

Quantales Carrying Ortholattice Structure

Michal Botur¹, David Kruml², Jan Paseka²

¹Palacký University Olomouc, Czech Republic

²Masaryk University Brno, Czech Republic

e-mail: paseka@math.muni.cz

AAA 108

108. Arbeitstagung Allgemeine Algebra
6 – 8 February 2026, Vienna, Austria

Acknowledgements

- First author: GAČR project 23-09731L “Representations of algebraic semantics for substructural logics”
- Second and third authors: Austrian Science Fund (FWF) [10.55776/PIN5424624] and GAČR 25-20013L

Outline

- 1 Introduction and Motivation
- 2 Basic Concepts
- 3 Girard Posets and Inversions
- 4 Main Results
- 5 Conclusion

Two Traditions in Non-Classical Logic

Many-Valued Logic

- Fuzzy logic
- Intuitionistic logic
- Linear logic
- **Residuated structures**
- Girard quantales

Quantum Logic

- Quantum mechanics
- Non-Boolean reasoning
- Incompatible observables
- **Orthomodular lattices**
- Hilbert space subspaces

Common Ground

Both traditions meet at **Boolean algebras**

Central Question

Can we find **richer non-Boolean structures** that satisfy both
residuation principles and orthocomplementation?

Our Main Results

- ① **Impossibility result:** Any complemented lattice with integral residuated structure must be Boolean (Theorem 2)
- ② **Positive answer:** There exist orthomodular lattices that are also commutative Girard quantales but NOT Boolean algebras
- ③ **Explicit construction:** $C(\mathbb{R}^n)$ (closed subspaces of n -dimensional real space) is both:
 - An orthomodular lattice
 - A commutative Girard quantale
 - Orthocomplement = linear negation

Inversions

Definition 1

An **inversion** on a poset (P, \leq) is a map $(-)^{\circledast} : P \rightarrow P$ such that:

- $x \leq y \Leftrightarrow x^{\circledast} \geq y^{\circledast}$ (order-reversing)
- $x^{\circledast\circledast} = x$ (involution)

Properties

An inversion is an **involutive dual order automorphism (antitone involution)**.

Orthomodular Lattices

Definition 2

An **ortholattice** $(X, \wedge, 1, \perp)$ is a meet semi-lattice with inversion \perp satisfying:

- $x^{\perp\perp} = x$ (involution)
- $x \leq y$ implies $y^\perp \leq x^\perp$ (order-reversing)
- $x \wedge x^\perp = 0$ (where $0 = 1^\perp$)

Definition 3

An ortholattice is **orthomodular** if:

$$x \leq y \text{ and } x^\perp \wedge y = 0 \implies x = y$$

Example 4

$C(H)$ = closed subspaces of Hilbert space H with:

- Meet = intersection (\cap)
- Orthocomplement = orthogonal complement

Residuated Posets and Quantales

Definition 5

A **residuated poset** $(P, \leq, \odot, \rightarrow, \leftarrow)$ satisfies:

$$x \odot y \leq z \Leftrightarrow x \leq y \rightarrow z \Leftrightarrow y \leq z \leftarrow x$$

- **Integral**: unit 1 is the greatest element.
- **Unital**: has unit e (not necessarily greatest element).

Definition 6

A **quantale** is a complete lattice Q with associative multiplication satisfying:

$$x \odot \bigvee_{i \in I} x_i = \bigvee_{i \in I} (x \odot x_i) \quad \text{and} \quad \left(\bigvee_{i \in I} x_i \right) \odot x = \bigvee_{i \in I} (x_i \odot x)$$

Girard Posets

Definition 7

An element d in a residuated poset is:

- **Dualizing** if: $d \leftarrow (x \rightarrow d) = x = (d \leftarrow x) \rightarrow d$.
- **Cyclic** if: $x \odot y \leq d \Leftrightarrow y \odot x \leq d$.

Definition 8

A **Girard poset** is a residuated poset with a **cyclic dualizing element** d .

Linear Negation

Define $x^\odot = x \rightarrow d = d \leftarrow x$. Then P is unital with unit $e = d^\odot$.

Example 9

Any complete Boolean algebra is a Girard quantale with $d = 0$.

Characterization Theorem

Theorem 10

Let $(P, \leq, \odot, \rightarrow, \leftarrow)$ be a unital residuated poset with unit e . The following are equivalent:

- 1 P is a Girard poset
- 2 P has an inversion ${}^\odot$ with $x^\odot = x \rightarrow e^\odot = e^\odot \leftarrow x$
- 3 P has an inversion ${}^\odot$ with $t \odot x \leq y^\odot \Leftrightarrow y \odot t \leq x^\odot$

Consequence

Cyclic dualizing element $d = e^\odot$ is uniquely determined by:

$$d = \bigvee_{x \in P} (x \odot x^\odot)$$

Connection to Boolean Algebras

Proposition 11

Let $(P, \leq, \odot, \rightarrow, \leftarrow)$ be a Girard poset with inversion \odot .

Then P is a Boolean algebra if and only if:

- P is an idempotent residuated lattice
- The cyclic dualizing element is $d = 0$

Key Insight

In Boolean case: $x \odot x^\odot = x \wedge x^\odot = 0$ for all x

Complemented lattices

Definition 12

A bounded lattice $(X, \leq, \wedge, \vee, 0, 1)$ is *complemented* if, for every element $x \in P$, there exists an element $x' \in P$ (the complement of x) such that:

- $x \vee x' = 1$,
- $x \wedge x' = 0$.

