varphi(u) | v) = (u | \varphi^*(v)) \quad \text{for any } u \in H_1 \text{ and } v \in H_2.$$

Example

A linear map between Hilbert spaces is adjointable iff it is continuous.

Structure-preserving maps

Definition

We call a linear map $\varphi: H_1 \rightarrow H_2$ between Hermitian spaces **adjointable** if there is a linear map $\varphi^*: H_2 \rightarrow H_1$ such that

$$(\varphi(u) | v) = (u | \varphi^*(v)) \quad \text{for any } u \in H_1 \text{ and } v \in H_2.$$

Example

A linear map between Hilbert spaces is adjointable iff it is continuous.

Definition

We call a map $f: X \rightarrow Y$ between orthosets **adjointable** if there is a map $g: Y \rightarrow X$ such that, for any $x \in X$ and $y \in Y$,

$$f(x) \perp y \text{ if and only if } x \perp g(y).$$

The correspondence of maps: the easy direction

Proposition

Let $\varphi: H_1 \rightarrow H_2$ be an adjointable linear map between Hermitian spaces.

Then $P(\varphi)$ is adjointable and its adjoint is $P(\varphi)^* = P(\varphi^*)$.

The correspondence of maps: the easy direction

Proposition

Let $\varphi: H_1 \rightarrow H_2$ be an adjointable linear map between Hermitian spaces.

Then $P(\varphi)$ is adjointable and its adjoint is $P(\varphi)^* = P(\varphi^*)$.

Proof. For any $u \in H_1$ and $v \in H_2$, we have

$$\begin{aligned} P(\varphi)(\langle u \rangle) \perp \langle v \rangle & \text{ iff } \varphi(u) \perp v \\ & \text{ iff } (\varphi(u) | v) = 0 \\ & \text{ iff } (u | \varphi^*(v)) = 0 \\ & \text{ iff } u \perp \varphi^*(v) \\ & \text{ iff } \langle u \rangle \perp P(\varphi^*)(\langle v \rangle). \end{aligned}$$

Consequences of adjointability

Lemma

Let $f: X \rightarrow Y$ be an adjointable map between orthosets. Then

- for any $A \subseteq X$, we have $f(A^{\perp\perp}) \subseteq f(A)^{\perp\perp}$, and
- $f(0) = 0$.

Consequences of adjointability

Lemma

Let $f: X \rightarrow Y$ be an adjointable map between orthosets. Then

- for any $A \subseteq X$, we have $f(A^{\perp\perp}) \subseteq f(A)^{\perp\perp}$, and
- $f(0) = 0$.

In particular, we then have

$$f(\{a, b\}^{\perp\perp}) \subseteq \{f(a), f(b)\}^{\perp\perp}$$

for any $a, b \in X$, hence:

Consequences of adjointability

Lemma

Let $f: X \rightarrow Y$ be an adjointable map between orthosets. Then

- for any $A \subseteq X$, we have $f(A^{\perp\perp}) \subseteq f(A)^{\perp\perp}$, and
- $f(0) = 0$.

In particular, we then have

$$f(\{a, b\}^{\perp\perp}) \subseteq \{f(a), f(b)\}^{\perp\perp}$$

for any $a, b \in X$, hence:

Corollary

Any adjointable map $f: P(H_1) \rightarrow P(H_2)$ between orthosets is a projective homomorphism.

Lemma

Let $\varphi: H_1 \rightarrow H_2$ and $\psi: H_2 \rightarrow H_1$ be semilinear maps such that $P(\varphi)$ and $P(\psi)$ form an adjoint pair.

Assume furthermore that φ spans a subspace of dimension ≥ 2 . Then φ is quasilinear.

The correspondence of maps: the non-trivial direction

Lemma

Let $\varphi: H_1 \rightarrow H_2$ and $\psi: H_2 \rightarrow H_1$ be semilinear maps such that $P(\varphi)$ and $P(\psi)$ form an adjoint pair.

Assume furthermore that φ spans a subspace of dimension ≥ 2 . Then φ is quasilinear.

Theorem (J. PASEKA, TH.V.)

Let H_1 and H_2 be Hermitian spaces.

Let $f: P(H_1) \rightarrow P(H_2)$ be an adjointable map of rank ≥ 3 .

Then there is a quasilinear map $\varphi: H_1 \rightarrow H_2$ such that $f = P(\varphi)$.

Adjointability of the inducing map

Theorem (J. PASEKA, TH.V.)

Let $\varphi: H_1 \rightarrow H_2$ be a linear map between Hermitian spaces.

Then φ is adjointable if and only if $P(\varphi)$ is adjointable.

Adjointability of the inducing map

Theorem (J. PASEKA, TH.V.)

Let $\varphi: H_1 \rightarrow H_2$ be a linear map between Hermitian spaces.

Then φ is adjointable if and only if $P(\varphi)$ is adjointable.

Corollary

For a linear map $\varphi: H_1 \rightarrow H_2$ between Hilbert spaces, the following are equivalent:

- φ is continuous;
- φ is bounded;
- φ is adjointable;
- $P(\varphi)$ is adjointable.

