

EDGE-COLORING PROBLEMS
WITH FORBIDDEN PATTERNS AND
PLANTED COLORS

JOINT WORK WITH

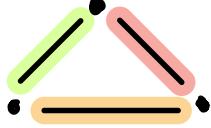
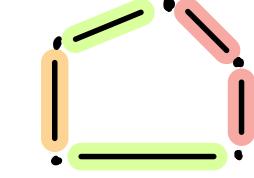
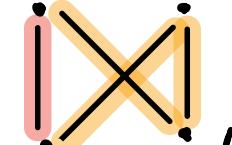
ALEXEY BARSUKOV, ANTOINE MOTTE,

DAVIDE PERINTI

INTRODUCTION

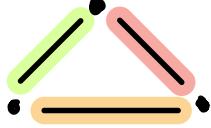
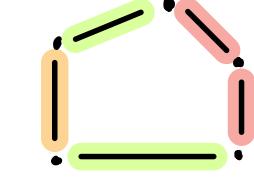
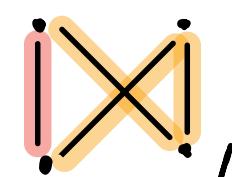
INTRODUCTION - EDGE COLORING PROBLEM

Fix a set of colors = { }

Fix \mathcal{F} = {  ,  ,  , ... }

INTRODUCTION - EDGE COLORING PROBLEM

Fix a set of colors = { }

Fix \mathcal{F} = {  ,  ,  , ... }

INPUT: A GRAPH G

INTRODUCTION - EDGE COLORING PROBLEM

Fix a set of colors = $\{\text{red}, \text{green}, \text{orange}\}$

Fix $F = \{\text{triangle, pentagon, complete graph with 4 vertices, ...}\}$

INPUT: A GRAPH G

TASK: $\exists \xi : E(G) \rightarrow \text{colors}$ such that

$\forall (F, \chi) \in F \quad (F, \chi) \rightarrow (G, \xi) ?$

HOMOMORPHISM

INTRODUCTION - EDGE COLORING PROBLEM

FIX A SET OF COLORS = $\{\text{red}, \text{green}, \text{blue}\}$

Fix $\mathcal{F} = \{ \text{triangle}, \text{pentagon}, \text{hexagon}, \dots \}$

INPUT: A GRAPH G

TASK: $\exists \xi : E(G) \rightarrow \text{colors}$ SUCH THAT

$\forall (F, \chi) \in \mathcal{F} \quad (F, \chi) \xrightarrow{\text{HOMOMORPHISM}} (G, \xi) ?$

WE INDICATE SUCH PROBLEM $\text{Col}(\mathcal{F})$

INTRODUCTION - EDGE COLORING PROBLEM

EXAMPLE

$$F = \left\{ \begin{array}{c} \text{triangle with edges:} \\ \text{top edge: green, left edge: green, bottom edge: green} \\ \text{triangle with edges:} \\ \text{top edge: red, left edge: red, bottom edge: red} \end{array} \right\}$$

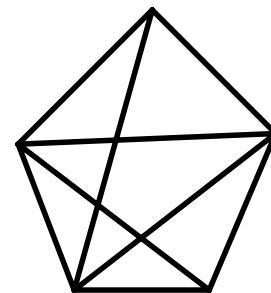
INTRODUCTION - EDGE COLORING PROBLEM

EXAMPLE

$$F = \{ \text{triangle with green edges}, \text{triangle with red edges} \}$$

INPUT:

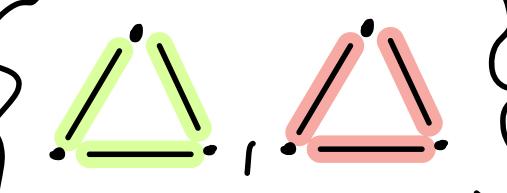
$$G_1 :=$$



?

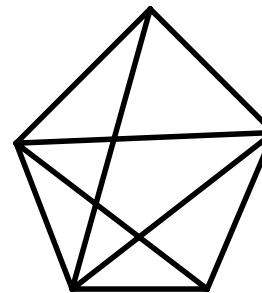
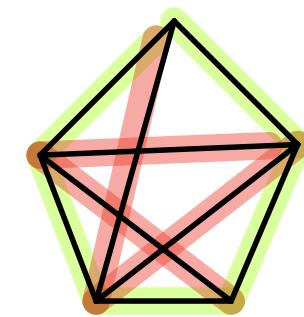
INTRODUCTION - EDGE COLORING PROBLEM

EXAMPLE

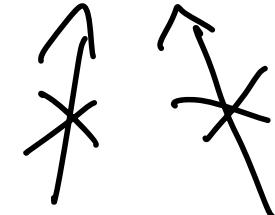
$$F = \{ \text{triangle}_1, \text{triangle}_2 \}$$


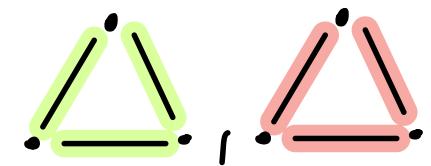
INPUT:

$$G_1 :=$$



YES



$$\text{triangle}_1, \text{triangle}_2$$


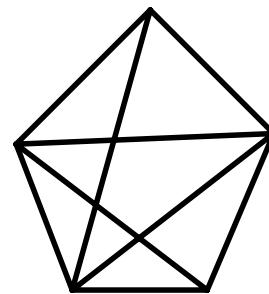
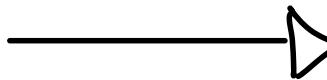
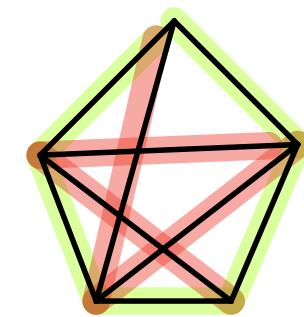
INTRODUCTION - EDGE COLORING PROBLEM

EXAMPLE

$$F = \{ \text{ (green triangle), (red triangle)} \}$$

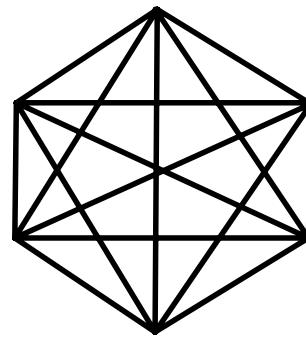
INPUT:

$$G_1 :=$$



YES

$$K_6 =$$



?

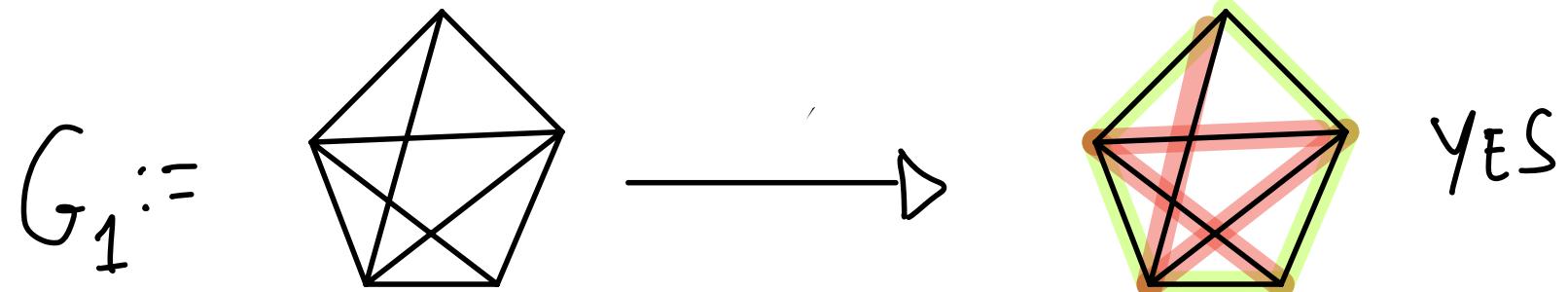
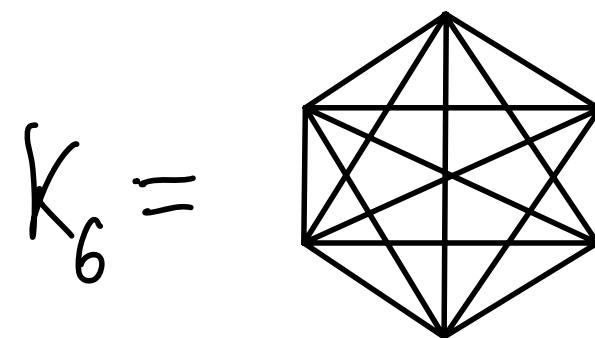
INTRODUCTION - EDGE COLORING PROBLEM

EXAMPLE

$$F = \{ \text{triangle with green edges}, \text{triangle with red edges} \}$$

THIS PROBLEM
IS NP-HARD

INPUT:



NO: THE
RAMSEY NUMBER
OF (3,3) IS 6

OVERVIEW

BIG GOAL:

UNDERSTAND THE COMPLEXITY OF $\text{Col}(\tilde{F})$ FOR ALL \tilde{F}

MAIN QUEST:

- PRESENT A STRATEGY INSPIRED BY THE ONE THAT CHARACTERIZED VERTEX COLORING PROBLEMS
- UNDERSTAND ON WHAT IT NEEDS TO WORK

SIDE QUEST:

- CAN IT SOLVE

$$\tilde{F} = \left\{ \begin{array}{c} \text{triangle} \\ \text{triangle} \\ \text{square} \end{array} \right\} ?$$

OVERVIEW

PART I : THE STRATEGY

* PRESENT THE STRATEGY

* WHAT DOES IT RELY ON?

PART II: WHEN DOES THE STRATEGY WORK?

