

Transitivity of the relation of being an ideal in a nearring

AAA 108
TU, Vienna

Presented by
Stefan Veldsman
Nelson Mandela University (Gqeberha) and
La Trobe University (Melbourne)

Introduction

Relation of "being an ideal" in a ring is not transitive.

If $J \triangleleft I \triangleleft A$, then J need not be an ideal in the ring A .

Introduction

Relation of "being an ideal" in a ring is not transitive.

If $J \triangleleft I \triangleleft A$, then J need not be an ideal in the ring A .

Each of J, I, A or each of the two quotients A/I or I/J may impact whether or not $J \triangleleft A$ holds.

Introduction

Relation of "being an ideal" in a ring is not transitive.

If $J \triangleleft I \triangleleft A$, then J need not be an ideal in the ring A .

Each of J, I, A or each of the two quotients A/I or I/J
may impact whether or not $J \triangleleft A$ holds.

For example:

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

- For a given ring A , for all rings J and I ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A$

$\Leftrightarrow A$ is a *filial* ring: $\forall a \in A, \langle a \rangle = \langle a \rangle^2 + \mathbb{Z}a$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

- For a given ring A , for all rings J and I ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A$

$\Leftrightarrow A$ is a *filial* ring: $\forall a \in A, \langle a \rangle = \langle a \rangle^2 + \mathbb{Z}a$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

- For a given ring A , for all rings J and I ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A$

$\Leftrightarrow A$ is a *filial* ring: $\forall a \in A, \langle a \rangle = \langle a \rangle^2 + \mathbb{Z}a$.

- For a given ring N , for all rings J , I and A ,

$J \triangleleft I \triangleleft A$ with $I/J \cong N$ implies $J \triangleleft A$

$\Leftrightarrow M_N := \{x \in N \mid NxN = 0\} = 0$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

- For a given ring A , for all rings J and I ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A$

$\Leftrightarrow A$ is a *filial* ring: $\forall a \in A, \langle a \rangle = \langle a \rangle^2 + \mathbb{Z}a$.

- For a given ring N , for all rings J, I and A ,

$J \triangleleft I \triangleleft A$ with $I/J \cong N$ implies $J \triangleleft A$

$\Leftrightarrow M_N := \{x \in N \mid NxN = 0\} = 0$.

Introduction

- For a given ring J , for all rings I and A ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A \Leftrightarrow J$ is *idempotent*: $J^2 = J$.

- For a given ring A , for all rings J and I ,

$J \triangleleft I \triangleleft A$ implies $J \triangleleft A$

$\Leftrightarrow A$ is a *filial* ring: $\forall a \in A, \langle a \rangle = \langle a \rangle^2 + \mathbb{Z}a$.

- For a given ring N , for all rings J , I and A ,

$J \triangleleft I \triangleleft A$ with $I/J \cong N$ implies $J \triangleleft A$

$\Leftrightarrow M_N := \{x \in N \mid NxN = 0\} = 0$.

A ring N fulfills condition (F) (or N is an F -ring) if:

$J \triangleleft I \triangleleft A$ with $I/J \cong N$ implies $J \triangleleft A$.

Nearrings

For rings we know exactly what it takes to be an F -ring.

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearring is $N = 0$.

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearring is $N = 0$.

In the subvariety of all zero-symmetric nearrings, still an open problem.

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearing is $N = 0$.

In the subvariety of all zero-symmetric nearrings, still an open problem.

Nearrings are right distributive.

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearing is $N = 0$.

In the subvariety of all zero-symmetric nearrings, still an open problem.

Nearrings are right distributive.

By right distributivity, $0a = 0$ for all $a \in N$,

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearing is $N = 0$.

In the subvariety of all zero-symmetric nearrings, still an open problem.

Nearrings are right distributive.

By right distributivity, $0a = 0$ for all $a \in N$,
but $a0$ need not be 0.

Nearrings

For rings we know exactly what it takes to be an F -ring.

What are the F -nearrings?

In the class of all nearrings, the only F -nearing is $N = 0$.

In the subvariety of all zero-symmetric nearrings, still an open problem.

Nearrings are right distributive.

By right distributivity, $0a = 0$ for all $a \in N$,
but $a0$ need not be 0.

If $a0 = 0$ for all $a \in N$, then N is called *zero-symmetric*.

In the sequel, all nearrings are zero-symmetric.

