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Aims and tools

A free algebra is a free monoid or group algebra of rank ≥ 2.
(Non-commutative) polynomials: elements of a free algebra.

Cohn [2]: Free ideal ring (fir) ⇐⇒ one-sided ideals are free of
unique rank; its elements have irreducible factorizations. Free
algebras are firs.

Aims: Find irreducible factorizations; uniqueness, algorithm?

Tools: link (=Sato) modules, lattices and localizations.

Cohn’s example

xyzyx + xyz + zyx + xyx + x + z = (xyz + x + z)(yx + 1) =

=(xy+1)(zyx+x+z)
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Notation

1. K a commutative ring, mainly a field or a pid.

2. The free monoid (non-commutative polynomial) algebra

A = K 〈x1, . . . , xn〉 = K 〈t1, . . . , tn〉; ti = xi + 1

3. Fn the free group of rank n on ti ; Λ = KFn,R ∈ {A,Λ}.

4. The non-commutative power series algebra

Γ = K 〈〈x1, . . . xn〉〉; ε : Γ→ K : xi 7→ 0.

R an augmented algebra via ε = ε|R : R → K ; the augmentation
ideal I = ker ε is free of rank n.

Λ = K 〈t1, . . . , tn; y1, . . . , yn〉/〈tiyi − yi ti , 1− tiyi 〉 =⇒

t−1
i = yi = 1− xi + x2

i − x3
i + · · ·+ (−1)lx l

i + · · · ∈ Γ.
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Polynomials in one variable

0 6= f ∈ K [x ] = A =⇒ f = x l f̄ & f̄ (0) 6= 0; l the order of f .
A canonical bijection between irreducible factorizations of f and
composition chains of coker f = A/Af . One can assume
f (0) 6= 0.

Division algorithm for a polynomial f = 1 + xfx

f defines an action on A by x ∗ 1 = −fx and x ∗ x l = x l−1 for
l ≥ 1. This action denoted by ∂ acts like either a generalized
inverse or a generalized derivation. Division by f can be carried
out by using ∗-action successively. This yields an algorithm to
obtain the remainder and the quotient in finitely many steps.
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Fox derivations and localizations

The free algebra R ∈ {Λ,A} don’t determine uniquely free
generating sets. Normal forms depend on a choice of xi .

f ∈ Γ =⇒ f − f (0) =
∑

i

xi fi

fi = ∂i f : i-th partial generalized derivation or canonical Fox
derivation of f .

The Fox algebra L(R) is the localization of R universally
inverting a row (x1, . . . , xn) whose entries generate freely I =
ker ε, respectively.

Warning. The Fox algebra L(Λ) of Λ is a combination of two
localizations, namely, universally inverting a set {ti = xi + 1}
and a row (x1, . . . , xn) of A.
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The Fox algebra L(R)

R∗: the subalgebra of R generated by entries of the inverse
column of (x1, . . . , xn). A∗ is generated by ∂1, . . . , ∂n but
R∗ = Λ∗ is generated by ∂1, . . . , ∂n; t1∂1, . . . , tn∂n by

f − f (0) =
∑

i

xi fi =
∑

i

(ti − 1)fi = −
∑

i

(t−1
i − 1)ti fi .

The Fox algebra is an appropriate algebraic structure for a study
of generalized integrals, i.e., a multiplication by the xi together
with generalized derivations, i.e., a multiplication by the ∂i , ti∂i .

An obvious application. One can define Fox derivations on
K [x1, . . . , xn] making it an injective hull of the field K .
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The Fox algebra and polynomials

A polynomial f ∈ R ∈ {A,Λ} is comonic if ε(f ) = f (0) = 1.

Theorem 1
If f ∈ R is comonic, then the R-module coker f = R/Rf
becomes naturally an L(R)-module .

More generally

Theorem 2

If φ = (fij) is a square matrix of arbitrary size over R with
(fij(0)) = 1, then coker φ becomes naturally a module over the
Fox algebra L(R).
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Link modules

R ∈ {A,Λ}; ε : R → K ; I = ker ε =⇒ a free resolution

0→ nR

(
x1 · · · xn

)
−−−−−−−→ R ε−→ K → 0 : (x1 · · · xn)

r1
...
rn

 =
n∑

i=1

xi ri

Definition 3

RM weak link (Sato) module if TorR∗ (K ,M) = 0, or
equivalently, ∃Mn ∼= M such that

(m1, · · · ,mn) ∈ Mn 7−→
n∑

i=1

ximi = m ∈ M.(1)

If RM is finitely presented, then M Sato module.
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Link modules and lattices

m 7→ mi defines Fox derivations on M.

Theorem 4
Let K be a field. Then link modules are precisely modules
described in Theorem 2. Moreover, as modules over the Fox
algebra L(R) link modules are finitely presented of finite length.

Definition 5
A lattice of a link module M is a finitely generated
K -submodule N which is an R∗-module and M = RN holds .

Theorem 6
Every finitely presented link module of finite length has a
smallest finite-dimensional lattice if K is a field.
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Factorizations of polynomials

R ∈ {A,Λ = KFn} has rank n; K a field.

Theorem 7
For any two arbitrary polynomials γ, λ ∈ R there is a uniquely
determined comonic polynomial δ ∈ R, called, a greatest
common divisor of γ, λ by the property that δ is a generator of
the left ideal of L(R) generated by γ and λ, that is,
L(R)γ + L(R)λ = L(R)δ

Theorem 8
Let π ∈ R be a comonic polynomial which is not a unit. Then
π is irreducible iff the link module cokerπ = R/Rπ is a simple
L(R)-module iff the smallest lattice of coker π is a
finite-dimensional simple R∗-module.
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Factorizations of polynomials

The main result

Theorem 9
α ∈ R non-unital comonic; N the smallest finite-dimensional
R∗-lattice of cokerα = M. Any rrreducible factorization
α = ρ1 · ρl corresponds to a composition chain of R∗-module
N and L(R)-module M, respectively. Namely,

0 ⊆ Rρ2 · · · ρl

Rα
⊆ Rρ3 · · · ρl

Rα
⊆ · · · ⊆ Rρl

Rα
⊆ R

Rα

is a composition chain of M. The simple subfactor Rρj−1···ρl
Rρj ···ρl

or coker ρl determines ρj or ρl , respectively, only up to the
similarity.

a, b ∈ R similar ⇐⇒ left (right) modules
R/Ra,R/Rb (R/aR,R/bR) isomorphic.
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The idea and some difficulties of the proof

A has a degree function ensuring irreducible factorizations.
Λ has only an order function no degree function.
An order function is not suitable to studying factorizations.
Λ has a length function suitable to studying factorizations.
A length function reduces the process by quite slowly.
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Thank you for your attention

Thank you for your attention!
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