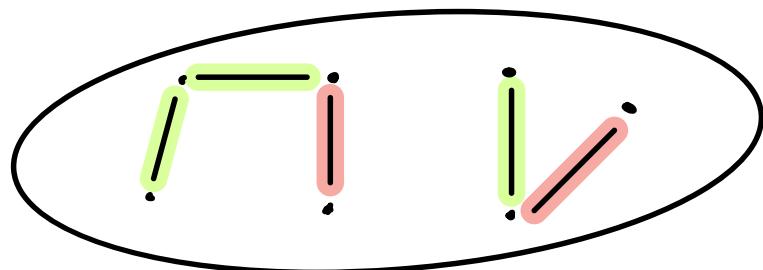
* PRESENT A CLASS OF PROBLEM WHERE IT DOES NOT WORK

* PRESENT A CLASS OF PROBLEM WHERE IT DOES WORK

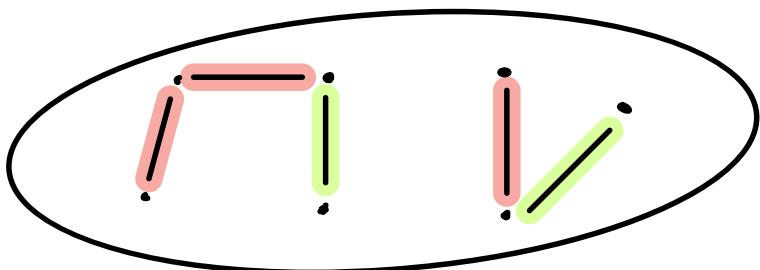
CONVENTIONS

1 USUALLY TWO colors { , }

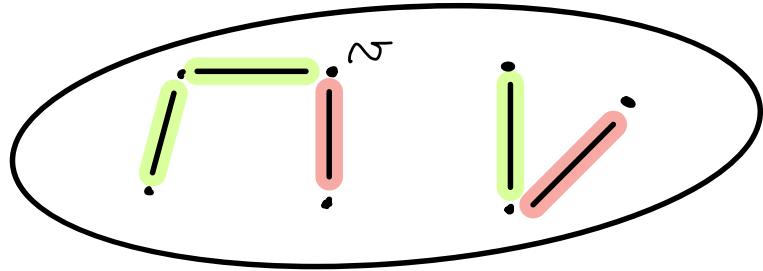
2. FLIPPING



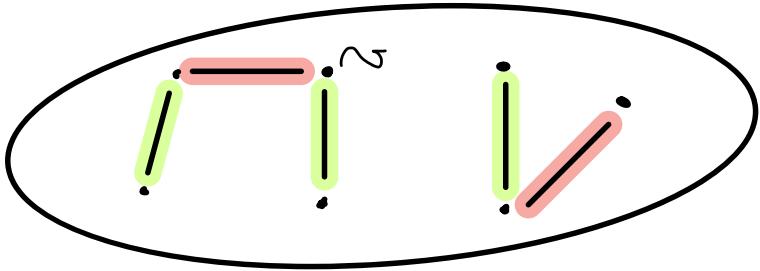
~~~>



3. LOCAL FLIPPING ON A VERTEX  $n$



~~~>



INTRODUCTION - EXTENSION PROBLEM

Fix a set of colors = $\{\bullet, \bullet, \bullet\}$

Fix $F = \{\bullet, \bullet, \bullet\}$

INPUT: A PARTIALLY COLORED GRAPH (G, α)

TASK: $\exists \xi : E(G) \rightarrow \text{colors}$ SUCH THAT

* ξ EXTENDS α AND

* $\forall (F, \chi) \in F \quad (F, \chi) \xrightarrow{\text{HOMOMORPHISM}} (G, \xi)$?

WE INDICATE SUCH PROBLEM $\text{Ext}(F)$

INTRODUCTION - EXTENSION PROBLEM

EXAMPLE

$$\tilde{F} = \left\{ \begin{array}{c} \text{green triangle} \\ \text{red triangle} \end{array} \right\}$$

INPUT:

$$(G, \alpha = \emptyset) := \begin{array}{c} \text{pentagon with diagonals} \\ \text{?} \end{array}$$

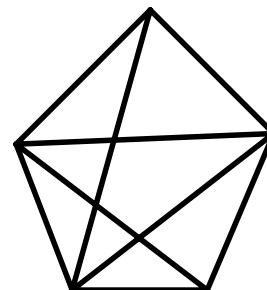
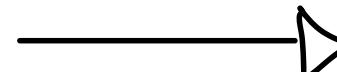
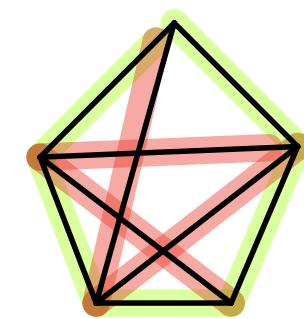
INTRODUCTION - EXTENSION PROBLEM

EXAMPLE

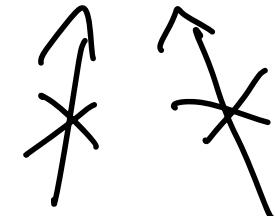
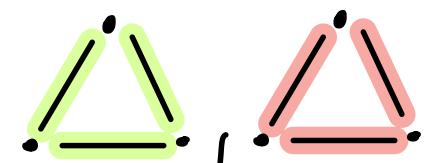
$$F = \{ \text{[green triangle]}, \text{[red triangle]} \}$$

INPUT:

$$(G, \alpha = \emptyset) :=$$



YES



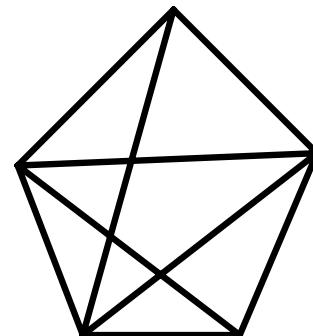
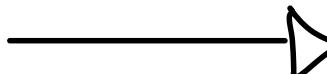
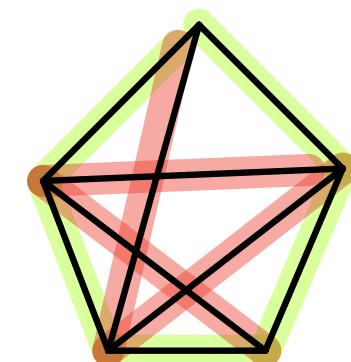
INTRODUCTION - EXTENSION PROBLEM

EXAMPLE

$$F = \{ \text{[green triangle]}, \text{[red triangle]} \}$$

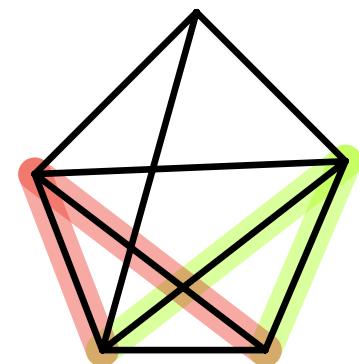
INPUT:

$$(G, \alpha = \phi) :=$$



YES

$$(G, \beta) :=$$



?

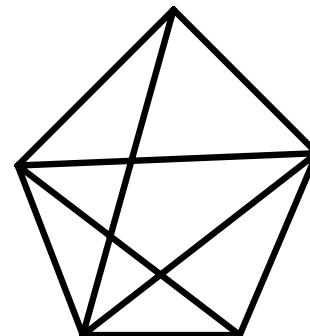
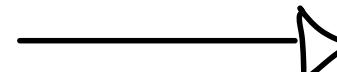
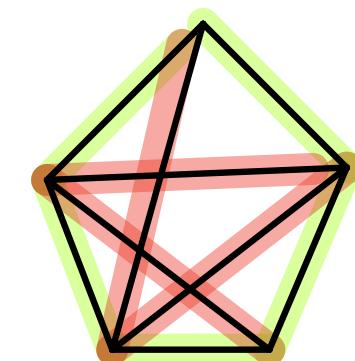
INTRODUCTION - EXTENSION PROBLEM

EXAMPLE

$$F = \{ \text{[green triangle]}, \text{[red triangle]} \}$$

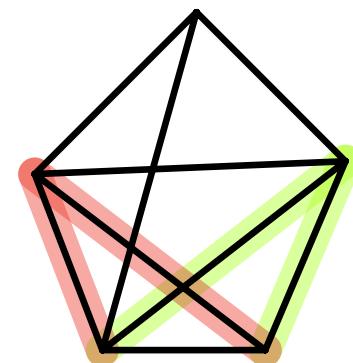
INPUT:

$$(G, \alpha = \phi) :=$$



YES

$$(G, \beta) :=$$



NO: THE
BOTTOM EDGE

INTRODUCTION - CSP

FIX A SIGNATURE σ

FIX A RELATIONAL STRUCTURE F

INPUT: A STRUCTURE G IN THE SAME SIGNATURE

TASK: $\exists h: G \xrightarrow{\text{HOMOMORPHISM}} F$? WE INDICATE IT $CSP(F)$

INTRODUCTION - CSP

FIX A RELATIONAL STRUCTURE F

INPUT: A STRUCTURE G IN THE SAME SIGNATURE

TASK: $\exists h: G \xrightarrow{\text{HOMOMORPHISM}} F$? WE INDICATE IT $CSP(F)$

GIVEN F WE DEFINE

- $G_F = (\text{COLORS}, (R_F)_{(F, x) \in F}, ((i)_i)_{i \in \text{COLORS}})$
- R_F IS $|E(F)|$ -ARY AND CONTAINS THE VALID COLORING OF F .
- $(i)_i$ IS UNARY AND $(i)_i = \{i\}$

INTRODUCTION - FINITE CSP

Given F we define

- $G_F = (\text{COLORS}, (R_F)_{(F, x) \in F}, ((c_i)_{i \in \text{COLORS}})$
- R_F is $|E(F)|$ -ARY AND CONTAINS THE VALID COLORING OF F .
- c_i is UNARY AND $c_i = \{i\}$

EXAMPLE $F = \{\triangle, \triangle, \times\}$

$$G_F = (\{\bullet, \circ\}, R_{K_3}, R_{K_3}, C_\bullet, C_\circ) \quad R_{K_3} = \{\bullet, \circ\}^3 - \{(\bullet, \bullet, \bullet), (\circ, \circ, \circ)\}$$

$$R_{K_3} = \emptyset \quad C_\bullet = \{\bullet\} \quad C_\circ = \{\circ\}$$

INTRODUCTION - FINITE CSP

Given \tilde{F} we define

- $G_{\tilde{F}} = (\text{COLORS}, (R_{\tilde{F}})_{(F, x) \in \tilde{F}}, ((i_i)_{i \in \text{COLORS}})$
- $R_{\tilde{F}}$ is $|E(\tilde{F})|$ -ARY AND CONTAINS THE VALID COLORING OF \tilde{F} ,
- i_i is UNARY AND $i_i = \{i\}$

PROPOSITION

$$\text{Ext}(\tilde{F}) \leq_p \text{CSP}(G_{\tilde{F}})$$

PART I

THE STRATEGY

WHAT'S THE STRATEGY?

GROUND IDEA: LIFT THE CHARACTERIZATION FOR FINITE DOMAIN CSP.

GOAL: $\text{Col}(F) \approx_p \text{CSP}(G_F)$

WHAT'S THE STRATEGY?

STEP 0 $\text{Col}(F) \leq_p \text{Ext}(F)$ AND $\text{Ext}(F) \leq_p (\text{SP}(G_F))$

GOAL: $\text{Col}(F) \approx_p \text{CSP}(G_F)$

WHAT'S THE STRATEGY?

STEP 0 $\text{Col}(F) \leq_p \text{Ext}(F)$ AND $\text{Ext}(F) \leq_p (\text{SP}(G_F))$

STEP 1 FIND A **NICE** STRUCTURE $H_F: \text{CSP}(H_F) \approx_p \text{Col}(F)$

GOAL: $\text{Col}(F) \approx_p \text{CSP}(G_F)$

WHAT'S THE STRATEGY?

