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Introduction

e For a given ring J, for all rings | and A,

J <11 < Aimplies J<A < Jis idempotent: J> = J.

e For a given ring A, for all rings J and /,

J <l <1 Aimplies J<A
& Als a filial ring: Ya € A, (a) = (a)? + Za.

e For a given ring N, for all rings J,/ and A,
J<al < Awith I/J 2= N implies J< A
& My :={xe N|NxN=0}=0.

A ring N fulfills condition (F) (or N is an F-ring) if:
J<al <A with I/J = N implies J<A.
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Nearrings
For rings we know exactly what it takes to be an F-ring.
What are the F-nearrings?
In the class of all nearrings, the only F-nearring is N = 0.

In the subvariety of all zero-symmetric nearrings, still an open
problem.

Nearrings are right distributive.
By right distributivity, 0a=0forallaec N,
but a0 need not be 0.

If a0 = 0 for all a € N, then N is called zero-symmetric.
In the sequel, all nearrings are zero-symmetric.
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nearrings with identity, 2-primitive nearrings, equiprime

nearrings, quasi-semiprime nearrings.

There are F-nearrings that are not quasi-semiprime.
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Theorem

If N is an F-nearring, then
(0:N)y:={xe N|xN=0}=0. [V,1991]

N satisfies the condition:
J<l<tAand 1/J = N implies J<1, A< (0: N)y = 0.

The problem is: For J<<lI<tAand I/J = N, want an
appropriate condition on N, necessary and sufficient, such that

J <A

Why is this a problem?
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Condition (F) for nearrings

For J <, A need
a(iop+j) —aip € J VacAigel,jeJ

Multiplication with 7 € I on the left is no good
(no left distributivity).
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Kaarli (1992) defined a K-nearring N (or N has property (K)):

° For any N-subgroup X of N & N with nx = ny for all
V(x,y) € X,Vn € N, necessarily x = y.

o (0:N)y =0.
Every K-nearring is an F-nearring.

All known F-nearrings are K-nearrings.
True in general?

For rings it is: N is a K-ring & N is an F-ring.
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Let Ry :={x € N|a(b+x+d) =a(b+d) forall a,b,d € N}.
Then:
° RN ] N;
[ ] NRN = 0;
° VI <, N with a(b+i)=abViel,a,be N,
we have | C Ry;
° If Nis a K-nearring, then Ry = 0.

Although not an ideal, Ry could be called the right annihilator of
N.

There are nearrings N with Ry =0 = (0: N)y, but N is not an
F-nearring.
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Then:
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° NMyN = 0;

° My contains all ideals / < N for which
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There are nearrings N with My = 0, but N is not an F-nearring.
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Trivial nearrings.

Let (T, +) be any group, not necessarily commutative, and let S
be a subset of T with 0 € S.

The multiplication defined by:

b— aifbg S
PTV 0ifbes

gives a zero-symmetric nearring (T, +, ).

If S=T,thenab=0foralla,be T;
suppose thus 0 € S & T.
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Examples

Trivial nearrings.

For this nearring T, we know (0: T)7 = My = Ry =0, but it
need not be an F-nearring.

Theorem

The following four conditions are equivalent for the nearring T :
(1) T is an F-nearring.

(2) T is a K-nearring.

(3) T is 2-primitive.

(4) The subset S of T contains no nonzero subgroups of T.
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Examples

Transformation nearrings.

Let (G,+) beagroup, 0€SCG.

Then N := { functions f : G — G | f(x) =0 forall x € S} isa
zero-symmetric nearring.

When S = {0}, then N = My(G) which is a nearring with
identitity; hence a K-nearring and of no further interest.
Suppose thus S has at least two distinct elements.

The other extreme is when S = G. Then N = {0} and also of no
interest.

If S= G\ {a} for some fixed 0 # a € G, then N is a trivial
nearring in the sense of the previous example and thus also of no
further interest.
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Examples

Transformation nearrings.

Suppose thus 0 € S C G with both S and G\ S having at least
two distinct elements.

For this nearring N, we know (0: N)y = My = Ry = 0.

Theorem

For the nearring N the following implications are valid:

N is a K-nearring.

& N is 2-primitive.

< N fulfills: VN-subgroups H of N, NH=0= H = 0.
& The subset S of G contains no non-zero subgroups of G.
= N is an F-nearring.
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Characterization of K-nearrings:

Theorem (Kaarli, 1992) A nearring N is a K-nearring if and only
if the following three conditions are fulfilled:

(K1) For any N-subgroup H of N, NH = 0 implies H = 0.

(K2) Every almost trivial internal N-isomorphism of N is trivial.
(K3) (0 N N)N =0.

An internal N-isomorphism of N is a mapping v: Hi — H»
where H; and H; are N-subgroups of N and 7 is an
N-isomorphism.

v is called almost trivial if the restriction of 7 to NH; is the
identity map.

v is said to be trivial if 7y is the identity map on Hj.



