

Factorizations of non-commutative polynomials

Phạm Ngọc Ánh

HUN-REN Rényi Institute

AAA 108 Vienna, February 6 – 8, 2026

A **free algebra** is a free monoid or group algebra of rank ≥ 2 .
(Non-commutative) polynomials: elements of a free algebra.

Cohn [2]: Free ideal ring (fir) \iff one-sided ideals are free of unique rank; its elements have irreducible factorizations. Free algebras are firs.

Aims: Find irreducible factorizations; uniqueness, algorithm?

Tools: link (=Sato) modules, lattices and localizations.

Cohn's example

$$\begin{aligned} xyzyx + xyz + zyx + xyx + x + z &= (xyz + x + z)(yx + 1) = \\ &= (xy+1)(zyx+x+z) \end{aligned}$$

Notation

commutative
polynomials

Phạm Ngọc
Ánh

1. K a commutative ring, mainly a field or a pid.
2. The free monoid (non-commutative polynomial) algebra

$$A = K\langle x_1, \dots, x_n \rangle = K\langle t_1, \dots, t_n \rangle; t_i = x_i + 1$$

3. F_n the free group of rank n on t_i ; $\Lambda = KF_n, R \in \{A, \Lambda\}$.
4. The non-commutative power series algebra

$$\Gamma = K\langle\langle x_1, \dots, x_n \rangle\rangle; \epsilon: \Gamma \rightarrow K: x_i \mapsto 0.$$

R an augmented algebra via $\epsilon = \epsilon|_R: R \rightarrow K$; the augmentation ideal $I = \ker \epsilon$ is free of rank n .

$$\Lambda = K\langle t_1, \dots, t_n; y_1, \dots, y_n \rangle / \langle t_i y_i - y_i t_i, 1 - t_i y_i \rangle \implies$$

$$t_i^{-1} = y_i = 1 - x_i + x_i^2 - x_i^3 + \dots + (-1)^l x_i^l + \dots \in \Gamma.$$

Polynomials in one variable

commutative
polynomials

Phạm Ngọc
Ánh

$0 \neq f \in K[x] = A \implies f = x^l \bar{f} \quad \& \quad \bar{f}(0) \neq 0$; / the order of f .
A canonical bijection between irreducible factorizations of f and
composition chains of $\text{coker } f = A/Af$. One can assume
 $f(0) \neq 0$.

Division algorithm for a polynomial $f = 1 + xf_x$

f defines an action on A by $x * 1 = -f_x$ and $x * x^l = x^{l-1}$ for $l \geq 1$. This action denoted by ∂ acts like either a generalized inverse or a generalized derivation. Division by f can be carried out by using $*$ -action successively. This yields an algorithm to obtain the remainder and the quotient in finitely many steps.

Fox derivations and localizations

The free algebra $R \in \{\Lambda, A\}$ don't determine uniquely free generating sets. Normal forms depend on a choice of x_i .

$$f \in \Gamma \implies f - f(0) = \sum_i x_i f_i$$

$f_i = \partial_i f$: i -th *partial generalized derivation* or *canonical Fox derivation* of f .

The Fox algebra $L(R)$ is the localization of R universally inverting a row (x_1, \dots, x_n) whose entries generate freely $I = \ker \epsilon$, respectively.

Warning. The Fox algebra $L(\Lambda)$ of Λ is a combination of two localizations, namely, universally inverting a set $\{t_i = x_i + 1\}$ and a row (x_1, \dots, x_n) of A .

The Fox algebra $L(R)$

R^* : the subalgebra of R generated by entries of the inverse column of (x_1, \dots, x_n) . A^* is generated by $\partial_1, \dots, \partial_n$ but $R^* = \Lambda^*$ is generated by $\partial_1, \dots, \partial_n; t_1\partial_1, \dots, t_n\partial_n$ by

$$f - f(0) = \sum_i x_i f_i = \sum_i (t_i - 1) f_i = - \sum_i (t_i^{-1} - 1) t_i f_i.$$

The Fox algebra is an appropriate algebraic structure for a study of generalized integrals, i.e., a multiplication by the x_i together with generalized derivations, i.e., a multiplication by the $\partial_i, t_i\partial_i$.

An obvious application. One can define Fox derivations on $K[x_1, \dots, x_n]$ making it an injective hull of the field K .

The Fox algebra and polynomials

commutative
polynomials

Phạm Ngọc
Ánh

A polynomial $f \in R \in \{A, \Lambda\}$ is *comonic* if $\epsilon(f) = f(0) = 1$.

Theorem 1

If $f \in R$ is comonic, then the R -module $\text{coker } f = R/Rf$ becomes naturally an $L(R)$ -module .