STEP 0 $\text{Col}(F) \leq_p \text{Ext}(F)$ AND $\text{Ext}(F) \leq_p (\text{CSP}(G_F))$

STEP 1 FIND A **NICE STRUCTURES** H_F : $\text{CSP}(H_F) \approx_p \text{Col}(F)$

STEP 2 FIND A GADGET REDUCTION:

$$\text{CSP}(H_F) \geq_p \text{Ext}(F)$$

GOAL: $\text{Col}(F) \approx_p \text{CSP}(G_F)$

WHAT'S THE STRATEGY?

STEP 0 $\text{Col}(\tilde{F}) \leq_p \text{Ext}(\tilde{F})$ AND $\text{Ext}(\tilde{F}) \leq_p (\text{SP}(G_{\tilde{F}}))$

STEP 1 FIND A **NICE STRUCTURES** $H_{\tilde{F}}$: $\text{CSP}(H_{\tilde{F}}) \approx_p \text{Col}(\tilde{F})$

STEP 2 FIND A GADGET REDUCTION:

$$\text{CSP}(H_{\tilde{F}}) \geq_p \text{Ext}(\tilde{F})$$

STEP 3 FIND A GADGET REDUCTION:

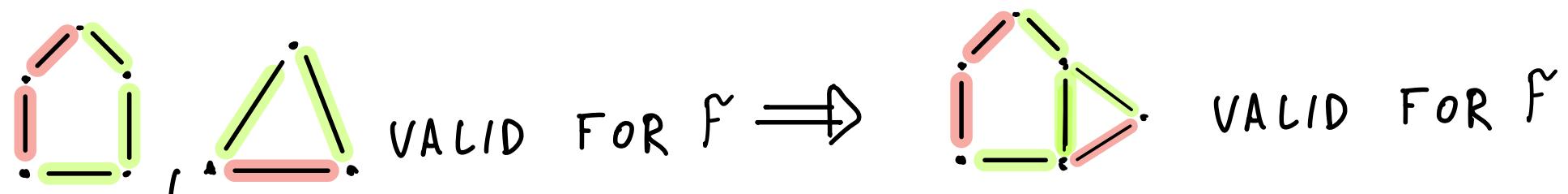
$$\text{Ext}(\tilde{F}) \geq_p (\text{SP}(G_{\tilde{F}}))$$

GOAL: $\text{Col}(\tilde{F}) \approx_p \text{CSP}(G_{\tilde{F}})$

ASSUMPTION

WE CONSIDER TO WORK WITH A SET \tilde{F} SUCH THAT THE SET OF COLORED GRAPHS WHICH ARE VALID FOR \tilde{F} IS CLOSED UNDER EDGE-AMALGAMATION

EXAMPLE



LEMMA

FOR EVERY FINITE SET OF COLORED GRAPHS \tilde{F} THERE EXISTS \tilde{F}' SUCH THAT

1. $\text{Col}(\tilde{F})$ IS EQUIVALENT TO $\text{Col}(\tilde{F}')$
2. \tilde{F}' HAS EDGE-AMALGAMATION

STEP 1

INFINITE - DOMAIN CSP

STEP 1

THEOREM (BODIRSKY, KNÄVER, STARKE)

GIVEN A FINITE SET OF COLORED GRAPHS \tilde{F} THERE EXISTS A
"NICE" STRUCTURE H_F SUCH THAT

$\text{Col}(\tilde{F})$ IS EQUIVALENT TO $\text{CSP}(H_F)$

STEP 1

THEOREM (BODIRSKY, KNÄUER, STARKE)

GIVEN A FINITE SET OF COLORED GRAPHS \tilde{F} THERE EXISTS A
"NICE" STRUCTURE $H_{\tilde{F}}$ SUCH THAT

$\text{Col}(\tilde{F})$ IS EQUIVALENT TO $\text{CSP}(H_{\tilde{F}})$

WHAT DOES "NICE" MEAN?

(* IT BELONGS TO THE SCOPE OF THE BODIRSKY - PINSKER
CONJECTURE FOR INFINITE-DOMAIN CSP)

* MORE IMPORTANTLY: THIS STRUCTURE CAN BE EXPANDED WITH
CONSTANTS WITHOUT INCREASING THE COMPLEXITY

STEP 2

COLOR DETERMINERS

STEP 2

GOAL: $CSP(H_F) \geq_p \text{Ext}(\tilde{F})$

OBSERVATION

$$\text{Col}(F) \neq \text{Ext}(\tilde{F})$$

\uparrow
INPUT

STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

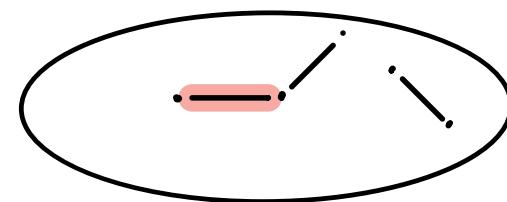
OBSERVATION

$$\text{Col}(F) \neq \text{Ext}(F)$$

↑
INPUT

IDEA

LET'S TAKE AN INSTANCE FOR $\text{Ext}(F)$ $(H, \alpha) :=$



STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

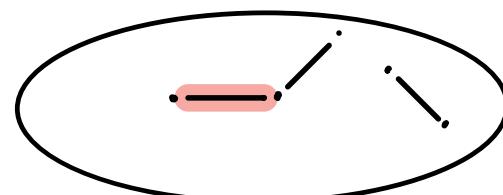
OBSERVATION

$$\text{Col}(F) \neq \text{Ext}(F)$$

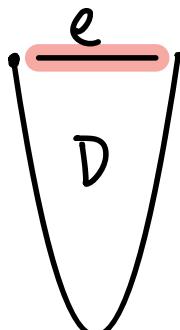
↑
INPUT

IDEA

LET'S TAKE AN INSTANCE FOR $\text{Ext}(F)$ $(H, \alpha) :=$



YES INSTANCE FOR $\text{Col}(F)$



WITH $e \in E(D)$ SUCH THAT

$\forall \chi: E(D) \rightarrow \text{COLORS}$

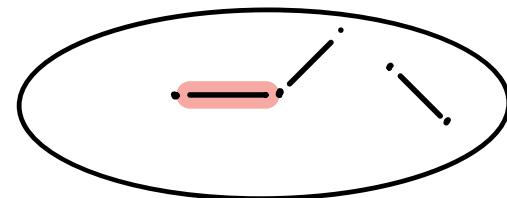
χ is valid $\Rightarrow \chi(e) = \bullet$

STEP 2

GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

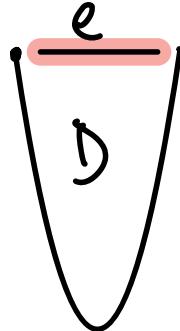
IDEA

LET'S TAKE AN INSTANCE FOR $\text{Ext}(F)$ $(H, \alpha) :=$



YES INSTANCE FOR $\text{Col}(F)$

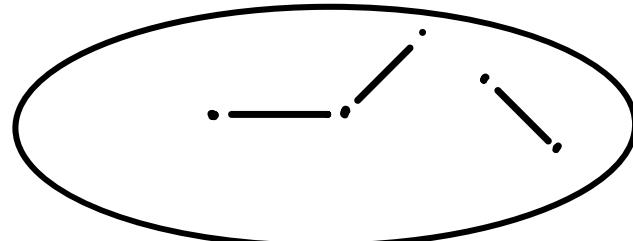
WITH $e \in E(D)$ SUCH THAT



$\forall \chi: E(D) \rightarrow \text{COLORS}$

χ is valid $\Rightarrow \chi(e) = \bullet$

$H =$

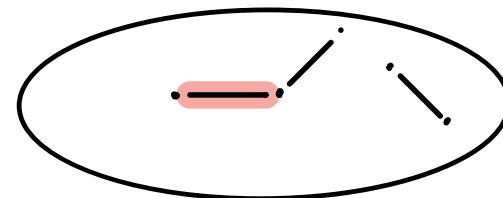


STEP 2

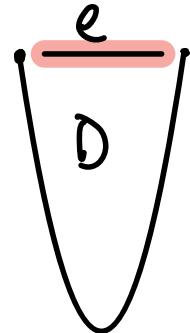
GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

IDEA

LET'S TAKE AN INSTANCE FOR $\text{Ext}(F)$ $(H, \alpha) :=$



YES INSTANCE FOR $\text{Col}(F)$

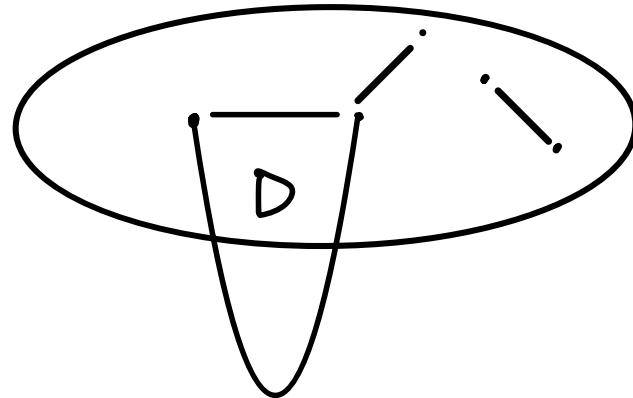


WITH $e \in E(D)$ SUCH THAT

$\forall \chi: E(D) \rightarrow \text{COLORS}$

χ is valid $\Rightarrow \chi(e) = \bullet$

$H' :=$

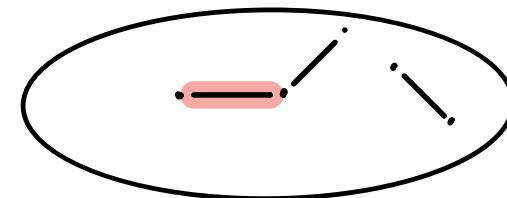


STEP 2

GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

IDEA

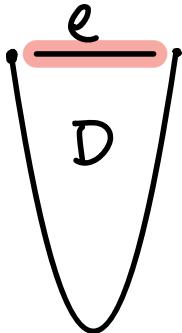
LET'S TAKE AN INSTANCE FOR $\text{Ext}(F)$ $(H, \alpha) :=$