Definition

An **orthoisomorphism** is a bijection $f: X \rightarrow Y$ between orthosets such that

$$x \perp y \text{ if and only if } f(x) \perp f(y)$$

for any $x, y \in X$.

Preservation of orthogonality

Definition

An **orthoisomorphism** is a bijection $f: X \rightarrow Y$ between orthosets such that

$$x \perp y \text{ if and only if } f(x) \perp f(y)$$

for any $x, y \in X$.

Proposition

Let $f: X \rightarrow Y$ be a bijection between orthosets. Then f is an orthoisomorphism if and only if f and f^{-1} form an adjoint pair.

Piziak's Theorem

Theorem (R. PIZIAK; J. PASEKA, TH.V.)

Let H_1 be an at least 2-dimensional linear space over F_1 , equipped with a non-degenerate sesquilinear form $(\cdot | \cdot)_1$, and let H_2 be a linear space over F_2 equipped with a sesquilinear form $(\cdot | \cdot)_2$.

Let $\varphi: H_1 \rightarrow H_2$ be a semilinear map with associated homomorphism σ and assume that

$$u \perp v \text{ implies } \varphi(u) \perp \varphi(v)$$

for any $u, v \in H_1$.

Then there is a unique $\lambda \in F_2$ such that

$$(\varphi(u) | \varphi(v))_2 = (u | v)_1^\sigma \lambda$$

for any $u, v \in H_1$.

Wigner's Theorem for Hermitian spaces

Definition

We call a bijection $\varphi: H_1 \rightarrow H_2$ between Hermitian spaces **quasiunitary** if

- φ is quasilinear with associated isomorphism σ and
- there is a $\lambda \in F_2 \setminus \{0\}$ such that

$$(\varphi(u) | \varphi(v))_2 = (u | v)_1^\sigma \lambda$$

for any $u, v \in H_1$.

Wigner's Theorem for Hermitian spaces

Definition

We call a bijection $\varphi: H_1 \rightarrow H_2$ between Hermitian spaces **quasiunitary** if

- φ is quasilinear with associated isomorphism σ and
- there is a $\lambda \in F_2 \setminus \{0\}$ such that

$$(\varphi(u) | \varphi(v))_2 = (u | v)_1^\sigma \lambda$$

for any $u, v \in H_1$.

Theorem (J. PASEKA, TH.V.)

Let H_1 and H_2 be at least 3-dimensional Hermitian spaces, and let $f: P(H_1) \rightarrow P(H_2)$ be an orthoisomorphism.

Then there is a quasiunitary map $\varphi: H_1 \rightarrow H_2$ such that $f = P(\varphi)$.

Conclusion

Let H_1, H_2 be Hermitian spaces and
let $P(H_1), P(H_2)$ be the associated orthosets.

Conclusion

Let H_1, H_2 be Hermitian spaces and
let $P(H_1), P(H_2)$ be the associated orthosets.

The relationship between the structure-preserving maps
 $H_1 \rightarrow H_2$ and $P(H_1) \rightarrow P(H_2)$ is not perfect but we may notice:

Conclusion

Let H_1, H_2 be Hermitian spaces and
let $P(H_1), P(H_2)$ be the associated orthosets.

The relationship between the structure-preserving maps
 $H_1 \rightarrow H_2$ and $P(H_1) \rightarrow P(H_2)$ is not perfect but we may notice:

- A map $f: P(H_1) \rightarrow P(H_2)$ is adjointable if there is another map $g: P(H_2) \rightarrow P(H_1)$ such that

$$f(\langle u \rangle) \perp \langle v \rangle \text{ iff } \langle u \rangle \perp g(\langle v \rangle)$$

for any $u \in H_1$ and $v \in H_2$. Provided the rank is ≥ 3 , f is induced by a quasilinear map from H_1 to H_2 .

Conclusion

Let H_1, H_2 be Hermitian spaces and let $P(H_1), P(H_2)$ be the associated orthosets.

The relationship between the structure-preserving maps $H_1 \rightarrow H_2$ and $P(H_1) \rightarrow P(H_2)$ is not perfect but we may notice:

- A map $f: P(H_1) \rightarrow P(H_2)$ is adjointable if there is another map $g: P(H_2) \rightarrow P(H_1)$ such that

$$f(\langle u \rangle) \perp \langle v \rangle \text{ iff } \langle u \rangle \perp g(\langle v \rangle)$$

for any $u \in H_1$ and $v \in H_2$. Provided the rank is ≥ 3 , f is induced by a quasilinear map from H_1 to H_2 .

- A map $f: P(H_1) \rightarrow P(H_2)$ is an orthoismorphism if

$$\langle u \rangle \perp \langle v \rangle \text{ iff } f(\langle u \rangle) \perp f(\langle v \rangle).$$

Provided that dimensions are ≥ 3 , f is induced by a quasiunitary map from H_1 to H_2 .