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Let V1 = Mod(X;) and V, = Mod(32) be varieties over the signatures 71, T2,
respectively. An interpretation of V1 in Vo is a mapping I : 71 — Terms(72) which
preserves the satisfaction of X identities, i.e.

f(wlv"'vxn) %g(arl,...,a:n) 621 = VQ ': (If)(xlv"wxn) & (Ig)(xlavl'n)

This induces a preorder < on the class of varieties and we write V1 < Vs to indicate that
V1 interprets in Vo. If both V1 < V5 and Vo < V7, we say V1 and Vs are
equi-interpretable.

Example
® The variety of groups interprets in the variety of abelian groups.
® The variety of sets and the variety of semigroups are equi-interpretable.

® The variety V in the signature with a single ternary operation m(xyz) axiomatized

by the Maltsev identities m(yxzx) ~ m(xzay) ~ y interprets in the variety of groups,

by mapping m(xyz) to the term xy~1z.
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Theorem

The class of varieties modulo the equi-interpretability relation forms a bounded lattice.

® Roughly, the interpretability lattice of varieties orders equivalence classes of varieties
by 'strength of identities satisfied".

® Upwards closed subclasses of the interpretability poset are therefore natural objects
to study.

® A class of varieties C is said to be characterized by a strong Maltsev condition if
there exists a finitely presented (finite signature and finitely based) variety V such
that C={W:V < W}

® A class of varieties C is said to be characterized by a Maltsev condition if there exists

a countable sequence of finitely presented varieties V; = Vo = --- = V; = ... such
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Definition

An algebra A is called a Taylor algebra if it satisfies a nontrivial idempotent Maltsev
condition that does not interpret in the variety of sets.

® Siggers showed in 2015 that the class of locally finite Taylor varieties is characterized
by a strong Maltsev condition. OIlSak later proved that this is actually true for the
class of all Taylor varieties.

TaBLE 1. The six conditions

Type Omitting Class | Equivalent Property Strong for Lf. varieties? |Strong in general?
.-'\4{1} satisfies a nontrivial idempotent Maltsev condition YES (Siggers) YES (Olsdk)
M5y satisfies a nontrivial congruence identity (see [17]) NO (KKVW) NO
Miras) congruence n-permutable, for some n = 1 NO (KKVW) NO
.-'\/1{1_2} congruence meet semidistributive YES (KKVW) 77
Mii12s) congruence join semidistributive (see [17]) NO (KKVW) NO
Mi12.45 congruence n-permutable for some n and congru-

ence join semidistributive NO (KKVW) NO

Table taken from ‘Characterizations of several Maltsev conditions’ by Kozik, Krokhin,

Valeriote, Willard.
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Let A be an algebra and let 61, 0> be congruences of A. We define the algebra of
(01, 02)-matrices as follows.

r—1UY y—u
M(01,02) = Sg 422 ‘ ‘ (x,y) € 61 U{ ‘ ‘ (x,y) 602}
b ——

r—UY x

We then say that 0; term condition centralizes 02 if no matrix of M (61,603) has one
column which determines a pair of equal elements, while the opposite column determines
a pair of unequal elements. The term condition commutator is the least congruence §
that one can factor A by so that 01/ centralizes 62/5. We denote this & by [0, 02]1c.
An abelian congruence of A is an « such that [, o] =0
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Theorem (Kearnes + Szendrei, and Lipparini)

The following are equivalent for a variety V:
1. V is congruence meet semidistributive.

2. [v,vlrc =~y for all congruences ~y of algebras in V (such V are often called
congruence neutral varieties).

3. [v,7]rc =y, where «y is the principle congruence of Fy(x,y) generated by (x,y).