Remark 13

- A *Boolean algebra* is a complemented lattice that is also distributive.
- An *ortholattice* is a complemented lattice where the complementation is unique and satisfies additional properties like *involution* ($x'' = x$) and *order-reversal* ($x \leq y \Rightarrow y' \leq x'$).

The Impossibility Result

Theorem 14

A complemented lattice admits an integral residuated structure if and only if it is a Boolean algebra

Proof Sketch

For integral residuated complemented lattice P :

- ① $x \odot x' \leq x \wedge x' = 0$ (integrality)
- ② $x = x \odot (x \vee x') = x \odot x$ (idempotency)
- ③ $x \odot y = x \wedge y$ (multiplication = meet)
- ④ P is distributive (multiplication distributes)
- ⑤ P is Boolean (complemented + distributive)

Corollary 15

A complemented lattice is an integral quantale iff it is a complete Boolean algebra

The Question

Theorem 14 tells us:

Integral case forces Boolean structure

Natural Question

Are there orthomodular lattices that are **unital** (but not integral)
commutative quantales?

Answer

YES! We construct explicit examples using real coordinate spaces

The Construction: $C(\mathbb{R}^n)$

Theorem 16

For any $n \in \mathbb{N}$, the lattice $C(\mathbb{R}^n)$ of closed subspaces of \mathbb{R}^n is:

- 1 An orthomodular lattice with orthocomplement:

$$U^\perp = \{(a_1, \dots, a_n) \in \mathbb{R}^n \mid \sum_{i=1}^n a_i \cdot u_i = 0 \text{ for all } (u_1, \dots, u_n) \in U\}$$

- 2 A commutative Girard quantale with multiplication:

$$S \odot T = \langle \{s \cdot t : s \in S, t \in T\} \rangle$$

(pointwise ring multiplication + linear span)

- 3 The orthocomplement coincides with linear negation: ${}^\perp = {}^\odot$

Key Properties of $C(\mathbb{R}^n)$

Unital Structure

- Unit: $e = \langle \{(1, \dots, 1)\} \rangle$
- Dualizing element: $d = e^\perp = \{(a_1, \dots, a_n) \mid \sum a_i = 0\}$

Verification of Cyclicity

For subspaces $S, T, U \subseteq \mathbb{R}^n$:

$$\begin{aligned} S \odot T \subseteq U^\perp &\Leftrightarrow \sum_{i=1}^n s_i \cdot t_i \cdot u_i = 0 \text{ for all } s \in S, t \in T, u \in U \\ &\Leftrightarrow \sum_{i=1}^n u_i \cdot t_i \cdot s_i = 0 \text{ for all } s \in S, t \in T, u \in U \\ &\Leftrightarrow U \odot T \subseteq S^\perp \end{aligned}$$

Result

By Theorem 10, $C(\mathbb{R}^n)$ is a commutative Girard quantale!

Why This Example Matters

- **Non-Boolean:** For $n \geq 2$, $C(\mathbb{R}^n)$ is not distributive
- **Concrete:** Explicitly defined on familiar spaces
- **Unifying:** Bridges quantum logic and linear logic
 - Orthomodular structure (quantum)
 - Girard quantale structure (linear logic)
- **Natural:** Operations have geometric meaning
 - Meet = intersection
 - Orthocomplement = orthogonal complement
 - Multiplication = pointwise product span

Extension to Other Spaces

Complex Case

For matrix spaces $M_n(\mathbb{C})$, we have from Egger and Kruml [5]:

- $C(M_n(\mathbb{C}))$ is orthomodular
- $C(M_n(\mathbb{C}))$ is a **non-commutative** involutive Girard quantale
- For $n \geq 2$, this is also non-Boolean

Schatten Classes

For infinite-dimensional Hilbert spaces, similar constructions yield:

- Interval schemes of spectra organized like Łukasiewicz logic
- Orthomodular structure via Frobenius scalar product
- Non-commutative Girard quantales

Summary of Main Results

- ① **Negative result:** Complemented + integral residuated \Rightarrow Boolean
- ② **Characterization:** Three equivalent conditions for Girard posets with inversions
- ③ **Positive construction:** $C(\mathbb{R}^n)$ provides non-Boolean examples that are both:
 - Orthomodular lattices
 - Commutative Girard quantales
- ④ **Extensions:** Similar results for complex spaces and infinite-dimensional cases

Significance

Theoretical Impact

- Unifies quantum logic and linear logic frameworks
- Identifies precise boundary between Boolean and non-Boolean cases
- Provides concrete algebraic structures for hybrid systems

Open Questions

- ① Does $C(\mathbb{C}^n)$ admit a compatible quantale structure?
- ② What logic corresponds to orthomodular Girard quantales?
- ③ Can we develop sound and complete proof systems?
- ④ Are there natural examples beyond Hilbert space subspaces?

Key References I

- [1] G. Birkhoff
Lattice Theory
Amer. Math. Soc., Providence, R.I., 1979
- [2] G. Kalmbach
Orthomodular Lattices
Academic Press, London, 1983
- [3] D. Kruml, J. Paseka
Algebraic and categorical aspects of quantales
Handbook of Algebra, vol. 5, Elsevier, 2008, pp. 323–362
- [4] D. Kruml, J. Paseka
Nuclei and conuclei on Girard posets
Proc. EUSFLAT 2019, Atlantis Press, 2019, pp. 289–296

Key References II

- [5] J.M. Egger, D. Kruml
Girard Couples of Quantales
Appl. Categor. Struct. 18, 123–133 (2010)
- [6] K.J. Rosenthal
Quantales and Their Applications
Pitman Research Notes 234, Longman, 1990

Thank you for your attention!

Questions?

Contact: paseka@math.muni.cz