YES INSTANCE FOR $\text{Col}(F)$

WITH $e \in E(D)$ SUCH THAT

$\forall \chi: E(D) \rightarrow \text{COLORS}$



χ is valid $\Rightarrow \chi(e) = \bullet$

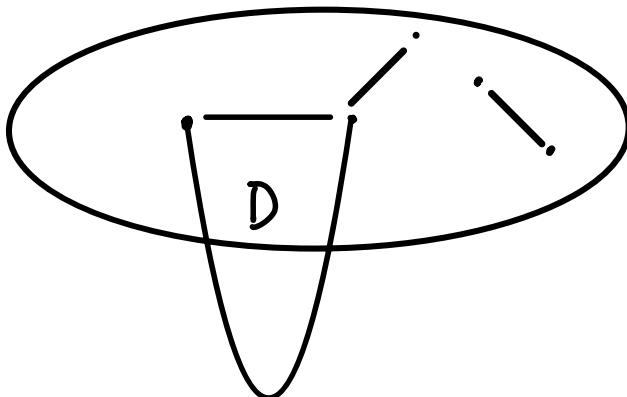
PROPOSITION

(H, α) is a YES INSTANCE FOR $\text{Ext}(F)$

IFF

H' is a YES INSTANCE FOR $\text{Col}(F)$

$H' :=$

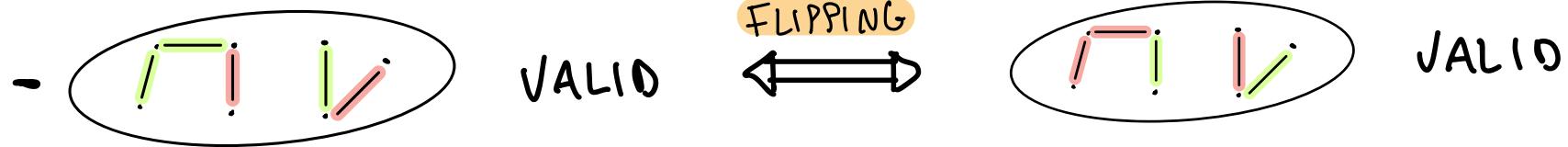


STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

BAD NEWS THESE GADGETS DO NOT EXIST OFTEN, NOT EVEN FOR
OUR SIDE QUEST

PROPOSITION

IF F IS CLOSED UNDER FLIPPING THEN

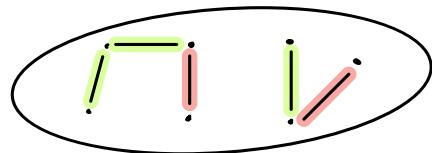
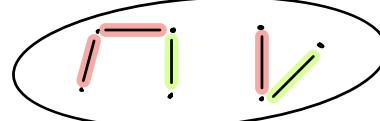


- WE DO NOT HAVE THESE GADGETS

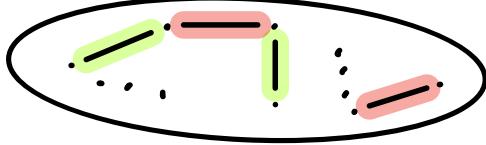
STEP 2 GOAL: $CSP(\mathcal{H}_F) \geq_p \text{Ext}(F)$

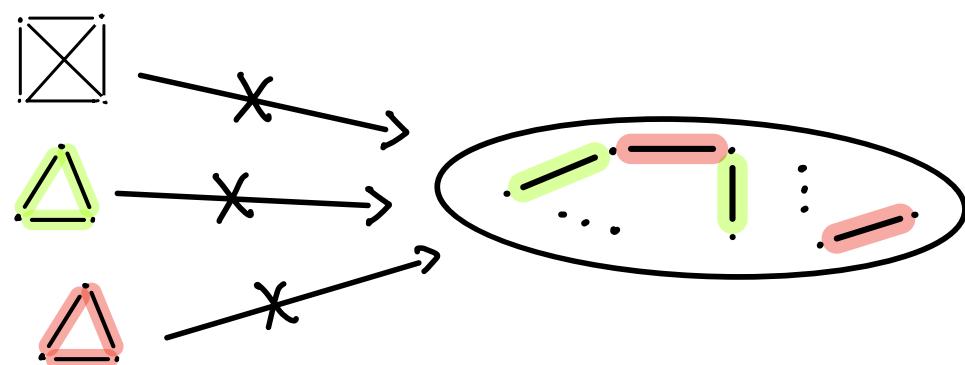
PROPOSITION

IF \tilde{F} IS CLOSED UNDER FLIPPING THEN

-  VALID $\xleftrightarrow{\text{FLIPPING}}$  VALID
- WE DO NOT HAVE THESE GADGETS

EXAMPLE $\tilde{F} = \{\triangle, \square, \times\}$

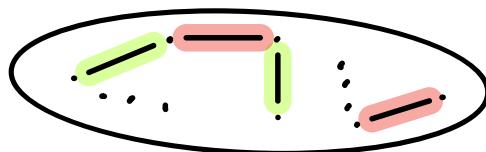
(G, x)  IS VALID \Leftrightarrow



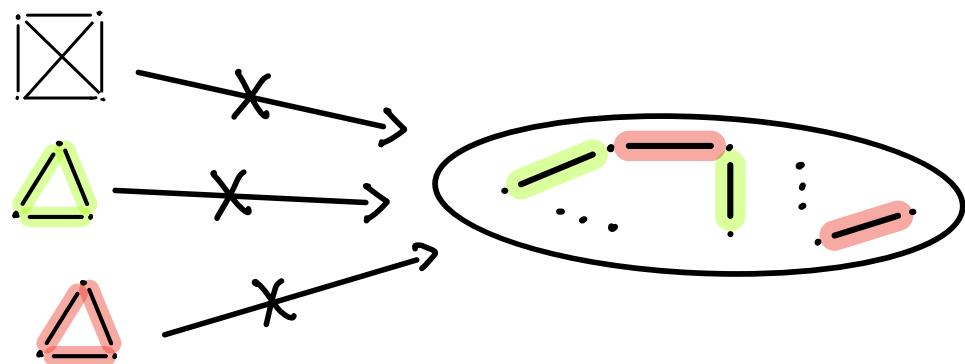
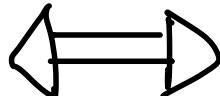
STEP 2 GOAL: $CSP(\mathcal{H}_F) \geq_p \text{Ext}(F)$

EXAMPLE $\mathcal{F} = \{\triangle^{\text{green}}, \triangle^{\text{red}}, \square^{\text{black}}\}$

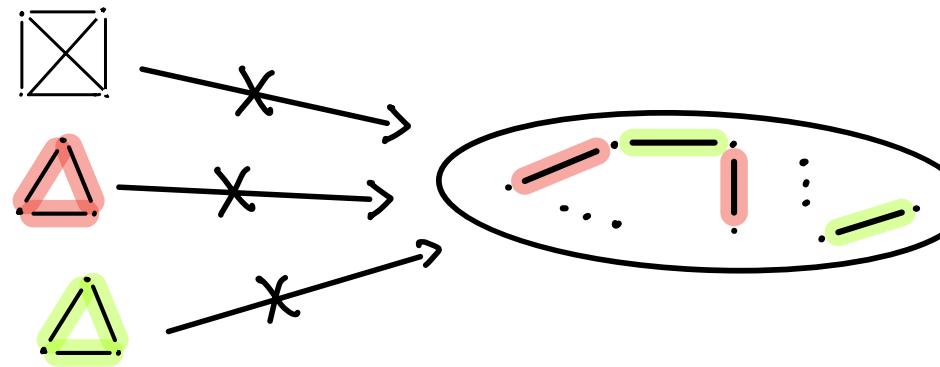
(G, χ)



IS VALID



FLIPPING



DBSERTION

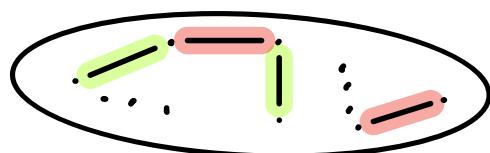
FLIPPING THE COLORS
CANNOT GENERATE
A MONOCHROMATIC
 K_3 OR A K_5

STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

EXAMPLE

$$F = \{\triangle_{\text{green}}, \triangle_{\text{red}}, \square_{\text{black}}\}$$

(G, x)



IS VALID

FLIPPING

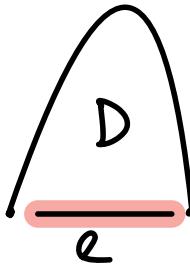


DBSERTION

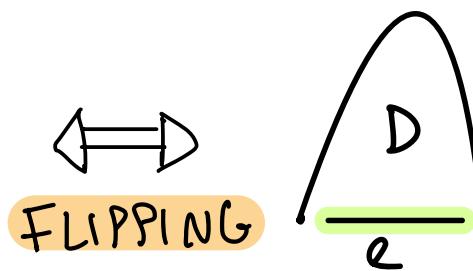
FLIPPING THE COLORS
CANNOT GENERATE
A MONOCHROMATIC
 K_3 OR A K_4

IN PARTICULAR

$(D, \xi) :=$



VALID



VALID

HENCE THE DESIRED GADGET DOES NOT EXIST.

STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

BUT WE SAW BEFORE THAT THE H_F ALLOWS US TO USE
A BOUNDED AMOUNT OF CONSTANTS.

STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

BUT WE SAW BEFORE THAT THE INFINITE DOMAIN CSP
ALLOWS US TO USE A BOUNDED AMOUNT OF CONSTANTS.