Condition (F) for nearrings

For rings: The following four conditions are equivalent:

(1) R is an F -ring.

(2) R has middle annihilator zero

that is, $M_R := \{x \in R \mid RxR = 0\} = 0$.

Condition (F) for nearrings

For rings: The following four conditions are equivalent:

- (1) R is an F -ring.
- (2) R has middle annihilator zero
that is, $M_R := \{x \in R \mid RxR = 0\} = 0$.
- (3) $(0 : R)_R = \{x \in R \mid xR = 0\} = 0$ and
 $(R : 0)_R = \{x \in R \mid Rx = 0\} = 0$.

Condition (F) for nearrings

For rings: The following four conditions are equivalent:

- (1) R is an F -ring.
- (2) R has middle annihilator zero
that is, $M_R := \{x \in R \mid RxR = 0\} = 0$.
- (3) $(0 : R)_R = \{x \in R \mid xR = 0\} = 0$ and
 $(R : 0)_R = \{x \in R \mid Rx = 0\} = 0$.
- (4) R is *quasi-semiprime*: for $x, y \in R$,
 $xr = yr$ for all $r \in R \Rightarrow x = y$ and
 $rx = ry$ for all $r \in R \Rightarrow x = y$.

Condition (F) for nearrings

For rings: The following four conditions are equivalent:

- (1) R is an F -ring.
- (2) R has middle annihilator zero
that is, $M_R := \{x \in R \mid RxR = 0\} = 0$.
- (3) $(0 : R)_R = \{x \in R \mid xR = 0\} = 0$ and
 $(R : 0)_R = \{x \in R \mid Rx = 0\} = 0$.
- (4) R is *quasi-semiprime*: for $x, y \in R$,
 $xr = yr$ for all $r \in R \Rightarrow x = y$ and
 $rx = ry$ for all $r \in R \Rightarrow x = y$.

Examples of F -**nearrings** are:

nearrings with identity, 2-primitive nearrings, equiprime nearrings, quasi-semiprime nearrings.

Condition (F) for nearrings

For rings: The following four conditions are equivalent:

- (1) R is an F -ring.
- (2) R has middle annihilator zero
that is, $M_R := \{x \in R \mid RxR = 0\} = 0$.
- (3) $(0 : R)_R = \{x \in R \mid xR = 0\} = 0$ and
 $(R : 0)_R = \{x \in R \mid Rx = 0\} = 0$.
- (4) R is *quasi-semiprime*: for $x, y \in R$,
 $xr = yr$ for all $r \in R \Rightarrow x = y$ and
 $rx = ry$ for all $r \in R \Rightarrow x = y$.

Examples of F -**nearrings** are:

nearrings with identity, 2-primitive nearrings, equiprime nearrings, quasi-semiprime nearrings.

There are F -nearnings that are not quasi-semiprime.

Condition (F) for nearrings

Theorem

If N is an F-nearring, then

$$(0 : N)_N := \{x \in N \mid xN = 0\} = 0. \quad [V, 1991]$$

Condition (F) for nearrings

Theorem

If N is an F-nearring, then

$$(0 : N)_N := \{x \in N \mid xN = 0\} = 0. \quad [V, 1991]$$

N satisfies the condition:

$$J \triangleleft I \triangleleft A \text{ and } I/J \cong N \text{ implies } J \triangleleft_r A \Leftrightarrow (0 : N)_N = 0.$$

Condition (F) for nearrings

Theorem

If N is an F-nearring, then

$$(0 : N)_N := \{x \in N \mid xN = 0\} = 0. \quad [V, 1991]$$

N satisfies the condition:

$$J \triangleleft I \triangleleft A \text{ and } I/J \cong N \text{ implies } J \triangleleft_r A \Leftrightarrow (0 : N)_N = 0.$$

The problem is: For $J \triangleleft I \triangleleft A$ and $I/J \cong N$, want an appropriate condition on N , necessary and sufficient, such that $J \triangleleft_I A$.

Condition (F) for nearrings

Theorem

If N is an F-nearring, then

$$(0 : N)_N := \{x \in N \mid xN = 0\} = 0. \quad [V, 1991]$$

N satisfies the condition:

$$J \triangleleft I \triangleleft A \text{ and } I/J \cong N \text{ implies } J \triangleleft_r A \Leftrightarrow (0 : N)_N = 0.$$

The problem is: For $J \triangleleft I \triangleleft A$ and $I/J \cong N$, want an appropriate condition on N , necessary and sufficient, such that $J \triangleleft_I A$.

