

# Strictly $n$ -finite Varieties of Heyting algebras

Davide Emilio Quadrellaro

InDam (Istituto Nazionale di Alta Matematica)  
&  
University of Turin

Wien, Austria  
February 7, 2026

## Local Finiteness

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

- *Boolean algebras* are locally finite, and generated by  $2 = \{0, 1\}$ .

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

- ▶ *Boolean algebras* are locally finite, and generated by  $2 = \{0, 1\}$ .
- ▶ *Monoids with idempotent generators*  $\langle (s_i)_{i < \omega} \mid s_i^2 = 1 \rangle$ .

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

- ▶ *Boolean algebras* are locally finite, and generated by  $2 = \{0, 1\}$ .
- ▶ *Monoids with idempotent generators*  $\langle (s_i)_{i < \omega} \mid s_i^2 = 1 \rangle$ .
- ▶ *Coxeter groups* on infinitely many generators

$$G = \langle (s_i)_{i < \omega} \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

for  $m_{ij} = 1$  when  $i = j$ ,  $m_{ij} \in [2, \infty]$  otherwise, and such that the restriction on finitely many letters is *spherical*.

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

- ▶ Boolean algebras are locally finite, and generated by  $2 = \{0, 1\}$ .
- ▶ Monoids with idempotent generators  $\langle (s_i)_{i < \omega} \mid s_i^2 = 1 \rangle$ .
- ▶ Coxeter groups on infinitely many generators

$$G = \langle (s_i)_{i < \omega} \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

for  $m_{ij} = 1$  when  $i = j$ ,  $m_{ij} \in [2, \infty]$  otherwise, and such that the restriction on finitely many letters is *spherical*.

### Definition

A **Heyting algebra**  $(H, \wedge, \vee, \rightarrow, 0, 1)$  is a bounded distributive lattice with a binary operation  $\rightarrow$  such that, for every  $a, b, c \in H$ :

$$a \wedge b \leq c \iff a \leq b \rightarrow c.$$

## Local Finiteness

### Definition

A variety of algebras  $V$  is said to be **locally finite** if every finitely generated algebra  $A \in V$  is finite.

- ▶ Boolean algebras are locally finite, and generated by  $2 = \{0, 1\}$ .
- ▶ Monoids with idempotent generators  $\langle (s_i)_{i < \omega} \mid s_i^2 = 1 \rangle$ .
- ▶ Coxeter groups on infinitely many generators

$$G = \langle (s_i)_{i < \omega} \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

for  $m_{ij} = 1$  when  $i = j$ ,  $m_{ij} \in [2, \infty]$  otherwise, and such that the restriction on finitely many letters is *spherical*.

### Definition

A **Heyting algebra**  $(H, \wedge, \vee, \rightarrow, 0, 1)$  is a bounded distributive lattice with a binary operation  $\rightarrow$  such that, for every  $a, b, c \in H$ :

$$a \wedge b \leq c \iff a \leq b \rightarrow c.$$

- ▶ Crucially: Heyting algebras are *not locally finite*.

## Why do we Care?

In **universal algebra**, local finiteness makes it simple to study a specific variety of algebras.

## Why do we Care?

In **universal algebra**, local finiteness makes it simple to study a specific variety of algebras.

- ▶ **Carl & Kraus:** *a locally finite variety  $V$  whose finite algebras are congruence-uniform is congruence-permutable.*

## Why do we Care?

In **universal algebra**, local finiteness makes it simple to study a specific variety of algebras.

- ▶ **Carl & Kraus:** a *locally finite variety  $V$  whose finite algebras are congruence-uniform is congruence-permutable.*
- ▶ **Quackenbush:** a *locally finite variety  $V$  with finitely many finite subdirectly irreducible members has no infinite subdirectly irreducible algebra.*

## Why do we Care?

In **universal algebra**, local finiteness makes it simple to study a specific variety of algebras.

- ▶ **Carl & Kraus:** *a locally finite variety  $V$  whose finite algebras are congruence-uniform is congruence-permutable.*
- ▶ **Quackenbush:** *a locally finite variety  $V$  with finitely many finite subdirectly irreducible members has no infinite subdirectly irreducible algebra.*
- ▶ **McKinsey and Valeriote:** *full characterisation of the locally finite varieties with a decidable equational theory.*

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

### Definition

A propositional logic  $L$  is **(locally) tabular**, if its consequence relation  $\vdash_L$  (over finitely-many variables) is fully characterized in terms of finitely-many truthvalues.

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

### Definition

A propositional logic  $L$  is **(locally) tabular**, if its consequence relation  $\vdash_L$  (over finitely-many variables) is fully characterized in terms of finitely-many truthvalues.

