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Introduction and Motivation
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Two Traditions in Non-Classical Logic

@ Fuzzy logic @ Quantum mechanics

@ Intuitionistic logic @ Non-Boolean reasoning

@ Linear logic @ Incompatible observables

@ Residuated structures @ Orthomodular lattices

o Girard quantales ) @ Hilbert space subspaces )

Common Ground
Both traditions meet at Boolean algebras

Central Question

Can we find richer non-Boolean structures that satisfy both
residuation principles and orthocomplementation?
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Our Main Results

© Impossibility result: Any complemented lattice with integral
residuated structure must be Boolean (Theorem 2)

@ Positive answer: There exist orthomodular lattices that are
also commutative Girard quantales but NOT Boolean algebras

© Explicit construction: C(R") (closed subspaces of
n-dimensional real space) is both:

o An orthomodular lattice
e A commutative Girard quantale
e Orthocomplement = linear negation
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Inversions

An inversion on a poset (P, <) is a map (—)® : P — P such that:
o x<yex®>)°% (order-reversing)

o x® = x (involution)

€

Properties

An inversion is an involutive dual order automorphism (antitone
involution).

.
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Orthomodular Lattices

An ortholattice (X, A,1,1) is a meet semi-lattice with inversion *
satisfying:
e x*1 = x (involution)

o x <y implies y* < x* (order-reversing)
o x A xt =0 (where 0 = 1+)

An ortholattice is orthomodular if:

x<yandx'Ay=0 = x=y

Example 4

C(H) = closed subspaces of Hilbert space H with:

@ Meet = intersection (N)
@ Orthocomplement = orthogonal complement
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Residuated Posets and Quantales

Definition 5
A residuated poset (P, <,®, —, <) satisfies:

x0Oy<z & x<y—z & y<ziXx

@ Integral: unit 1 is the greatest element.

@ Unital: has unit e (not necessarily greatest element).

Definition 6

A quantale is a complete lattice @ with associative multiplication
satisfying:

X@\/X;z\/(X@X,-) and (\/X,')@XZ\/(X,‘@X)

i€l i€l iel i€l
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Girard Posets

Definition 7
An element d in a residuated poset is:

@ Dualizing if: d « (x > d) =x=(d <+ x) — d.
o Cyclicif: xOy<d&eyox<d.

Definition 8

A Girard poset is a residuated poset with a cyclic dualizing element
d.

Linear Negation

Define x® = x — d = d < x. Then P is unital with unit e = do.

Example 9

Any complete Boolean algebra is a Girard quantale with d = 0.
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Characterization Theorem

Theorem 10

Let (P,<,®,—, <) be a unital residuated poset with unit e. The
following are equivalent:

Q@ P is a Girard poset
@ P has an inversion © with x® = x — e® = e® ¢ x
© P has an inversion® witht O x < y©@ & y Ot < x©

Consequence

Cyclic dualizing element d = €@ is uniquely determined by:

d= \/(x®x®)

xeP
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Connection to Boolean Algebras

Proposition 11

Let (P,<,®,—, <) be a Girard poset with inversion .
Then P is a Boolean algebra if and only if:

@ P is an idempotent residuated lattice

@ The cyclic dualizing element is d = 0

In Boolean case: x ® x®@ = x A x® = 0 for all x
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Complemented lattices

Definition 12

A bounded lattice (X, <,A,V,0,1) is complemented if, for every
element x € P, there exists an element x’ € P (the complement of
x) such that:

o xVx =1,
o x A\x =0.

@ A Boolean algebra is a complemented lattice that is also
distributive.

@ An ortholattice is a complemented lattice where the
complementation is unique and satisfies additional properties
like involution (x" = x) and order-reversal (x <y = y' < x'). )
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The Impossibility Result

A complemented lattice admits an integral residuated structure if
and only if it is a Boolean algebra

Proof Sketch

For integral residuated complemented lattice P:
QO xOx < xAx' =0 (integrality)
Q@ x=x0 (xVx')=x®x (idempotency)
@ x®y = xAy (multiplication = meet)
@ P is distributive (multiplication distributes)
@ P is Boolean (complemented + distributive)

A complemented lattice is an integral quantale iff it is a complete
Boolean algebra
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The Question

Theorem 14 tells us:
Integral case forces Boolean structure

Natural Question

Are there orthomodular lattices that are unital (but not integral)
commutative quantales?

YES! We construct explicit examples using real coordinate spaces
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The Construction: C(R")

Theorem 16

For any n € N, the lattice C(R") of closed subspaces of R" is:

© An orthomodular lattice with orthocomplement:

Ut ={(a1,...,an) €ER" |Zn:a,--u,-:0
i=1
for all (uy,...,u,) € U}
@ A commutative Girard quantale with multiplication:
SOT=({s-t:seS,teT})

(pointwise ring multiplication + linear span)

© The orthocomplement coincides with linear negation: - = ®
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Key Properties of C(R")

o Unit: e = ({(L,...,1)})
o Dualizing element: d = et = {(a1,...,a,) | > a; = 0}

Verification of Cyclicity
For subspaces S, T, U C R™

SOTC UL@Zsi-t;ou;:Oforalls€5,t€ T,ueU
i=1

n

@Zu;-t,--s,-:OforaIISES,te T,ueU
i=1

sUeTCSt

A

By Theorem 10, C(R") is a commutative Girard quantale!
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Why This Example Matters

Non-Boolean: For n > 2, C(R") is not distributive

Concrete: Explicitly defined on familiar spaces

Unifying: Bridges quantum logic and linear logic
o Orthomodular structure (quantum)
o Girard quantale structure (linear logic)

@ Natural: Operations have geometric meaning

o Meet = intersection
e Orthocomplement = orthogonal complement
e Multiplication = pointwise product span
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Extension to Other Spaces

Complex Case

For matrix spaces M,(C), we have from Egger and Kruml [5]:
e C(Mp(C)) is orthomodular

@ C(Mp(C)) is a non-commutative involutive Girard quantale
@ For n > 2, this is also non-Boolean

\,

Schatten Classes

For infinite-dimensional Hilbert spaces, similar constructions yield:
@ Interval schemes of spectra organized like tukasiewicz logic
@ Orthomodular structure via Frobenius scalar product

@ Non-commutative Girard quantales

\
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Summary of Main Results

© Negative result: Complemented + integral residuated =
Boolean

@ Characterization: Three equivalent conditions for Girard
posets with inversions
© Positive construction: C(R") provides non-Boolean
examples that are both:
e Orthomodular lattices
o Commutative Girard quantales
Q@ Extensions: Similar results for complex spaces and
infinite-dimensional cases
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Significance

Theoretical Impact

@ Unifies quantum logic and linear logic frameworks

o Identifies precise boundary between Boolean and non-Boolean
cases

@ Provides concrete algebraic structures for hybrid systems

Open Questions

@ Does C(C") admit a compatible quantale structure?

@ What logic corresponds to orthomodular Girard quantales?

© Can we develop sound and complete proof systems?

@ Are there natural examples beyond Hilbert space subspaces?
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Thank you for your attention!

Questions?

Contact: paseka@math.muni.cz
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