IDEA 2.0

CONSTANTS $\xleftrightarrow{\text{ACTING AS}}$ COLORED EDGES

WE COULD USE BOUNDED AMOUNT OF COLORED EDGES

STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

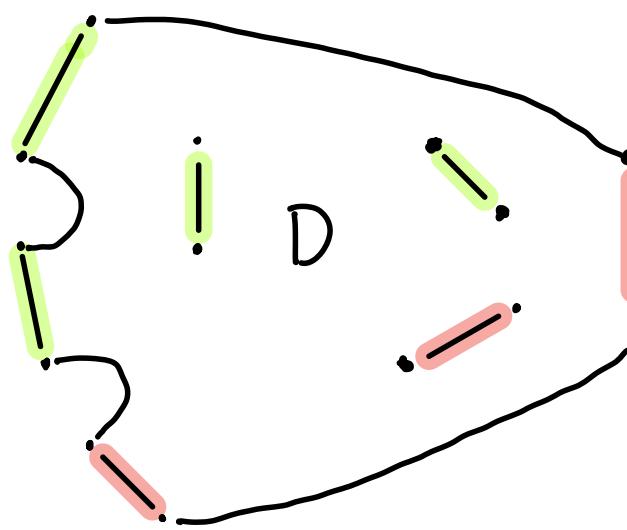
IDEA 2.0

CONSTANTS $\xleftarrow{\text{ACTING AS}}$ COLORED EDGES

WE COULD USE BOUNDED AMOUNT OF COLORED EDGES

SO WE CAN LOOK FOR

- YES INSTANCES
- WITH α VALID COLORING



STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

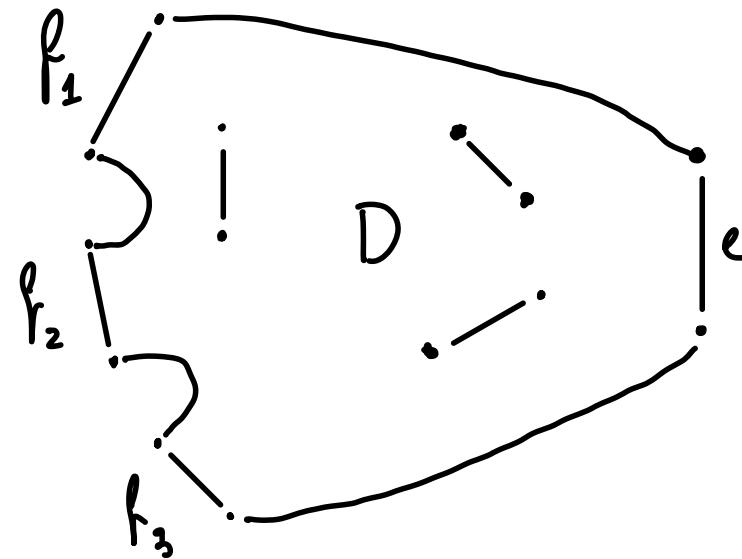
IDEA 2.0

CONSTANTS $\xleftarrow{\text{ACTING AS}}$ COLORED EDGES

WE COULD USE BOUNDED AMOUNT OF COLORED EDGES

SO WE CAN LOOK FOR

- YES INSTANCES
- \propto VALID COLORING
- $f_1, f_2, f_3, e \in E(D)$



STEP 2

GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

IDEA 2.0

CONSTANTS $\xleftarrow{\text{ACTING AS}}$ COLORED EDGES

WE COULD USE BOUNDED AMOUNT OF COLORED EDGES

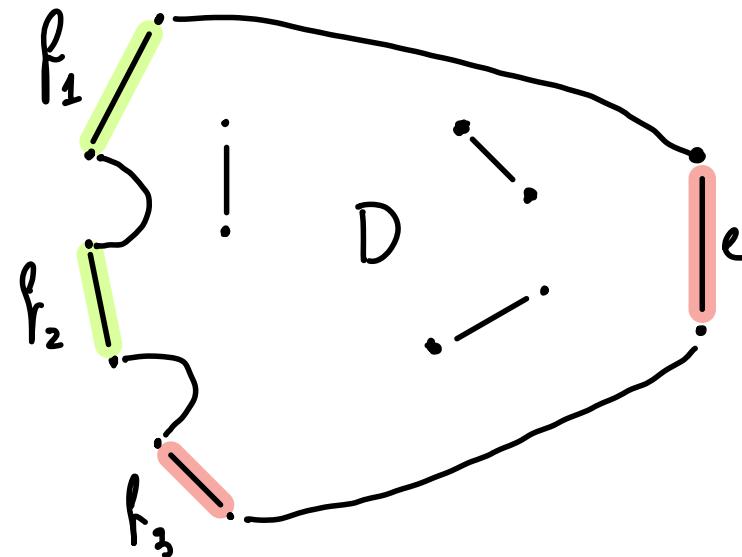
SO WE CAN LOOK FOR

- YES INSTANCES
- α VALID COLORING
- $f_1, f_2, f_3, e \in E(D)$
- $\forall \chi: E(D) \rightarrow \text{COLORS}$

IF χ IS VALID AND

$$\chi_{f_1, f_2, f_3} = \alpha$$

THEN $\chi(e) = \bullet$



STEP 2 GOAL: $CSP(H_F) \geq_p \text{Ext}(F)$

IDEA 2.0

CONSTANTS $\xleftarrow{\text{ACTING AS}}$ COLORED EDGES

WE COULD USE BOUNDED AMOUNT OF COLORED EDGES

SO WE CAN LOOK FOR

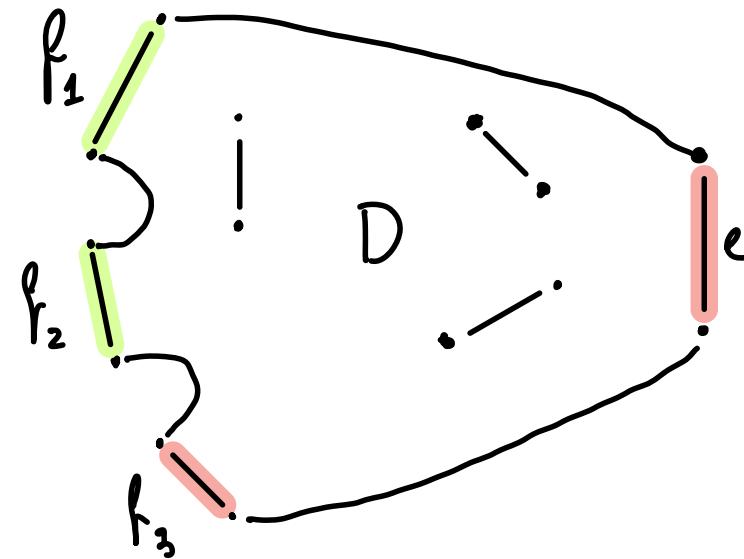
- YES INSTANCES
- ~~VALID COLORING~~
- $f_1, f_2, f_3, e \in E(D)$
- $\forall \chi: E(D) \rightarrow \text{COLORS}$

IF χ IS VALID AND

$$\chi(f_1) = \bullet \quad \chi(f_2) = \bullet$$

$$\chi(f_3) = \bullet$$

$$\chi(e) = \bullet$$



REMARK

- * THIS ALLOWS e TO BE ALSO COLORED IN
- * TO BE USEFUL IN PRACTICE

$$\text{dist}(e, f_i) \gg 0$$

WE CALL THEM COLOR DETERMINERS

STEP 3

COLOR EQUALITY GADGET

STEP 3

GOAL: $CSP(G_F) \leq_p \text{Ext}(F)$

OBSERVATION

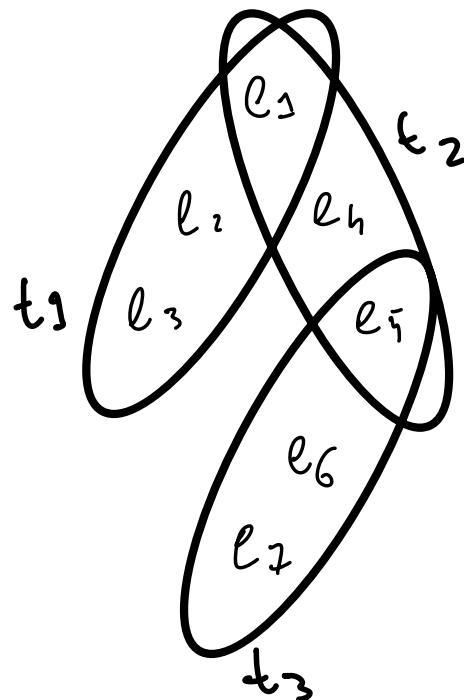
| $CSP(G_F)$ | RELATIONS | COORDINATES OF R_F |
|-----------------|------------------------|----------------------|
| $\text{Ext}(F)$ | UNCOLORED OBSTRUCTIONS | EDGE OF F |

STEP 3GOAL: $CSP(G_F) \leq_p \text{Ext}(F)$ OBSERVATION

| $CSP(G_F)$ | RELATIONS | COORDINATE OF R_F |
|-----------------|------------------------|---------------------|
| $\text{Ext}(F)$ | UNCOLORED OBSTRUCTIONS | AN EDGE OF F |

IDEA $F = \{\triangle, \triangle, \times\}$

GIVEN AN INSTANCE FOR $CSP(G_F)$

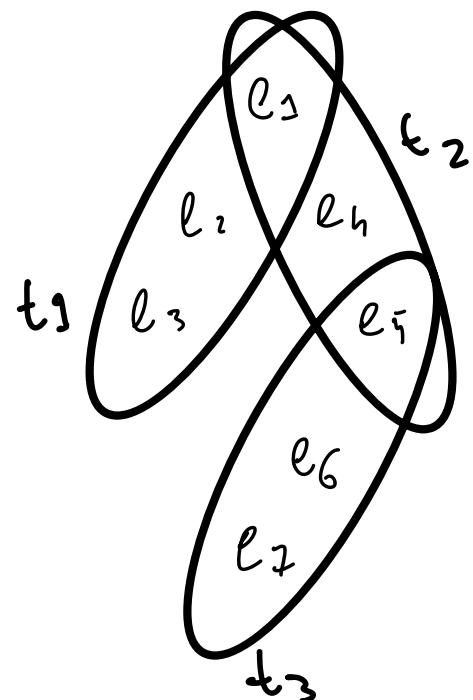


STEP 3GOAL: $CSP(G_F) \leq_p \text{Ext}(F)$ OBSERVATION

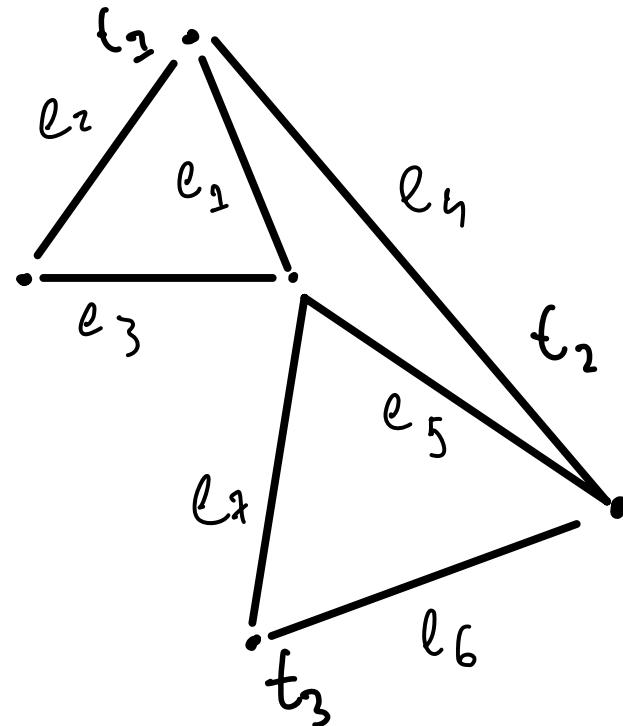
| $CSP(G_F)$ | RELATIONS | COORDINATE OF R_F |
|-----------------|------------------------|---------------------|
| $\text{Ext}(F)$ | UNCOLORED OBSTRUCTIONS | AN EDGE OF F |