Informally, the above theorem is stating that the class of congruence meet
semidistributive varieties is exactly the class of varieties which have no nontrivial abelian
congruences, and the latter condition (2) holds for a variety V if and only if there are no
abelian principle congruences, which is true if and only if the ‘free’ principle congruence
for V is neutral.
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b—d d—f

L ‘ ,‘ ‘ € R implies eER

€ER

bi
a—
f—
€ R implies ‘
@ ——

o—a o——
O—— h O—— %

a—c¢c Cc—
b—d e6—
|l
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We say that R is a (2)-equivalence relation on A if it is (2)-reflexive, (2)-symmetric, and
(2)-transitive. If A is the universe of an algebra A, we say that R is

1. A (2)-tolerance of A if it is A-invariant, (2)-reflexive, and (2)-symmetric.

2. A (2)-congruence of A if it is A-invariant, (2)-reflexive, (2)-symmetric, and
(2)-transitive.

We refer to the (2)-congruence generated by Cgy(X). We now define the relation

r—1Y y—u
AW6,0)=Cey |1 | | :(zy) b u{ | - xy)EGQ} ,
r—1Y r—2

for congruences 67 and 6> of an algebra A. We say 0, hypercentralizes 0> if no matrix of
A(01,02) has one column which determines a pair of equal elements, while the opposite
column determines a pair of unequal elements. We denote by [61, 03] the corresponding
commutator.
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Let S < A2°. We define

w
e —Q
= —Q O3
_— Y m
S—38 o—0
N~~~

S~ S

€7 67

m m
"W—0 =—”y—0
L —38 o —3
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Let S < A2°. We define

b—:d b—f f—d
e H(S):= \ \ : e, f \ , \ €S| 3 and
a——=¢C a——e€ e C
b—:d b—d e—f
V(=9 | | :3ef]|] , | es
a——-c e— f a—c

It is not hard to see that

A(6,0) = U (VoH)"(M(0,0)).

n>0

In particular, M(60,6) C A(6,0), so it follows that [0, O2]rc < [01,02]H.
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The following two theorems are important for our characterization of congruence meet
semidistributivity.

Theorem
Let A be an algebra and let 6 be a congruence of A. The following are equivalent.
1. (x,y) €[0,0]n, and
T—1Y
2. \ | €a@,9)

r—2

Theorem (Follows from a result of Kearnes and Szendrei)

Let A be a Taylor algebra and let o be a congruence of A. Then

[, a]re = [a, o .
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T
EV(ZL‘, y) = Sng(m,y)22 ‘
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T
Ev(l‘, y) = SgFV(x,y)22 ‘
T

Theorem

Let V be a variety. The following are equivalent.
1. V is congruence meet semidistributive,
r—2x

2. ‘ ‘ € A(y,7), where ~y is the congruence of the two generated free algebra

T Yy
Fy(x,y) in V generated by the pair (z,y), and

| € Caa(By(@,9)) = UnsolV o B)"(Bv(z,1).
—Y



1]

stands for
t(zzzyyy) t(zzyyyz) = s(zzzyyy) s(zzyyyzx)
\ \ \ \
t(ryzyzy) tHayyyax) = s(zyzyey) — s(zyyyzz)
P}

T

N s
(=[] = R0
I TRET I
(6] Z[e] = [#] 2 [5]
I

=[]
TRET
][]

~ -~ |
= ©
=

Y %
= I = o =1 I e A =

The equational conditions ¥j,¥s,...,3%;,... which

determine a Maltsev condition for congruence meet

semidistributivity:
Yo

]

7N,

X3

DDDDDDDD
DD'D:D DED=DED
DDDDDDDD
DDDDDDDD
DD-DED D§D=D§D
DDDDDDDD
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TYTT — TTYT s(zyzz) — s(xzyx)
s [ stands for [ [
YyrT — yry s(yyrz) — s(ywyx)
TTTT — TYTXT = TYLL — TTYL = TTYL — TYLT = = TTYT — TYTXT = TYTL — TYYY
I So | | S1 | | S2 | e o o I So9p | I S2141 |
 YTTT —YYIT = Yyrs —yIys = yrys —yyre = = YTYT — YyrT = yyre —yyyy
R4 \¥

The condition A;



Term analysis






Recall that

r—x Yy—y y—Yy r—zr rv—Y Y——
EWz(x7y) = Sg(FZ)QQ ‘ ‘
r—x Yy—Yy rv——zx Yy—Y r—Y Y——x

i

We want to show that for any n, there exists [ so that it is impossible to glue together
such squares to obtain a diagram witnessing the condition X,,.