Why is this a problem?

Condition (F) for nearrings

Let $J \triangleleft I \triangleleft A$ and $I/J \cong N$.

For $J \triangleleft_r A$ need $a + j - a \in J$ and $ja \in J$ $\forall a \in A, j \in J$.

Condition (F) for nearrings

Let $J \triangleleft I \triangleleft A$ and $I/J \cong N$.

For $J \triangleleft_r A$ need $a + j - a \in J$ and $ja \in J \quad \forall a \in A, j \in J$.

Multiply with $i \in I$ on the right, then

$$ai + ji - ai \in J \quad \text{and} \quad jai \in J.$$

Condition (F) for nearrings

Let $J \triangleleft I \triangleleft A$ and $I/J \cong N$.

For $J \triangleleft_r A$ need $a + j - a \in J$ and $ja \in J \quad \forall a \in A, j \in J$.

Multiply with $i \in I$ on the right, then

$$ai + ji - ai \in J \quad \text{and} \quad jai \in J.$$

Thus

$$a + j - a + J \in (0 : I/J)_{I/J} = (0 : N)_N \text{ and}$$

$$ja + J \in (0 : I/J)_{I/J} = (0 : N)_N.$$

Condition (F) for nearrings

Let $J \triangleleft I \triangleleft A$ and $I/J \cong N$.

For $J \triangleleft_r A$ need $a + j - a \in J$ and $ja \in J \quad \forall a \in A, j \in J$.

Multiply with $i \in I$ on the right, then

$$ai + ji - ai \in J \quad \text{and} \quad jai \in J.$$

Thus

$$a + j - a + J \in (0 : I/J)_{I/J} = (0 : N)_N \text{ and}$$

$$ja + J \in (0 : I/J)_{I/J} = (0 : N)_N.$$

So $(0 : I/J)_{I/J} = (0 : N)_N = 0$ gives $J \triangleleft_r A$.

Condition (F) for nearrings

Let $J \triangleleft I \triangleleft A$ and $I/J \cong N$.

For $J \triangleleft_r A$ need $a + j - a \in J$ and $ja \in J \quad \forall a \in A, j \in J$.

Multiply with $i \in I$ on the right, then

$$ai + ji - ai \in J \quad \text{and} \quad jai \in J.$$

Thus

$$a + j - a + J \in (0 : I/J)_{I/J} = (0 : N)_N \text{ and}$$

$$ja + J \in (0 : I/J)_{I/J} = (0 : N)_N.$$

So $(0 : I/J)_{I/J} = (0 : N)_N = 0$ gives $J \triangleleft_r A$.

Condition (F) for nearrings

For $J \triangleleft_I A$ need

$$a(i_0 + j) - ai_0 \in J \quad \forall a \in A, i_0 \in I, j \in J.$$

Condition (F) for nearrings

For $J \triangleleft_I A$ need

$$a(i_0 + j) - ai_0 \in J \quad \forall a \in A, i_0 \in I, j \in J.$$

Multiplication with $i \in I$ on the left is no good
(no left distributivity).

Condition (F) for nearrings

Kaarli (1992) defined a *K-nearring* N (or N has *property (K)*):

- For any N -subgroup X of $N \oplus N$ with $nx = ny$ for all $\forall(x, y) \in X, \forall n \in N$, necessarily $x = y$.

Condition (F) for nearrings

Kaarli (1992) defined a *K-nearring* N (or N has *property (K)*):

- For any N -subgroup X of $N \oplus N$ with $nx = ny$ for all $\forall(x, y) \in X, \forall n \in N$, necessarily $x = y$.
- $(0 : N)_N = 0$.

Condition (F) for nearrings

Kaarli (1992) defined a *K-nearring* N (or N has *property (K)*):

- For any N -subgroup X of $N \oplus N$ with $nx = ny$ for all $\forall(x, y) \in X, \forall n \in N$, necessarily $x = y$.
- $(0 : N)_N = 0$.

Every *K*-nearing is an *F*-nearing.

Condition (F) for nearrings

Kaarli (1992) defined a *K-nearring* N (or N has *property (K)*):

- For any N -subgroup X of $N \oplus N$ with $nx = ny$ for all $\forall (x, y) \in X, \forall n \in N$, necessarily $x = y$.
- $(0 : N)_N = 0$.