IDEA $F = \{\triangle, \triangle, \times\}$

GIVEN AN INSTANCE FOR $CSP(G_F)$



OBSERVATION
~~~~~>

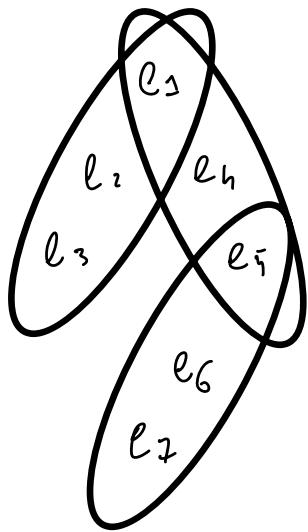
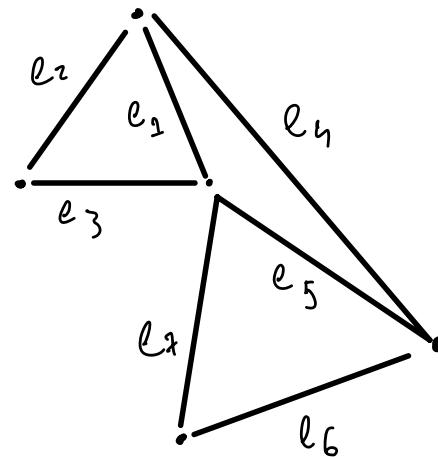


STEP 3

GOAL:  $CSP(G_F) \leq_p \text{Ext}(F)$

IDEA  $F = \{\triangle, \triangle, \times\}$

GIVEN AN INSTANCE FOR  $CSP(G_F)$



PROBLEM

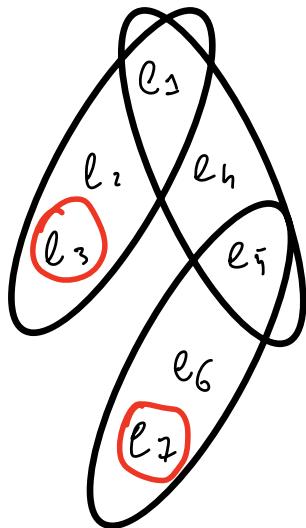
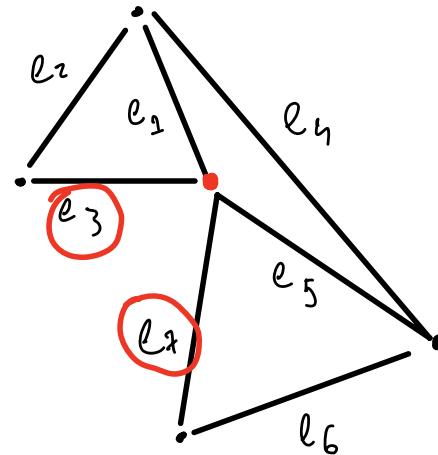
THIS CAN PRODUCE NEW TRIANGLES!

STEP 3

GOAL:  $CSP(G_F) \leq_p \text{Ext}(F)$

IDEA  $F = \{\triangle, \triangle, \times\}$

GIVEN AN INSTANCE FOR  $CSP(G_F)$



PROBLEM

THIS CAN PRODUCE NEW TRIANGLES!

OBSERVATION

$e_3, e_7$  AFTER THE OPERATION SHARE A VERTEX

WE HAVE A PROBLEM OF **DISTANCE**

STEP 3

GOAL:  $CSP(G_f) \leq_p \text{Ext}(F)$

BUT: IF WE COULD USE A YES INSTANCE  $EQ := e \mid \text{EQ}$  If such  
THAT  $\forall x : E(EQ) \rightarrow \text{COLORS}$

$x \text{ VALID} \Rightarrow x(e) = x(f)$

DEFINITION

WE CALL THE TRIPLE  $(EQ, e, f)$  A COLOR-EQUALITY  
GADGET.

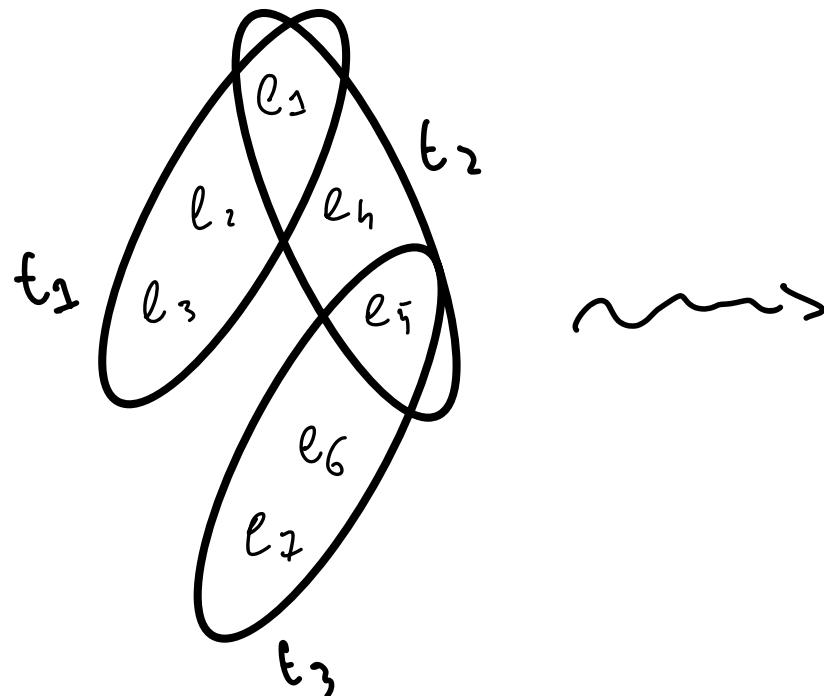
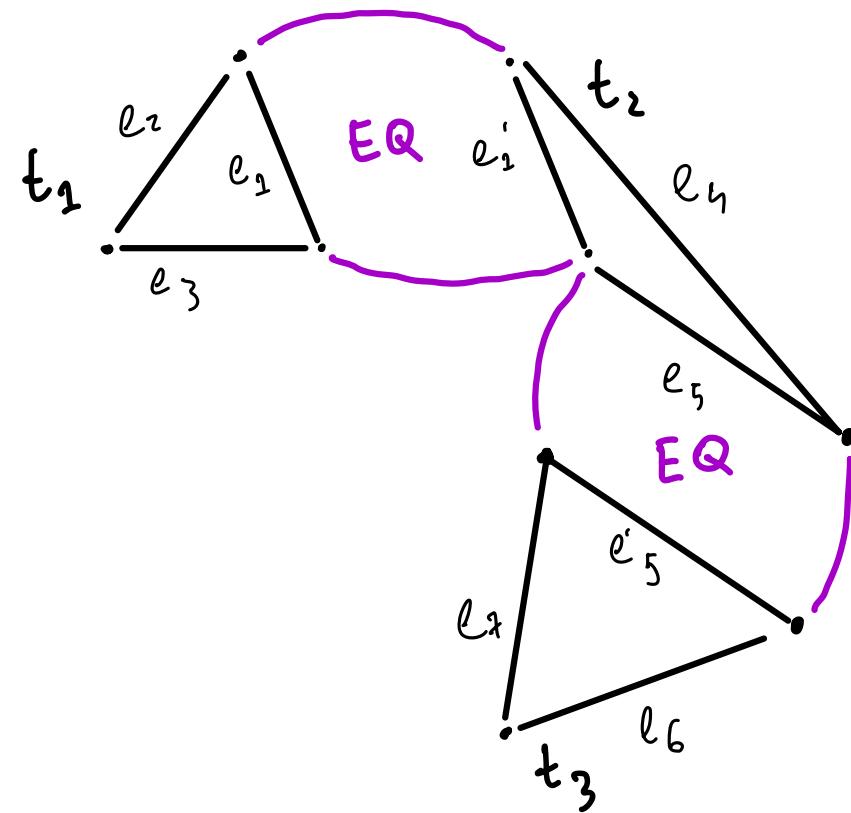
## STEP 3

GOAL:  $CSP(G_F) \leq_p Ext(F)$

BUT: IF WE COULD USE A YES INSTANCE  $EQ := \{ \text{!EQ} \text{ IF } \text{SUCH} \}$   
THAT  $\forall x : E(EQ) \rightarrow \text{COLORS}$

$$x \text{ VALID} \Rightarrow x(e) = x(f)$$

THEN WE WOULD FIX THIS PROBLEM OF DISTANCE



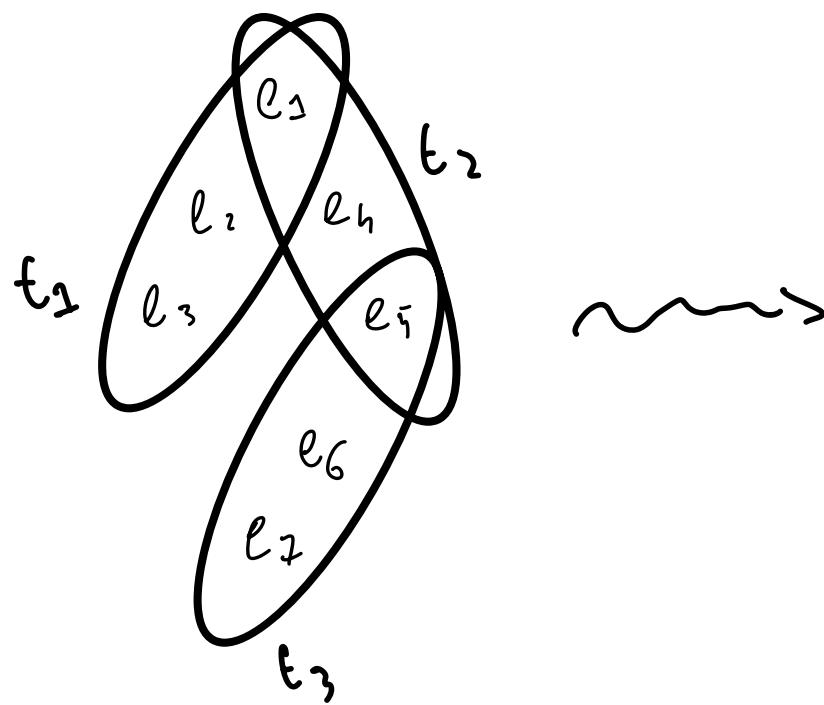
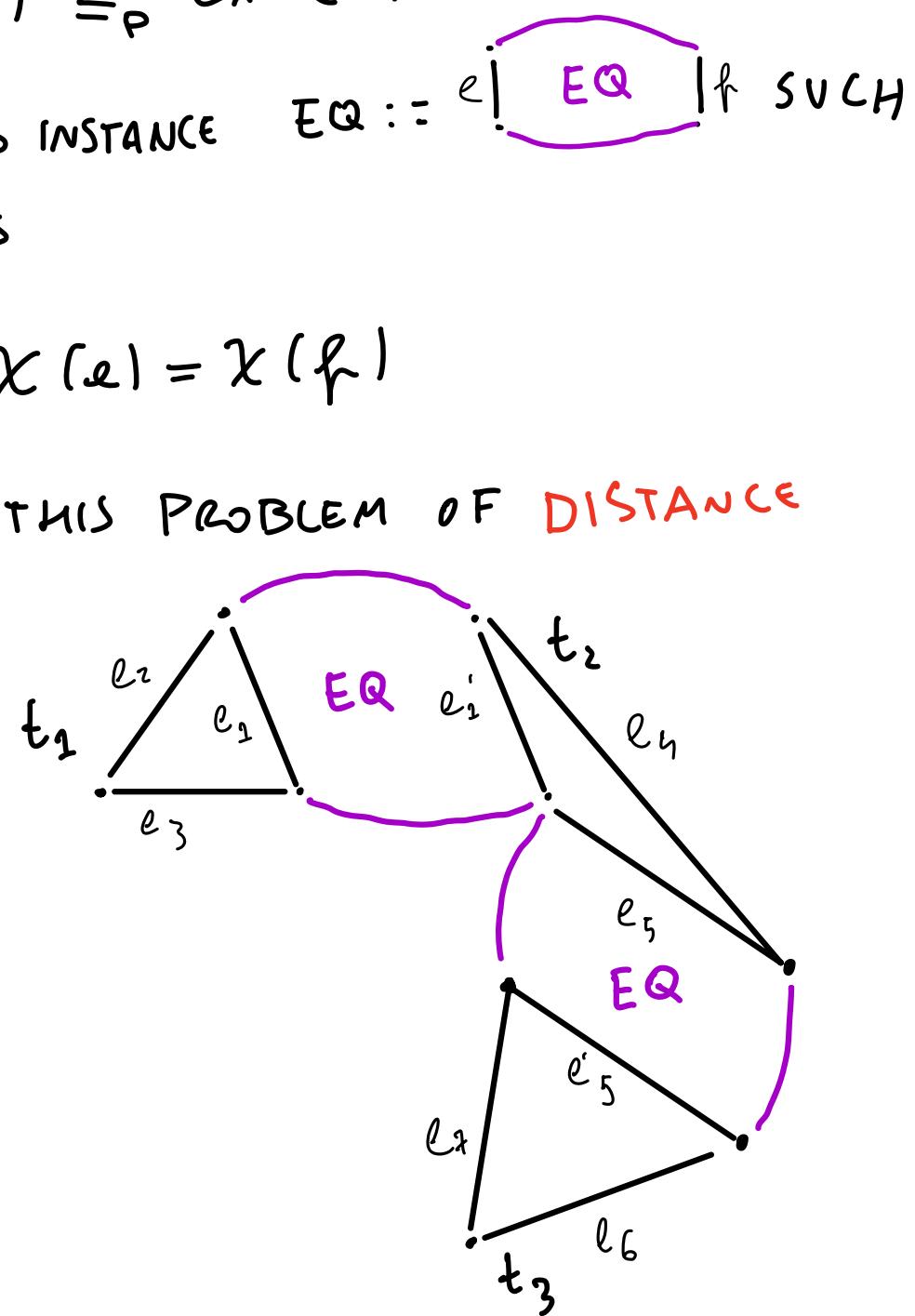
STEP 3

GOAL:  $CSP(G_f) \leq_p \text{Ext}(F)$

BUT: IF WE COULD USE A YES INSTANCE  $EQ := e \boxed{EQ}$  If such  
THAT  $\forall x : E(EQ) \rightarrow \text{colors}$

$x$  VALID  $\Rightarrow x(e) = x(f)$

THEN WE WOULD FIX THIS PROBLEM OF DISTANCE



THIS DOES NOT PRODUCE NEW TRIANGLES, INDEED THIS WORKS !!

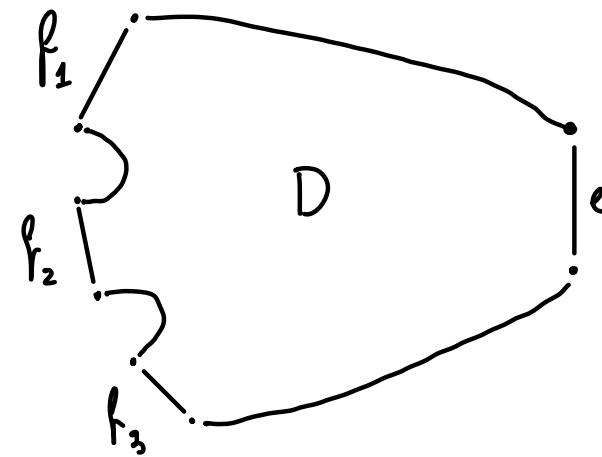
## PART II

WHEN CAN WE FIND THESE  
GADGETS ?

