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Introduction

Relation of "being an ideal" in a ring is not transitive.

If J C I CA, then J need not be an ideal in the ring A.

Each of J, I ,A or each of the two quotients A/I or I/J
may impact whether or not J / A holds.

For example:
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Introduction

• For a given ring J, for all rings I and A,

J C I CA implies J / A⇔ J is idempotent: J2 = J.

• For a given ring A, for all rings J and I ,

J C I CA implies J / A
⇔ A is a filial ring: ∀a ∈ A, 〈a〉 = 〈a〉2 +Za.

• For a given ring N, for all rings J, I and A,

J C I CA with I/J ∼= N implies J / A
⇔ MN := {x ∈ N | NxN = 0} = 0.

A ring N fulfills condition (F ) (or N is an F -ring) if:
J C I CA with I/J ∼= N implies J / A.
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Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F-nearrings?

In the class of all nearrings, the only F -nearring is N = 0.

In the subvariety of all zero-symmetric nearrings, still an open
problem.

Nearrings are right distributive.
By right distributivity, 0a = 0 for all a ∈ N,

but a0 need not be 0.

If a0 = 0 for all a ∈ N, then N is called zero-symmetric.
In the sequel, all nearrings are zero-symmetric.
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Condition (F) for nearrings

For rings: The following four conditions are equivalent:
(1) R is an F -ring.
(2) R has middle annihilator zero

that is, MR := {x ∈ R | RxR = 0} = 0.

(3) (0 : R)R = {x ∈ R | xR = 0} = 0 and
(R : 0)R = {x ∈ R | Rx = 0} = 0.

(4) R is quasi-semiprime: for x , y ∈ R,
xr = yr for all r ∈ R ⇒ x = y and
rx = ry for all r ∈ R ⇒ x = y .

Examples of F -nearrings are:
nearrings with identity, 2-primitive nearrings, equiprime
nearrings, quasi-semiprime nearrings.

There are F -nearrings that are not quasi-semiprime.
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Condition (F) for nearrings

Theorem
If N is an F -nearring, then
(0 : N)N := {x ∈ N | xN = 0} = 0. [V,1991]

N satisfies the condition:
J C I CA and I/J ∼= N implies J Cr A⇔ (0 : N)N = 0.

The problem is: For J C I CA and I/J ∼= N, want an
appropriate condition on N, necessary and suffi cient, such that
J Cl A.

Why is this a problem?
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Condition (F) for nearrings

Let J C I CA and I/J ∼= N.

For J Cr A need a+ j − a ∈ J and ja ∈ J ∀a ∈ A, j ∈ J.

Multiply with i ∈ I on the right, then
ai + ji − ai ∈ J and jai ∈ J.

Thus
a+ j − a+ J ∈ (0 : I/J)I/J = (0 : N)N and

ja+ J ∈ (0 : I/J)I/J = (0 : N)N .

So (0 : I/J)I/J = (0 : N)N = 0 gives J Cr A.
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Condition (F) for nearrings

For J Cl A need

a(i0 + j)− ai0 ∈ J ∀a ∈ A, i0 ∈ I , j ∈ J.

Multiplication with i ∈ I on the left is no good
(no left distributivity).
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Condition (F) for nearrings

Kaarli (1992) defined a K-nearring N (or N has property (K )):

• For any N-subgroup X of N ⊕N with nx = ny for all
∀(x , y) ∈ X , ∀n ∈ N, necessarily x = y .

• (0 : N)N = 0.

Every K -nearring is an F -nearring.

All known F -nearrings are K -nearrings.
True in general?

For rings it is: N is a K -ring ⇔ N is an F -ring.
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Right and middle annihilators for nearrings

Left annihilator (0 : N)N = {x ∈ N | xN = 0} of a nearring N is
an ideal of N and it is a well-established and useful notion.

Not so for right and middle annihilators:

{x ∈ N | Nx = 0} and {x ∈ N | NxN = 0}.

No particular nice structural properties for nearrings.
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Right and middle annihilators for nearrings

Let RN := {x ∈ N | a(b+ x + d) = a(b+ d) for all a, b, d ∈ N}.

Then:
• RN /l N;
• NRN = 0;
• ∀I Cl N with a(b+ i) = ab ∀i ∈ I , a, b ∈ N,

we have I ⊆ RN ;
• If N is a K -nearring, then RN = 0.

Although not an ideal, RN could be called the right annihilator of
N.

There are nearrings N with RN = 0 = (0 : N)N , but N is not an
F -nearring.
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There are nearrings N with MN = 0, but N is not an F -nearring.
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Examples

Trivial nearrings.

Let (T ,+) be any group, not necessarily commutative, and let S
be a subset of T with 0 ∈ S .

The multiplication defined by:

ab =
{
a if b /∈ S
0 if b ∈ S

gives a zero-symmetric nearring (T ,+, ·).

If S = T , then ab = 0 for all a, b ∈ T ;
suppose thus 0 ∈ S  T .
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Examples

Trivial nearrings.

For this nearring T , we know (0 : T )T = MT = RT = 0, but it
need not be an F -nearring.

Theorem
The following four conditions are equivalent for the nearring T :
(1) T is an F -nearring.
(2) T is a K-nearring.
(3) T is 2-primitive.
(4) The subset S of T contains no nonzero subgroups of T .
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Examples

Transformation nearrings.
Let (G ,+) be a group, 0 ∈ S ⊆ G .

Then N := { functions f : G → G | f (x) = 0 for all x ∈ S} is a
zero-symmetric nearring.

When S = {0}, then N = M0(G ) which is a nearring with
identitity; hence a K -nearring and of no further interest.
Suppose thus S has at least two distinct elements.

The other extreme is when S = G . Then N = {0} and also of no
interest.

If S = G \ {a} for some fixed 0 6= a ∈ G , then N is a trivial
nearring in the sense of the previous example and thus also of no
further interest.
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Transformation nearrings.
Suppose thus 0 ∈ S ⊆ G with both S and G \ S having at least
two distinct elements.

For this nearring N, we know (0 : N)N = MN = RN = 0.

Theorem
For the nearring N the following implications are valid:
N is a K-nearring.
⇔ N is 2-primitive.
⇔ N fulfills: ∀N-subgroups H of N,NH = 0⇒ H = 0.
⇔The subset S of G contains no non-zero subgroups of G .
⇒ N is an F -nearring.
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Condition (F) for nearrings

Characterization of K -nearrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearring if and only
if the following three conditions are fulfilled:
(K1) For any N-subgroup H of N, NH = 0 implies H = 0.

(K2) Every almost trivial internal N-isomorphism of N is trivial.
(K3) (0 : N)N = 0.

An internal N-isomorphism of N is a mapping γ : H1 → H2
where H1 and H2 are N-subgroups of N and γ is an
N-isomorphism.
γ is called almost trivial if the restriction of γ to NH1 is the
identity map.
γ is said to be trivial if γ is the identity map on H1.
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