Every *K*-nearing is an *F*-nearing.

All known *F*-narrings are *K*-narrings.

True in general?

Condition (F) for nearrings

Kaarli (1992) defined a *K-nearring* N (or N has *property (K)*):

- For any N -subgroup X of $N \oplus N$ with $nx = ny$ for all $\forall(x, y) \in X, \forall n \in N$, necessarily $x = y$.
- $(0 : N)_N = 0$.

Every *K*-nearing is an *F*-nearing.

All known *F*-narrings are *K*-narrings.

True in general?

For rings it is: N is a *K*-ring \Leftrightarrow N is an *F*-ring.

Right and middle annihilators for nearrings

Left annihilator $(0 : N)_N = \{x \in N \mid xN = 0\}$ of a nearring N is an ideal of N and it is a well-established and useful notion.

Right and middle annihilators for nearrings

Left annihilator $(0 : N)_N = \{x \in N \mid xN = 0\}$ of a nearring N is an ideal of N and it is a well-established and useful notion.

Not so for right and middle annihilators:

$$\{x \in N \mid Nx = 0\} \quad \text{and} \quad \{x \in N \mid NxN = 0\}.$$

No particular nice structural properties for nearrings.

Right and middle annihilators for nearrings

Left annihilator $(0 : N)_N = \{x \in N \mid xN = 0\}$ of a nearring N is an ideal of N and it is a well-established and useful notion.

Not so for right and middle annihilators:

$$\{x \in N \mid Nx = 0\} \quad \text{and} \quad \{x \in N \mid NxN = 0\}.$$

No particular nice structural properties for nearrings.

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;
- $NR_N = 0$;

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;
- $NR_N = 0$;
- $\forall I \triangleleft_I N \text{ with } a(b + i) = ab \ \forall i \in I, a, b \in N$,
we have $I \subseteq R_N$;

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;
- $NR_N = 0$;
- $\forall I \triangleleft_I N \text{ with } a(b + i) = ab \ \forall i \in I, a, b \in N$,
we have $I \subseteq R_N$;
- If N is a K -nearring, then $R_N = 0$.

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;
- $NR_N = 0$;
- $\forall I \triangleleft_I N \text{ with } a(b + i) = ab \ \forall i \in I, a, b \in N$,
we have $I \subseteq R_N$;
- If N is a K -nearing, then $R_N = 0$.

Although not an ideal, R_N could be called the *right annihilator* of N .

Right and middle annihilators for nearrings

Let $R_N := \{x \in N \mid a(b + x + d) = a(b + d) \text{ for all } a, b, d \in N\}$.

Then:

- $R_N \triangleleft_I N$;
- $NR_N = 0$;
- $\forall I \triangleleft_I N \text{ with } a(b + i) = ab \ \forall i \in I, a, b \in N$,
we have $I \subseteq R_N$;
- If N is a K -nearring, then $R_N = 0$.

Although not an ideal, R_N could be called the *right annihilator* of N .

There are nearrings N with $R_N = 0 = (0 : N)_N$, but N is not an F -nearring.

Right and middle annihilators for nearrings

M_N *middle annihilator* of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Right and middle annihilators for nearrings

M_N middle annihilator of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Then:

- $M_N \triangleleft N$;

Right and middle annihilators for nearrings

M_N middle annihilator of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Then:

- $M_N \triangleleft N$;
- $NM_N N = 0$;

Right and middle annihilators for nearrings

M_N middle annihilator of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Then:

- $M_N \triangleleft N$;
- $NM_N N = 0$;
- M_N contains all ideals $I \triangleleft N$ for which $a(b + ic) = ab \ \forall a, b, c \in N, i \in I$;

Right and middle annihilators for nearrings

M_N middle annihilator of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Then:

- $M_N \triangleleft N$;
- $NM_N N = 0$;
- M_N contains all ideals $I \triangleleft N$ for which $a(b + ic) = ab \ \forall a, b, c \in N, i \in I$;
- If N is a K -nearing, then $M_N = 0$.

Right and middle annihilators for nearrings

M_N middle annihilator of the nearring N :

$$M_N := \{x \in N \mid a(b + xc + d) = a(b + d) \ \forall a, b, c, d \in N\}.$$

Then:

- $M_N \triangleleft N$;
- $N M_N N = 0$;
- M_N contains all ideals $I \triangleleft N$ for which $a(b + ic) = ab \ \forall a, b, c \in N, i \in I$;
- If N is a K -nearing, then $M_N = 0$.