The classical propositional calculus CPC is clearly described by logical matrices over  $\{0, 1\}$ .

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

### Definition

A propositional logic  $L$  is **(locally) tabular**, if its consequence relation  $\vdash_L$  (over finitely-many variables) is fully characterized in terms of finitely-many truthvalues.

The classical propositional calculus CPC is clearly described by logical matrices over  $\{0, 1\}$ . *But what about other logics?*

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

### Definition

A propositional logic  $L$  is **(locally) tabular**, if its consequence relation  $\vdash_L$  (over finitely-many variables) is fully characterized in terms of finitely-many truthvalues.

The classical propositional calculus CPC is clearly described by logical matrices over  $\{0, 1\}$ . *But what about other logics?*

### Theorem (Gödel, 1932)

*The propositional intuitionistic calculus IPC does not admit a characterisation in terms of finite logical matrices.*

## Why do we Care?

In **logic**, local finiteness relates (via the so-called *algebraizability* of a logic) to the local tabularity of its associated propositional logic.

### Definition

A propositional logic  $L$  is **(locally) tabular**, if its consequence relation  $\vdash_L$  (over finitely-many variables) is fully characterized in terms of finitely-many truthvalues.

The classical propositional calculus CPC is clearly described by logical matrices over  $\{0, 1\}$ . *But what about other logics?*

### Theorem (Gödel, 1932)

*The propositional intuitionistic calculus IPC does not admit a characterisation in terms of finite logical matrices.*

In algebraic terms, the theorem above means that the *variety of Heyting algebras is not finitely-generated*.

## Rieger-Nishimura Lattice

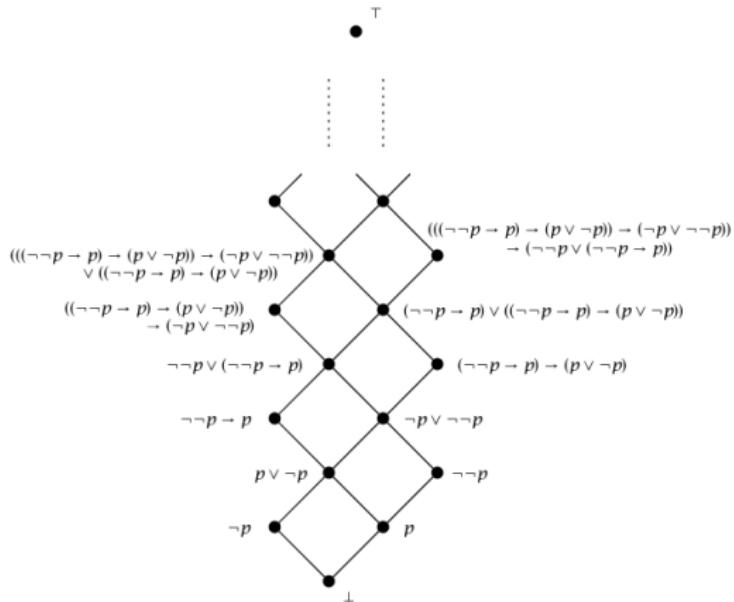
What is perhaps even more surprising than Gödel's result, is that **even over one propositional letter**, IPC cannot be captured by logical matrices.

## Rieger-Nishimura Lattice

What is perhaps even more surprising than Gödel's result, is that **even over one propositional letter**, IPC cannot be captured by logical matrices. This follows by the characterisation by Rieger and Nishimura of the **free Heyting algebra on one generator**.

## Rieger-Nishimura Lattice

What is perhaps even more surprising than Gödel's result, is that **even over one propositional letter**, IPC cannot be captured by logical matrices. This follows by the characterisation by Rieger and Nishimura of the **free Heyting algebra on one generator**.



- ▶ CPC is tabular, as BA is finitely generated.

- ▶ CPC is tabular, as BA is finitely generated.
- ▶ IPC is not locally tabular, as  $F_{\text{HA}}(1)$  is infinite.

- ▶ CPC is tabular, as BA is finitely generated.
- ▶ IPC is not locally tabular, as  $F_{\text{HA}}(1)$  is infinite.

But what can we say about logics in-between IPC and CPC?

- ▶ CPC is tabular, as BA is finitely generated.
- ▶ IPC is not locally tabular, as  $F_{\text{HA}}(1)$  is infinite.

But what can we say about logics in-between IPC and CPC?

Alternatively, what can we say about varieties between HA and BA?

