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Two Traditions in Non-Classical Logic

Many-Valued Logic

Fuzzy logic

Intuitionistic logic

Linear logic

Residuated structures

Girard quantales

Quantum Logic

Quantum mechanics

Non-Boolean reasoning

Incompatible observables

Orthomodular lattices

Hilbert space subspaces

Common Ground

Both traditions meet at Boolean algebras

Central Question

Can we find richer non-Boolean structures that satisfy both
residuation principles and orthocomplementation?
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Our Main Results

1 Impossibility result: Any complemented lattice with integral
residuated structure must be Boolean (Theorem 2)

2 Positive answer: There exist orthomodular lattices that are
also commutative Girard quantales but NOT Boolean algebras

3 Explicit construction: C (Rn) (closed subspaces of
n-dimensional real space) is both:
An orthomodular lattice
A commutative Girard quantale
Orthocomplement = linear negation
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Inversions

Definition 1

An inversion on a poset (P,≤) is a map (−) : P → P such that:

x ≤ y ⇔ x ≥ y (order-reversing)

x = x (involution)

Properties

An inversion is an involutive dual order automorphism (antitone
involution).
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Orthomodular Lattices

Definition 2

An ortholattice (X ,∧, 1,⊥) is a meet semi-lattice with inversion ⊥

satisfying:

x⊥⊥ = x (involution)
x ≤ y implies y⊥ ≤ x⊥ (order-reversing)
x ∧ x⊥ = 0 (where 0 = 1⊥)

Definition 3

An ortholattice is orthomodular if:

x ≤ y and x⊥ ∧ y = 0 =⇒ x = y

Example 4

C (H) = closed subspaces of Hilbert space H with:

Meet = intersection (∩)
Orthocomplement = orthogonal complement
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Residuated Posets and Quantales

Definition 5

A residuated poset (P,≤,⊙,→,←) satisfies:

x ⊙ y ≤ z ⇔ x ≤ y → z ⇔ y ≤ z ← x

Integral: unit 1 is the greatest element.

Unital: has unit e (not necessarily greatest element).

Definition 6

A quantale is a complete lattice Q with associative multiplication
satisfying:

x ⊙
∨
i∈I

xi =
∨
i∈I

(x ⊙ xi ) and

(∨
i∈I

xi

)
⊙ x =

∨
i∈I

(xi ⊙ x)
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Girard Posets

Definition 7

An element d in a residuated poset is:

Dualizing if: d ← (x → d) = x = (d ← x)→ d .
Cyclic if: x ⊙ y ≤ d ⇔ y ⊙ x ≤ d .

Definition 8

A Girard poset is a residuated poset with a cyclic dualizing element
d .

Linear Negation

Define x = x → d = d ← x . Then P is unital with unit e = d .

Example 9

Any complete Boolean algebra is a Girard quantale with d = 0.
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Characterization Theorem

Theorem 10

Let (P,≤,⊙,→,←) be a unital residuated poset with unit e. The
following are equivalent:
1 P is a Girard poset
2 P has an inversion with x = x → e = e ← x

3 P has an inversion with t ⊙ x ≤ y ⇔ y ⊙ t ≤ x

Consequence

Cyclic dualizing element d = e is uniquely determined by:

d =
∨
x∈P

(x ⊙ x )

Quantales with Ortholattice Structure Botur, Kruml, Paseka Masaryk University 10/23



Introduction and Motivation Basic Concepts Girard Posets and Inversions Main Results Conclusion References

Connection to Boolean Algebras

Proposition 11

Let (P,≤,⊙,→,←) be a Girard poset with inversion .
Then P is a Boolean algebra if and only if:

P is an idempotent residuated lattice

The cyclic dualizing element is d = 0

Key Insight

In Boolean case: x ⊙ x = x ∧ x = 0 for all x
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Complemented lattices

Definition 12

A bounded lattice (X ,≤,∧,∨, 0, 1) is complemented if, for every
element x ∈ P, there exists an element x ′ ∈ P (the complement of
x) such that:

x ∨ x ′ = 1,
x ∧ x ′ = 0.