There are nearrings N with $M_N = 0$, but N is not an F -nearing.

Examples

Trivial nearrings.

Let $(T, +)$ be any group, not necessarily commutative, and let S be a subset of T with $0 \in S$.

Examples

Trivial nearrings.

Let $(T, +)$ be any group, not necessarily commutative, and let S be a subset of T with $0 \in S$.

The multiplication defined by:

$$ab = \begin{cases} a & \text{if } b \notin S \\ 0 & \text{if } b \in S \end{cases}$$

gives a zero-symmetric nearring $(T, +, \cdot)$.

Examples

Trivial nearrings.

Let $(T, +)$ be any group, not necessarily commutative, and let S be a subset of T with $0 \in S$.

The multiplication defined by:

$$ab = \begin{cases} a & \text{if } b \notin S \\ 0 & \text{if } b \in S \end{cases}$$

gives a zero-symmetric nearring $(T, +, \cdot)$.

If $S = T$, then $ab = 0$ for all $a, b \in T$;

Examples

Trivial nearrings.

Let $(T, +)$ be any group, not necessarily commutative, and let S be a subset of T with $0 \in S$.

The multiplication defined by:

$$ab = \begin{cases} a & \text{if } b \notin S \\ 0 & \text{if } b \in S \end{cases}$$

gives a zero-symmetric nearring $(T, +, \cdot)$.

If $S = T$, then $ab = 0$ for all $a, b \in T$;
suppose thus $0 \in S \subsetneq T$.

Examples

Trivial nearrings.

For this nearring T , we know $(0 : T)_T = M_T = R_T = 0$, but it need not be an F -nearing.

Examples

Trivial nearrings.

For this nearring T , we know $(0 : T)_T = M_T = R_T = 0$, but it need not be an F -nearing.

Theorem

The following four conditions are equivalent for the nearring T :

- (1) T is an F -nearing.
- (2) T is a K -nearing.
- (3) T is 2-primitive.
- (4) The subset S of T contains no nonzero subgroups of T .

Examples

Transformation nearrings.

Let $(G, +)$ be a group, $0 \in S \subseteq G$.

Examples

Transformation nearrings.

Let $(G, +)$ be a group, $0 \in S \subseteq G$.

Then $N := \{ \text{ functions } f : G \rightarrow G \mid f(x) = 0 \text{ for all } x \in S \}$ is a zero-symmetric nearring.

Examples

Transformation nearrings.

Let $(G, +)$ be a group, $0 \in S \subseteq G$.

Then $N := \{ \text{ functions } f : G \rightarrow G \mid f(x) = 0 \text{ for all } x \in S \}$ is a zero-symmetric nearring.

When $S = \{0\}$, then $N = M_0(G)$ which is a nearring with identity; hence a K -nearing and of no further interest.

Suppose thus S has at least two distinct elements.

Examples

Transformation nearrings.

Let $(G, +)$ be a group, $0 \in S \subseteq G$.

Then $N := \{ \text{ functions } f : G \rightarrow G \mid f(x) = 0 \text{ for all } x \in S \}$ is a zero-symmetric nearring.

When $S = \{0\}$, then $N = M_0(G)$ which is a nearring with identity; hence a K -nearing and of no further interest.

Suppose thus S has at least two distinct elements.

The other extreme is when $S = G$. Then $N = \{0\}$ and also of no interest.

Examples

Transformation nearrings.

Let $(G, +)$ be a group, $0 \in S \subseteq G$.

Then $N := \{ \text{functions } f : G \rightarrow G \mid f(x) = 0 \text{ for all } x \in S \}$ is a zero-symmetric nearring.

When $S = \{0\}$, then $N = M_0(G)$ which is a nearring with identity; hence a K -nearing and of no further interest.

Suppose thus S has at least two distinct elements.

The other extreme is when $S = G$. Then $N = \{0\}$ and also of no interest.

If $S = G \setminus \{a\}$ for some fixed $0 \neq a \in G$, then N is a trivial nearring in the sense of the previous example and thus also of no further interest.

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

For this nearring N , we know $(0 : N)_N = M_N = R_N = 0$.

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

For this nearring N , we know $(0 : N)_N = M_N = R_N = 0$.

Theorem

For the nearring N the following implications are valid:

N is a K -nearing.