- ▶ CPC is tabular, as BA is finitely generated.
- ▶ IPC is not locally tabular, as  $F_{\text{HA}}(1)$  is infinite.

But what can we say about logics in-between IPC and CPC?

Alternatively, what can we say about varieties between HA and BA?

## Definition

An **intermediate logic** is a set of formulas  $L$  such that  $\text{IPC} \subseteq L \subseteq \text{CPC}$ , and such that  $L$  is closed under modus ponens and uniform substitution.

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of determining when local finiteness holds is especially hard.

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of determining when local finiteness holds is especially hard.

### Problem (Maksimova)

*Is there an algorithm that decides, for any subvariety of Heyting algebra, whether it is locally finite?*

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of determining when local finiteness holds is especially hard.

### Problem (Maksimova)

*Is there an algorithm that decides, for any subvariety of Heyting algebra, whether it is locally finite?*

This is known to have a solution *above the logic S4*.

## Maksimova Problem

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of determining when local finiteness holds is especially hard.

### Problem (Maksimova)

*Is there an algorithm that decides, for any subvariety of Heyting algebra, whether it is locally finite?*

This is known to have a solution *above the logic S4*.

### Theorem (Blok, Maksimova)

*Let  $V$  be a variety of S4-algebras, then  $V$  is locally finite iff  $\text{Grz.3} \not\subseteq V$ .*

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of determining when local finiteness holds is especially hard.

### Problem (Maksimova)

*Is there an algorithm that decides, for any subvariety of Heyting algebra, whether it is locally finite?*

This is known to have a solution *above the logic S4*.

### Theorem (Blok, Maksimova)

*Let  $V$  be a variety of S4-algebras, then  $V$  is locally finite iff  $\text{Grz.3} \not\subseteq V$ .*

However, in its general form, Maksimova's problem is **still open**.

## Locally Finite Heyting Algebras

In order to solve Maksimova's question, one would have to obtain a better understanding of locally finite varieties of Heyting algebras.

## Locally Finite Heyting Algebras

In order to solve Maksimova's question, one would have to obtain a better understanding of locally finite varieties of Heyting algebras.

### Theorem (Bezhanishvili-Grigolia)

*Let  $V$  be a variety of Heyting algebras, then the following conditions are equivalent:*

- (i)  $V$  is locally finite.
- (ii) The  $V$ -coproduct of any two finite  $V$ -algebras is finite.
- (iii) Finite  $V$ -copowers of finite  $V$ -algebras are finite.
- (iv) Either  $V = BA$  or finite  $V$ -copowers of  $3 \in V$  are finite (where  $3$  refers to the three-element chain).

## Locally Finite Heyting Algebras

In order to solve Maksimova's question, one would have to obtain a better understanding of locally finite varieties of Heyting algebras.

### Theorem (Bezhanishvili-Grigolia)

Let  $V$  be a variety of Heyting algebras, then the following conditions are equivalent:

- (i)  $V$  is locally finite.
- (ii) The  $V$ -coproduct of any two finite  $V$ -algebras is finite.
- (iii) Finite  $V$ -copowers of finite  $V$ -algebras are finite.
- (iv) Either  $V = BA$  or finite  $V$ -copowers of  $3 \in V$  are finite (where  $3$  refers to the three-element chain).

Crucially, the conditions above **are not effective**. To improve this result, Bezhanishvili and Grigolia suggested the following problem:

# Locally Finite Heyting Algebras

In order to solve Maksimova's question, one would have to obtain a better understanding of locally finite varieties of Heyting algebras.

## Theorem (Bezhanishvili-Grigolia)

Let  $V$  be a variety of Heyting algebras, then the following conditions are equivalent:

- (i)  $V$  is locally finite.
- (ii) The  $V$ -coproduct of any two finite  $V$ -algebras is finite.
- (iii) Finite  $V$ -copowers of finite  $V$ -algebras are finite.
- (iv) Either  $V = BA$  or finite  $V$ -copowers of  $3 \in V$  are finite (where  $3$  refers to the three-element chain).

Crucially, the conditions above **are not effective**. To improve this result, Bezhanishvili and Grigolia suggested the following problem:

## Problem (Bezhanishvili-Grigolia)

Let  $V$  be a variety of Heyting algebras which is not locally finite, does it follow that the  $V$ -free algebra on two generators is infinite?

## Width 2 Case

Suppose one restricts attention to **Heyting algebras with width 2**.

## Width 2 Case

Suppose one restricts attention to **Heyting algebras with width 2**.

### Definition

A variety of Heyting algebras has **width**  $\leq n$  if it is generated by algebras whose prime spectra (*i.e.*, their **dual Esakia spaces**) have no antichain of  $n + 1$  elements with a common lower bound.