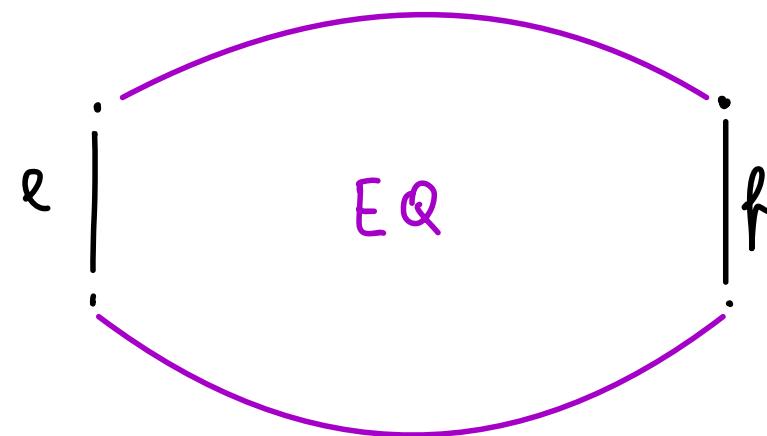
## PART II

THIS STRATEGY USES 2 TYPES OF GADGETS

### 1. COLOR-DETERMINERS



### 2. COLOR-EQUALITY



## PART II

THIS STRATEGY USES 2 TYPES OF GADGETS

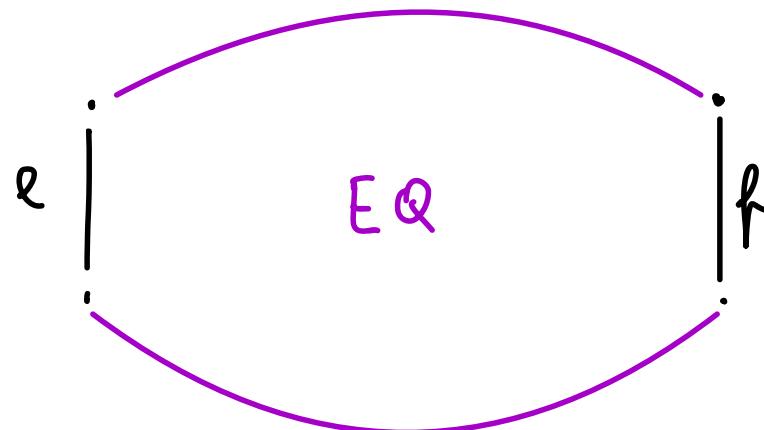
### 1. COLOR-DETERMINER



### QUESTIONS

- DO THEY EXIST FOR ANY  $F$ ?

### 2. COLOR-EQUALITY



DO THEY EXIST FOR ANY F?

SHORT ANSWER: NO

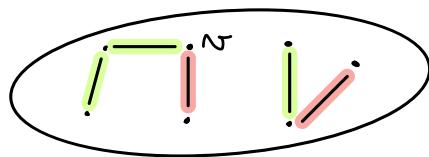
DO THEY EXIST FOR ANY  $\tilde{F}$ ?

SHORT ANSWER: NO

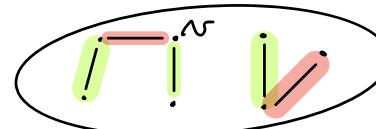
LONGER ANSWER:

PROPOSITION

IF  $\tilde{F}$  IS CLOSED UNDER LOCAL FLIPPING THEN



VALID  $\rightsquigarrow$



VALID

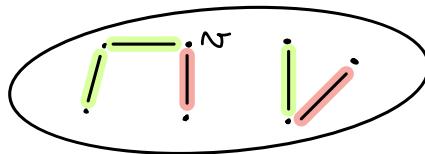
DO THEY EXIST FOR ANY  $F$ ?

SHORT ANSWER: NO

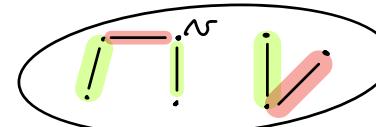
LONGER ANSWER:

PROPOSITION

IF  $F$  IS CLOSED UNDER LOCAL FLIPPING THEN

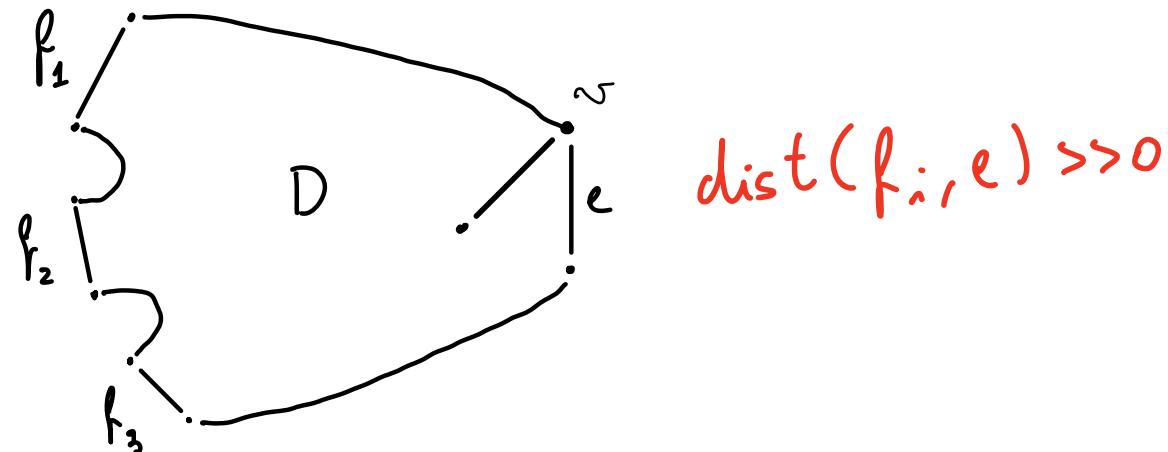


VALID  $\rightsquigarrow$



VALID

TAKE A  
COLOR  
DETERMINER  
 $(D, f_i, e)$

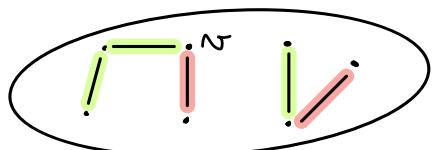


$dist(f_i, e) \gg 0$

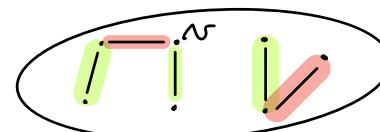
# DO THEY EXIST FOR ANY $F$ ?

## PROPOSITION

IF  $F$  IS CLOSED UNDER LOCAL FLIPPING THEN

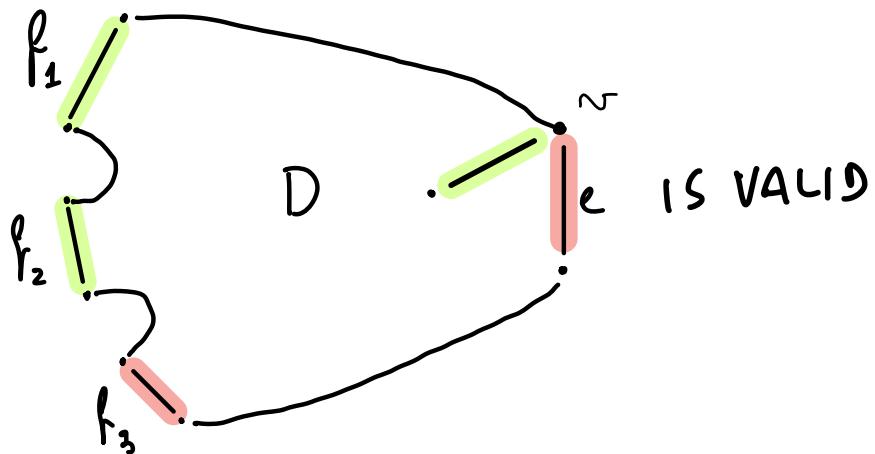


VALID  $\rightsquigarrow$



VALID

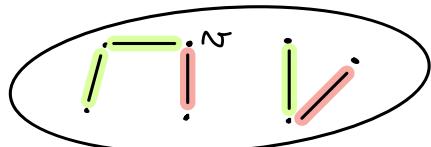
$$\text{dist}(f_i, e) \gg 0$$



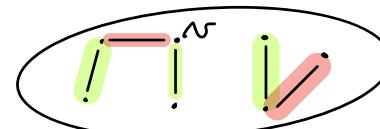
# DO THEY EXIST FOR ANY $F$ ?

## PROPOSITION

IF  $F$  IS CLOSED UNDER LOCAL FLIPPING THEN

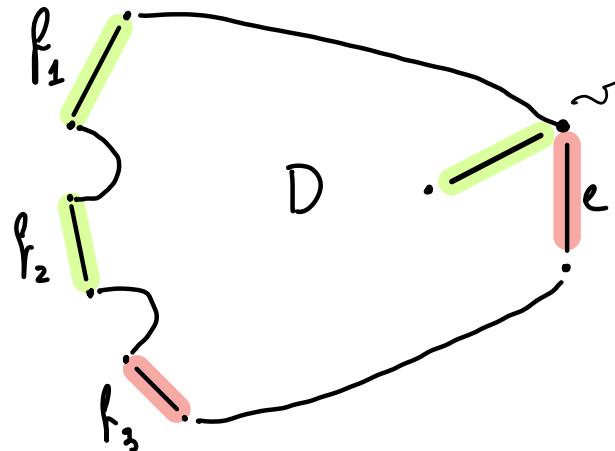


VALID  $\rightsquigarrow$

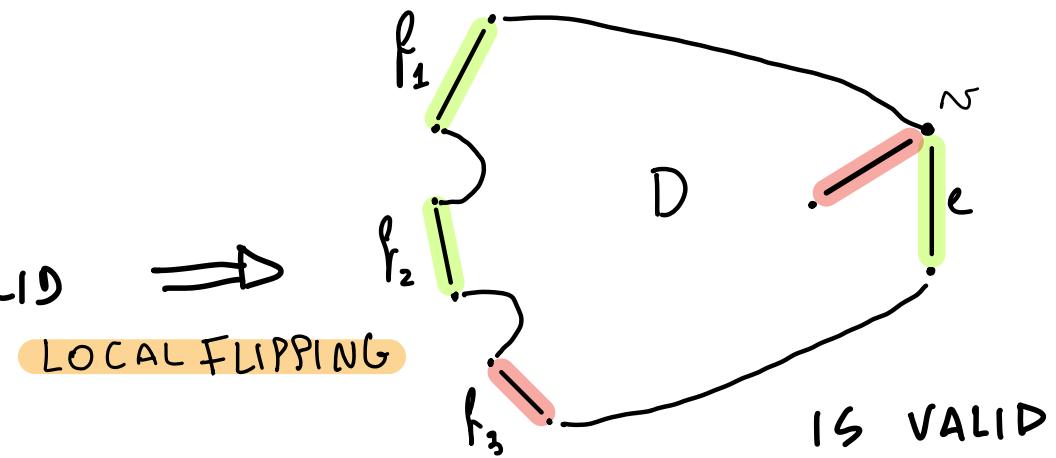


VALID

$\text{dist}(f_i, e) \gg 0$



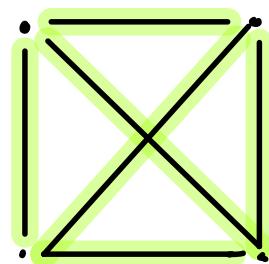
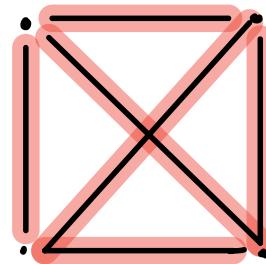
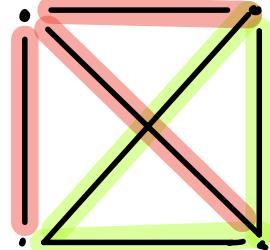
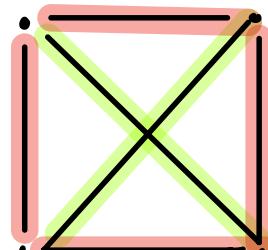
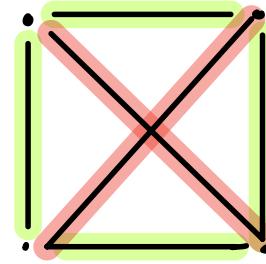
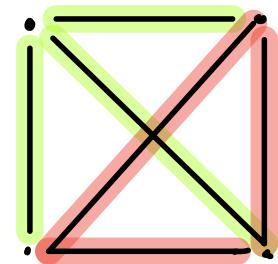