\Leftrightarrow *N is 2-primitive.*

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

For this nearring N , we know $(0 : N)_N = M_N = R_N = 0$.

Theorem

For the nearring N the following implications are valid:

N is a K -nearing.

\Leftrightarrow *N is 2-primitive.*

\Leftrightarrow *N fulfills: $\forall N\text{-subgroups } H \text{ of } N, NH = 0 \Rightarrow H = 0$.*

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

For this nearring N , we know $(0 : N)_N = M_N = R_N = 0$.

Theorem

For the nearring N the following implications are valid:

N is a K -nearing.

\Leftrightarrow *N is 2-primitive.*

\Leftrightarrow *N fulfills: $\forall N\text{-subgroups } H \text{ of } N, NH = 0 \Rightarrow H = 0$.*

\Leftrightarrow *The subset S of G contains no non-zero subgroups of G .*

Examples

Transformation nearrings.

Suppose thus $0 \in S \subseteq G$ with both S and $G \setminus S$ having at least two distinct elements.

For this nearring N , we know $(0 : N)_N = M_N = R_N = 0$.

Theorem

For the nearring N the following implications are valid:

N is a K -nearing.

$\Leftrightarrow N$ is 2-primitive.

$\Leftrightarrow N$ fulfills: $\forall N\text{-subgroups } H \text{ of } N, NH = 0 \Rightarrow H = 0$.

\Leftrightarrow The subset S of G contains no non-zero subgroups of G .

$\Rightarrow N$ is an F -nearing.

References

- [1] Kalle Kaarli. On ideal transitivity in near-rings. *Contributions to General Algebra 8*. Verlag Hölder-Pichler-Tempsky, Wien 1992, 81-89.
- [2] Kalle Kaarli. Radicals in near-rings. *Tartu Riikl. Ül. Toimedised* **390** (1976), 134-171 (in Russian).
- [3] A.D. Sands. On ideals in over-rings, *Publ. Math. Debrecen* **35** (1988), 273-279.
- [4] Stefan Veldsman. An overnilpotent radical theory for near-rings, *J. Algebra* **144** (1991), 248-265.
- [5] Stefan Veldsman. On ideals and extensions of near-rings. *Publ. Math. Debrecen* **41**(1992), 13-22.

References

- [6] Stefan Veldsman. The general radical theory of near-rings - answers to some open problems, *Algebra Universalis* **36** (1996), 185-189.
- [7] Stefan Veldsman. On the salient properties of near-ring radicals, *Nearrings, Nearfields and K-Loops* (Proc. Conf. Near-rings and Near-fields, Hamburg 1995), Editors G. Saad and M.J. Thomsen, Kluwer Academic Press, Dordrecht, 1997, 437-444.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

(K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

- (K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.
- (K_2) Every almost trivial internal N -isomorphism of N is trivial.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

- (K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.
- (K_2) Every almost trivial internal N -isomorphism of N is trivial.
- (K_3) $(0 : N)_N = 0$.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

- (K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.
- (K_2) Every almost trivial internal N -isomorphism of N is trivial.
- (K_3) $(0 : N)_N = 0$.

An *internal N -isomorphism* of N is a mapping $\gamma : H_1 \rightarrow H_2$ where H_1 and H_2 are N -subgroups of N and γ is an N -isomorphism.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

- (K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.
- (K_2) Every almost trivial internal N -isomorphism of N is trivial.
- (K_3) $(0 : N)_N = 0$.

An *internal N -isomorphism* of N is a mapping $\gamma : H_1 \rightarrow H_2$ where H_1 and H_2 are N -subgroups of N and γ is an N -isomorphism.

γ is called *almost trivial* if the restriction of γ to NH_1 is the identity map.

Condition (F) for nearrings

Characterization of K -narrings:

Theorem (Kaarli, 1992) A nearring N is a K -nearing if and only if the following three conditions are fulfilled:

- (K_1) For any N -subgroup H of N , $NH = 0$ implies $H = 0$.
- (K_2) Every almost trivial internal N -isomorphism of N is trivial.
- (K_3) $(0 : N)_N = 0$.

An *internal N -isomorphism* of N is a mapping $\gamma : H_1 \rightarrow H_2$ where H_1 and H_2 are N -subgroups of N and γ is an N -isomorphism.

γ is called *almost trivial* if the restriction of γ to NH_1 is the identity map.

γ is said to be *trivial* if γ is the identity map on H_1 .