Suppose one restricts attention to **Heyting algebras with width 2**.

### Definition

A variety of Heyting algebras has **width**  $\leq n$  if it is generated by algebras whose prime spectra (*i.e.*, their **dual Esakia spaces**) have no antichain of  $n+1$  elements with a common lower bound.

In this case, the Bezhanishvili-Grigolia problem admits an **affirmative answer**.

## Width 2 Case

Suppose one restricts attention to **Heyting algebras with width 2**.

### Definition

A variety of Heyting algebras has **width**  $\leq n$  if it is generated by algebras whose prime spectra (*i.e.*, their **dual Esakia spaces**) have no antichain of  $n+1$  elements with a common lower bound.

In this case, the Bezhanishvili-Grigolia problem admits an **affirmative answer**.

### Theorem (Benjamins)

*If  $V$  is a variety of Heyting algebras with width 2, then it is locally finite if and only if its 2-generated subalgebras are finite.*

## Our Contribution

## Our Contribution

Theorem (Hyttinen-Q., Martins-Moraschini)

*For each  $n < \omega$ , there exists a variety of Heyting algebras  $V_n$  such that:*

## Our Contribution

Theorem (Hyttinen-Q., Martins-Moraschini)

*For each  $n < \omega$ , there exists a variety of Heyting algebras  $V_n$  such that:*

- (i) *the  $n$ -generated algebras are finite;*

## Our Contribution

### Theorem (Hyttinen-Q., Martins-Moraschini)

*For each  $n < \omega$ , there exists a variety of Heyting algebras  $V_n$  such that:*

- (i) *the  $n$ -generated algebras are finite;*
- (ii)  *$V_n$  contains an infinite  $(n + 1)$ -generated algebra.*

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

$$x \sim_0^G y \iff \forall g \in G (x \in g \iff y \in g);$$

$$x \sim_{n+1}^G y \iff \forall z \geq x \exists v \geq y (z \sim_n^G v) \wedge \forall v \geq y \exists z \geq x (z \sim_n^G v)$$

$$\sim_\omega^G = \bigcap_{n \in \omega} \sim_n^G.$$

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

$$x \sim_0^G y \iff \forall g \in G (x \in g \iff y \in g);$$

$$x \sim_{n+1}^G y \iff \forall z \geq x \exists v \geq y (z \sim_n^G v) \wedge \forall v \geq y \exists z \geq x (z \sim_n^G v)$$

$$\sim_\omega^G = \bigcap_{n \in \omega} \sim_n^G.$$

An element  $x \in X$  is  **$G$ -isolated** if  $x \sim_\omega^G y$  entails  $x = y$ .

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

$$x \sim_0^G y \iff \forall g \in G (x \in g \iff y \in g);$$

$$x \sim_{n+1}^G y \iff \forall z \geq x \exists v \geq y (z \sim_n^G v) \wedge \forall v \geq y \exists z \geq x (z \sim_n^G v)$$

$$\sim_\omega^G = \bigcap_{n \in \omega} \sim_n^G.$$

An element  $x \in X$  is  **$G$ -isolated** if  $x \sim_\omega^G y$  entails  $x = y$ . The poset  $X$  is  **$G$ -coloured** if every  $x \in X$  is  $G$ -isolated.

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

$$\begin{aligned}x \sim_0^G y &\iff \forall g \in G (x \in g \iff y \in g); \\x \sim_{n+1}^G y &\iff \forall z \geq x \exists v \geq y (z \sim_n^G v) \wedge \forall v \geq y \exists z \geq x (z \sim_n^G v) \\ \sim_\omega^G &= \bigcap_{n \in \omega} \sim_n^G.\end{aligned}$$

An element  $x \in X$  is  **$G$ -isolated** if  $x \sim_\omega^G y$  entails  $x = y$ . The poset  $X$  is  **$G$ -coloured** if every  $x \in X$  is  $G$ -isolated.

### Theorem (Coloring Theorem)

Let  $X$  be an Esakia space,  $X^*$  its dual Heyting algebra, and  $G \subseteq X^*$  finite. Then:

## Proof technique

- ▶ **Esakia duality**: every Heyting algebra is isomorphism to the clopen upset algebra of its dual Esakia space, the space of its prime filters ordered by reverse inclusion.
- ▶ We use **colourings**, which are essentially **back-and-forth systems** between Esakia spaces.