Remark 13

A Boolean algebra is a complemented lattice that is also
distributive.
An ortholattice is a complemented lattice where the
complementation is unique and satisfies additional properties
like involution (x ′′ = x) and order-reversal (x ≤ y ⇒ y ′ ≤ x ′).
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The Impossibility Result

Theorem 14

A complemented lattice admits an integral residuated structure if
and only if it is a Boolean algebra

Proof Sketch

For integral residuated complemented lattice P:
1 x ⊙ x ′ ≤ x ∧ x ′ = 0 (integrality)
2 x = x ⊙ (x ∨ x ′) = x ⊙ x (idempotency)
3 x ⊙ y = x ∧ y (multiplication = meet)
4 P is distributive (multiplication distributes)
5 P is Boolean (complemented + distributive)

Corollary 15

A complemented lattice is an integral quantale iff it is a complete
Boolean algebra
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The Question

Theorem 14 tells us:

Integral case forces Boolean structure

Natural Question

Are there orthomodular lattices that are unital (but not integral)
commutative quantales?

Answer

YES! We construct explicit examples using real coordinate spaces
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The Construction: C (Rn)

Theorem 16

For any n ∈ N, the lattice C (Rn) of closed subspaces of Rn is:
1 An orthomodular lattice with orthocomplement:

U⊥ = {(a1, . . . , an) ∈ Rn |
n∑

i=1

ai · ui = 0

for all (u1, . . . , un) ∈ U}

2 A commutative Girard quantale with multiplication:

S ⊙ T = ⟨{s · t : s ∈ S , t ∈ T}⟩

(pointwise ring multiplication + linear span)
3 The orthocomplement coincides with linear negation: ⊥ =
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Key Properties of C (Rn)

Unital Structure

Unit: e = ⟨{(1, . . . , 1)}⟩
Dualizing element: d = e⊥ = {(a1, . . . , an) |

∑
ai = 0}

Verification of Cyclicity

For subspaces S ,T ,U ⊆ Rn:

S ⊙ T ⊆ U⊥ ⇔
n∑

i=1

si · ti · ui = 0 for all s ∈ S , t ∈ T , u ∈ U

⇔
n∑

i=1

ui · ti · si = 0 for all s ∈ S , t ∈ T , u ∈ U

⇔ U ⊙ T ⊆ S⊥

Result

By Theorem 10, C (Rn) is a commutative Girard quantale!
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Why This Example Matters

Non-Boolean: For n ≥ 2, C (Rn) is not distributive

Concrete: Explicitly defined on familiar spaces
Unifying: Bridges quantum logic and linear logic
Orthomodular structure (quantum)
Girard quantale structure (linear logic)

Natural: Operations have geometric meaning
Meet = intersection
Orthocomplement = orthogonal complement
Multiplication = pointwise product span
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Extension to Other Spaces

Complex Case

For matrix spaces Mn(C), we have from Egger and Kruml [5]:
C (Mn(C)) is orthomodular
C (Mn(C)) is a non-commutative involutive Girard quantale
For n ≥ 2, this is also non-Boolean

Schatten Classes

For infinite-dimensional Hilbert spaces, similar constructions yield:

Interval schemes of spectra organized like Łukasiewicz logic

Orthomodular structure via Frobenius scalar product

Non-commutative Girard quantales
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Summary of Main Results

1 Negative result: Complemented + integral residuated ⇒
Boolean

2 Characterization: Three equivalent conditions for Girard
posets with inversions

3 Positive construction: C (Rn) provides non-Boolean
examples that are both:
Orthomodular lattices
Commutative Girard quantales

4 Extensions: Similar results for complex spaces and
infinite-dimensional cases
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Significance

Theoretical Impact

Unifies quantum logic and linear logic frameworks

Identifies precise boundary between Boolean and non-Boolean
cases

Provides concrete algebraic structures for hybrid systems

Open Questions
1 Does C (Cn) admit a compatible quantale structure?
2 What logic corresponds to orthomodular Girard quantales?
3 Can we develop sound and complete proof systems?
4 Are there natural examples beyond Hilbert space subspaces?
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Thank you for your attention!

Questions?

Contact: paseka@math.muni.cz
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