IS VALID  $\Rightarrow$  LOCAL FLIPPING



HENCE  $(D, f_i, e)$  CANNOT BE A COLOR DETERMINER

DO THEY EXIST FOR ANY F?

CONCRETE EXAMPLE



## WHEN DO THEY EXIST?

WE CALL  $\rightarrow$  THE HOMOMORPHISM ORDER ON GRAPHS  
AND FOCUS ON THE FOLLOWING CHAIN

$\dots C_9 \rightarrow C_7 \rightarrow C_5 \rightarrow K_3 \rightarrow K_5 \rightarrow K_5 \dots$

## WHEN DO THEY EXIST?

$\dots C_9 \rightarrow C_7 \rightarrow C_5 \rightarrow K_3 \rightarrow K_4 \rightarrow K_5 \dots$

### THEOREM

IF  $\tilde{F}$  SATISFY THE TWO FOLLOWING REQUIREMENTS THESE GADGETS EXIST.

1.  $\forall (F, \alpha) \in \tilde{F} \quad F \in (\text{CLUSTERS} \cup \text{ODD CYCLES})$

2. THE  $\rightarrow$ -MAXIMUM OF  $\tilde{F}^M$  (THE MONOCHROMATIC PART)  
IS  $\rightarrow$ -SMALLER THAN THE  $\rightarrow$ -MINIMUM OF  $F, \tilde{F}^M$

# WHEN DO THEY EXIST?

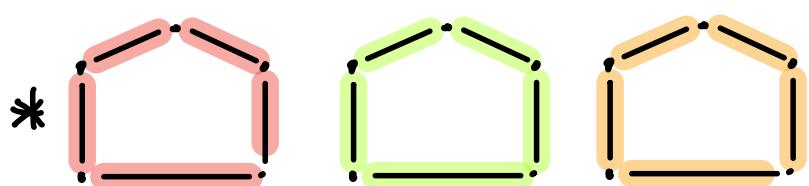
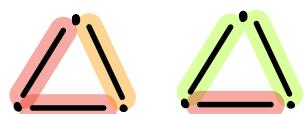
## THEOREM

IF  $\tilde{F}$  SATISFY THE TWO FOLLOWING REQUIREMENTS THESE GADGETS EXIST.

1.  $\forall (F, \alpha) \in \tilde{F} \quad F \in (\text{CLUSTERS} \cup \text{ODD CYCLES})$

2. THE  $\rightarrow$ -MAXIMUM OF  $\tilde{F}^M$  (THE MONOCHROMATIC PART)  
IS  $\rightarrow$ -SMALLER THAN THE  $\rightarrow$ -MINIMUM OF  $\tilde{F}, \tilde{F}^M$

## EXAMPLES



# WHEN DO THEY EXIST?

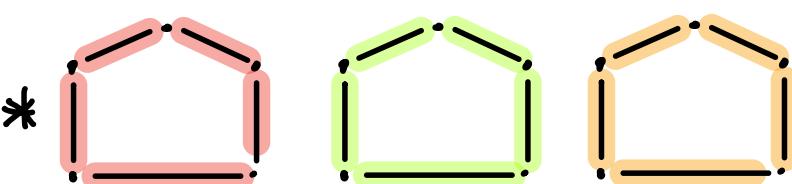
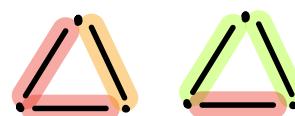
## THEOREM

IF  $\tilde{F}$  SATISFY THE TWO FOLLOWING REQUIREMENTS THESE GADGETS EXIST.

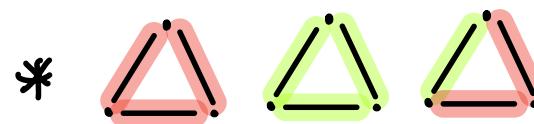
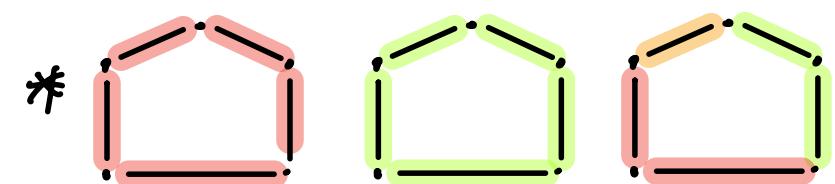
1.  $\forall (F, \alpha) \in \tilde{F} \quad F \in (\text{CLUSTERS} \cup \text{ODD CYCLES})$

2. THE  $\rightarrow$ -MAXIMUM OF  $\tilde{F}^M$  (THE MONOCHROMATIC PART)  
IS  $\rightarrow$ -SMALLER THAN THE  $\rightarrow$ -MINIMUM OF  $\tilde{F} \cdot \tilde{F}^M$

## EXAMPLES



## NON-EXAMPLES



THANKS!