### Definition

Let  $X$  be a poset and  $G \subseteq \text{Up}(X)$ . For every  $n < \omega$  we define:

$$\begin{aligned}x \sim_0^G y &\iff \forall g \in G (x \in g \iff y \in g); \\x \sim_{n+1}^G y &\iff \forall z \geq x \exists v \geq y (z \sim_n^G v) \wedge \forall v \geq y \exists z \geq x (z \sim_n^G v) \\ \sim_\omega^G &= \bigcap_{n \in \omega} \sim_n^G.\end{aligned}$$

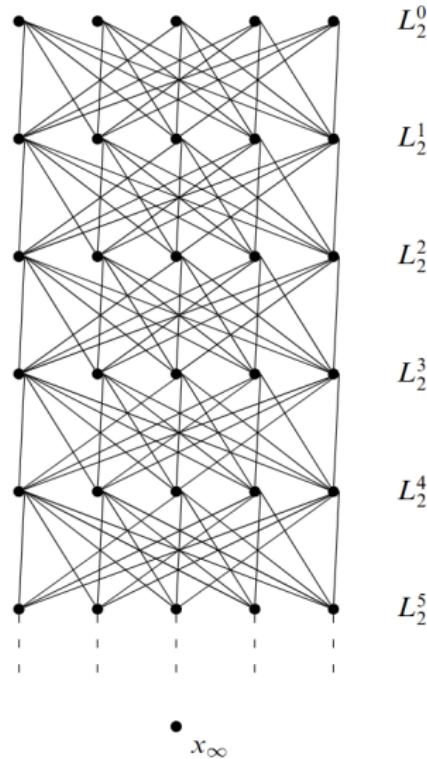
An element  $x \in X$  is  **$G$ -isolated** if  $x \sim_\omega^G y$  entails  $x = y$ . The poset  $X$  is  **$G$ -coloured** if every  $x \in X$  is  $G$ -isolated.

### Theorem (Coloring Theorem)

Let  $X$  be an Esakia space,  $X^*$  its dual Heyting algebra, and  $G \subseteq X^*$  finite. Then:

$$X^* = \langle G \rangle \iff X \text{ is } G\text{-coloured.}$$

# The Esakia space $X_2$



## References

- T. Hyttinen, M. Martins, T. Moraschini, D.E. Quadrellaro. *Strictly  $n$ -finite varieties of Heyting algebras*, Journal of Symbolic Logic, 2024.

## References

- ▶ T. Hyttinen, M. Martins, T. Moraschini, D.E. Quadrellaro. *Strictly  $n$ -finite varieties of Heyting algebras*, Journal of Symbolic Logic, 2024.
- ▶ K. Gödel. *Zum intuitionistischen aussagenkalkül*. Anzeiger der Akademie der Wissenschaften in Wien, 69:65–66, 1932.
- ▶ T. Benjamins. *Locally finite varieties of Heyting algebras of width 2*. University of Amsterdam, 2020.
- ▶ G. Bezhanishvili and R. Grigolia. *Locally finite varieties of Heyting algebras*. Algebra Universalis 54.4, 2005, pp. 465–473.
- ▶ L. Maksimova. *Modal logics of finite layers*. Algebra i logika 14.3, 1975, pp. 304–319.
- ▶ I. Nishimura. *On formulas of one variable in intuitionistic propositional calculus*. The Journal of Symbolic Logic, 25:327–331, 1960.
- ▶ L. Rieger. *On the lattice theory of Brouwerian propositional logic*. Acta Fac. Nat. Univ. Carol., Prague, 1949(189):40, 1949.

## References

- ▶ T. Hyttinen, M. Martins, T. Moraschini, D.E. Quadrellaro. *Strictly  $n$ -finite varieties of Heyting algebras*, Journal of Symbolic Logic, 2024.
- ▶ K. Gödel. *Zum intuitionistischen aussagenkalkül*. Anzeiger der Akademie der Wissenschaften in Wien, 69:65–66, 1932.
- ▶ T. Benjamins. *Locally finite varieties of Heyting algebras of width 2*. University of Amsterdam, 2020.
- ▶ G. Bezhanishvili and R. Grigolia. *Locally finite varieties of Heyting algebras*. Algebra Universalis 54.4, 2005, pp. 465–473.
- ▶ L. Maksimova. *Modal logics of finite layers*. Algebra i logika 14.3, 1975, pp. 304–319.
- ▶ I. Nishimura. *On formulas of one variable in intuitionistic propositional calculus*. The Journal of Symbolic Logic, 25:327–331, 1960.
- ▶ L. Rieger. *On the lattice theory of Brouwerian propositional logic*. Acta Fac. Nat. Univ. Carol., Prague, 1949(189):40, 1949.

**Thank you for your attention!**