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Local Finiteness

Definition
A variety of algebras V is said to be locally finite if every finitely generated
algebra A ∈ V is finite.

▶ Boolean algebras are locally finite, and generated by 2 = {0, 1}.
▶ Monoids with idempotent generators ⟨(si )i<ω | s2i = 1⟩.
▶ Coxeter groups on infinitely many generators

G = ⟨(si )i<ω | (si sj)mij = 1⟩

for mij = 1 when i = j , mij ∈ [2,∞] otherwise, and such that the
restriction on finitely many letters is spherical.

Definition
A Heyting algebra (H,∧,∨,→, 0, 1) is a bounded distributive lattice with a
binary operation → such that, for every a, b, c ∈ H:

a ∧ b ⩽ c ⇐⇒ a ⩽ b → c.

▶ Crucially: Heyting algebras are not locally finite.
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Why do we Care?

In universal algebra, local finiteness makes it simple to study a specific variety
of algebras.

▶ Carl & Kraus: a locally finite variety V whose finite algebras are
congruence-uniform is congruence-permutable.

▶ Quackenbush: a locally finite variety V with finitely many finite
subdirectly irreducible members has no infinite subdirectly irreducible
algebra.

▶ McKinsey and Valeriote: full characterisation of the locally finite
varieties with a decidable equational theory.
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Why do we Care?

In logic, local finiteness relates (via the so-called algebraizability of a logic) to
the local tabularity of its associated propositional logic.

Definition
A propositional logic L is (locally) tabular, if its consequence relation ⊢L (over
finitely-many variables) is fully characterized in terms of finitely-many
truthvalues.

The classical propositional calculus CPC is clearly described by logical matrices
over {0, 1}. But what about other logics?

Theorem (Gödel, 1932)

The propositional intuitionistic calculus IPC does not admit a characterisation
in terms of finite logical matrices.

In algebraic terms, the theorem above means that the variety of Heyting
algebras is not finitely-generated.
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Rieger-Nishimura Lattice

What is perhaps even more surprising than Gödel’s result, is that even over
one propositional letter, IPC cannot be captured by logical matrices.

This
follows by the characterisation by Rieger and Nishimura of the free Heyting
algebra on one generator.

5 / 13



Rieger-Nishimura Lattice

What is perhaps even more surprising than Gödel’s result, is that even over
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Intermediate Logics

▶ CPC is tabular, as BA is finitely generated.

▶ IPC is not locally tabular, as FHA(1) is infinite.

But what can we say about logics in-between IPC and CPC?

Alternatively, what can we say about varieties between HA and BA?

Definition
An intermediate logic is a set of formulas L such that IPC ⊆ L ⊆ CPC, and
such that L is closed under modus ponens and uniform substitution.
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Maksimova Problem

It turns out, that over arbitrary subvarieties of Heyting algebras the problem of
determining when local finiteness holds is especially hard.

Problem (Maksimova)

Is there an algorithm that decides, for any subvariety of Heyting algebra,
whether it is locally finite?

This is known to have a solution above the logic S4.

Theorem (Blok, Maksimova)

Let V be a variety of S4-algebras, then V is locally finite iff Grz.3 ⊈ V .

However, in its general form, Maksimova’s problem is still open.
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Locally Finite Heyting Algebras

In order to solve Maksimova’s question, one would have to obtain a better
understanding of locally finite varieties of Heyting algebras.

Theorem (Bezhanishvili-Grigolia)

Let V be a variety of Heyting algebras, then the following conditions are
equivalent:

(i) V is locally finite.

(ii) The V-coproduct of any two finite V-algebras is finite.

(iii) Finite V-copowers of finite V-algebras are finite.

(iv) Either V = BA or finite V-copowers of 3 ∈ V are finite (where 3 refers to
the three-element chain).

Crucially, the conditions above are not effective. To improve this result,
Bezhanishvili and Grigolia suggested the following problem:

Problem (Bezhanishvili-Grigolia)

Let V be a variety of Heyting algebras which is not locally finite, does it follow
that the V-free algebra on two generators is infinite?
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Width 2 Case

Suppose one restricts attention to Heyting algebras with width 2.

Definition
A variety of Heyting algebras has width ⩽ n if it is generated by algebras
whose prime spectra (i.e., their dual Esakia spaces) have no antichain of n+1
elements with a common lower bound.

In this case, the Bezhanishvili-Grigolia problem admits an affirmative answer.

Theorem (Benjamins)

If V is a variety of Heyting algebras with width 2, then it is locally finite if and
only if its 2-generated subalgebras are finite.
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Our Contribution

Theorem (Hyttinen-Q., Martins-Moraschini)

For each n < ω, there exists a variety of Heyting algebras Vn such that:

(i) the n-generated algebras are finite;

(ii) Vn contains an infinite (n + 1)-generated algebra.
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Proof technique
▶ Esakia duality: every Heyting algebra is isomorphism to the clopen upset

algebra of its dual Esakia space, the space of its prime filters ordered by
reverse inclusion.

▶ We use colourings, which are essentially back-and-forth systems between
Esakia spaces.

Definition
Let X be a poset and G ⊆ Up(X ). For every n < ω we define:

x∼G
0 y ⇐⇒ ∀g ∈ G (x ∈ g ⇐⇒ y ∈ g);

x∼G
n+1y ⇐⇒ ∀z ⩾ x ∃v ⩾ y (z∼G

n v) ∧ ∀v ⩾ y ∃z ⩾ x (z∼G
n v)

∼G
ω =

⋂
n∈ω

∼G
n .

An element x ∈ X is G -isolated if x∼G
ωy entails x = y . The poset X is

G -coloured if every x ∈ X is G -isolated.

Theorem (Coloring Theorem)

Let X be an Esakia space, X ∗ its dual Heyting algebra, and G ⊆ X ∗ finite.
Then:

X ∗ = ⟨G⟩ ⇐⇒ X is G-coloured.
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