More generally

Theorem 2

If $\phi = (f_{ij})$ is a square matrix of arbitrary size over R with $(f_{ij}(0)) = 1$, then $\text{coker } \phi$ becomes naturally a module over the Fox algebra $L(R)$.

$R \in \{A, \Lambda\}$; $\epsilon: R \rightarrow K$; $I = \ker \epsilon \implies$ a free resolution

$$0 \rightarrow {}^n R \xrightarrow{(x_1 \cdots x_n)} R \xrightarrow{\epsilon} K \rightarrow 0: (x_1 \cdots x_n) \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \sum_{i=1}^n x_i r_i$$

Definition 3

${}_R M$ weak link (Sato) module if $\text{Tor}_*^R(K, M) = 0$, or equivalently, $\exists M^n \cong M$ such that

$$(1) \quad (m_1, \dots, m_n) \in M^n \longmapsto \sum_{i=1}^n x_i m_i = m \in M.$$

If ${}_R M$ is finitely presented, then M Sato module.

$m \mapsto m_i$ defines Fox derivations on M .

Theorem 4

Let K be a field. Then link modules are precisely modules described in Theorem 2. Moreover, as modules over the Fox algebra $L(R)$ link modules are finitely presented of finite length.

Definition 5

A lattice of a link module M is a finitely generated K -submodule N which is an R^* -module and $M = RN$ holds.

Theorem 6

Every finitely presented link module of finite length has a smallest finite-dimensional lattice if K is a field.

Factorizations of polynomials

commutative
polynomials

Phạm Ngọc
Ánh

$R \in \{A, \Lambda = KF_n\}$ has rank n ; K a field.

Theorem 7

For any two arbitrary polynomials $\gamma, \lambda \in R$ there is a uniquely determined comonic polynomial $\delta \in R$, called, a greatest common divisor of γ, λ by the property that δ is a generator of the left ideal of $L(R)$ generated by γ and λ , that is,
$$L(R)\gamma + L(R)\lambda = L(R)\delta$$

Theorem 8

Let $\pi \in R$ be a comonic polynomial which is not a unit. Then π is irreducible iff the link module $\text{coker}\pi = R/R\pi$ is a simple $L(R)$ -module iff the smallest lattice of $\text{coker}\pi$ is a finite-dimensional simple R^* -module.

The main result

Theorem 9

$\alpha \in R$ non-unital comonic; N the smallest finite-dimensional R^* -lattice of $\text{coker } \alpha = M$. Any irreducible factorization $\alpha = \rho_1 \cdot \rho_I$ corresponds to a composition chain of R^* -module N and $L(R)$ -module M , respectively. Namely,

$$0 \subseteq \frac{R\rho_2 \cdots \rho_I}{R\alpha} \subseteq \frac{R\rho_3 \cdots \rho_I}{R\alpha} \subseteq \cdots \subseteq \frac{R\rho_I}{R\alpha} \subseteq \frac{R}{R\alpha}$$

is a composition chain of M . The simple subfactor $\frac{R\rho_{j-1} \cdots \rho_I}{R\rho_j \cdots \rho_I}$ or $\text{coker } \rho_I$ determines ρ_j or ρ_I , respectively, only up to the similarity.

$a, b \in R$ similar \iff left (right) modules $R/Ra, R/Rb (R/aR, R/bR)$ isomorphic.

The idea and some difficulties of the proof

A has a degree function ensuring irreducible factorizations.
 Λ has only an order function no degree function.
An order function is not suitable to studying factorizations.
 Λ has a length function suitable to studying factorizations.
A length function reduces the process by quite slowly.

Basic references

commutative
polynomials

Phạm Ngọc
Ánh

- G. Abrams, P. Ara, M. Siles Molina, *Leavitt path algebras*, Lecture Notes in Mathematics **2191**, Springer 2018.
- P. N. Ánh, Link modules, localizations and factorizations, arXiv: 2510.03429
- P. N. Ánh, F. Mantese, Non-commutative factorizations and finite-dimensional representations of free algebras, arXiv:2403.1783
- P.N. Ánh, M. Siddoway, Module types of localizations, with applications to leavitt path algebras, *Israel J. Math.* (2025, 1 – 35; DOI: 10.1007/s11856-025-2819-x
- P. M. Cohn, *An Introduction to Ring Theory*, Springer 2000.

Basic references

commutative
polynomials

Phạm Ngọc
Ánh

- W. G. Leavitt, The module type of a ring, *Trans. Amer. Math. Soc.* **103**(1)(1962), 113 – 130.
- A. Rosenmann, S. Rosset, Ideals of finite codimension in free algebras and the fc-localization, *Pacific J. Math.* **162**(2)(1994), 351 - 371.

Thank you for your attention

commutative
polynomials

Phạm Ngọc
Ánh

Thank you for your attention!