Recall that

r—z Yy—v y—Yy z—zr r—Y Y—u
]

EWz (l’,y) = Sg(FZ)QQ ‘
r—z Yy—Yy z—x Yy—Y rz—Y Yy—x

We want to show that for any n, there exists [ so that it is impossible to glue together
such squares to obtain a diagram witnessing the condition %,,. Let 77 = {so, ..., S214+1}
be the signature corresponding to A;.



Recall that

r—x Yy—y y—Yy r—zr rv—Y Y——
EWz(x7y) = Sg(FZ)QQ ‘ ‘
r—x Yy—Yy rv——zx Yy—Y r—Y Y——x

i

We want to show that for any n, there exists [ so that it is impossible to glue together
such squares to obtain a diagram witnessing the condition %,,. Let 77 = {so, ..., S214+1}
be the signature corresponding to A;. Consider the sets Fg C E1 C--- C Ep C ...
whose union is Eyy, (x,y) defined by

r—x Yy—4y y—y r—zx =z—Y Y—
E(): ‘ )
r—z Yy—4Yy r—xr Yy—y rz—4Y Yy—

and

) Y ) )

8——8

2
Ejr = {r®)” (a,8,7,6) : 7 € 7 and a, 3,8, € B} for k > 0.



Recall that
r—x Yy—y y—Yy r—zr rv—Y Y——

EWz (l’,y) = Sg(FZ)QQ ‘
r—z Yy—Yy z—x Yy—Y rz—Y Yy—x

i

We want to show that for any n, there exists [ so that it is impossible to glue together
such squares to obtain a diagram witnessing the condition %,,. Let 77 = {so, ..., S214+1}
be the signature corresponding to A;. Consider the sets Fg C E1 C--- C Ep C ...
whose union is Eyy, (x,y) defined by

r—x Yy—4y y—y r—zx =z—Y Y—
E(): ‘ )
r—z Yy—4Yy r—xr Yy—y rz—4Y Yy—

and

) Y ) )

8——8

2
Ejr = {r®)” (a,8,7,6) : 7 € 7 and a, 3,8, € B} for k > 0.

Our goal is to show that, for large enough I, there is no k& where
r—2

€ (Vo H)"(Ey).

r—Y
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T

N

TTTT — TYTX = TYTL — TTYL = TTYL — TYTX

I So [ [

YTTT — YYrr = Yyrr — yryr = yryr — yyrx
7

The condition A;

S1 | | S2 | o o o

The condition A;; is modeled by projections.

T
N
TTLL — TYTT TTYT — TYTT =
I So I delete s I S | . o
YTTT — YYyrx YTYT — Yyrxr =
v
x T4 ™
T
AN 4"
S10 535
0 " Interpret with projections
B
516 522
/ h \S
T 7 N\ Yy

T
v
= LTYT — TYTT = TYTT — TYYY
I S21 I I S2141 |
= YTryr —yyrr = yyrr —yyyy
S
Yy
//x
= TTYT — TYTT = TYTT — TYYY
I Sa; I I S2141 |
= YTYTr —yYyrr = yyrr —yyyy
A\
st 1 Yy
x
A\ 7"
I I
/ - S
7 S
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1
SE
1

1
SE
2

SFll
2041

TTXL
TTIY
TTYL
TTYY
TYTL
TYry
TYYx
TYyy
YTTT
yxrry
yxryx
yryy
Yyyrx
yyxy
yyyx
yyyy

x
s1(zxxy)
s1(xxyx)

< so(xxyy)

+— so(xyxx)
s1(ryry)
s1(zyyz)
s1(zyyy)
s1(yrzx)
s1(yzzy)
s1(yryz)
< so(yxyy)
< so(yyxx)
s1(yyzy)
s1(yyyx)
Yy

x
so(xxXy)
+ s1(xxyx)
s2(zTyY)
so(TyzT)
< s1(xyxy)
s2(zyyz)
s2(zyyy)
so(yxzx)
s2(yzzy)
+— s1(yxyx)
s2(yryy)
s2(yyz)
« s1(yyxy)
s2(yyyx)
Yy

x
sar+1(zzTy)
sar+1(zTyT)

 s21(xxyYy)

+ So91(XyxXx)
sar1(zyry)

)



Input tuples (a,b,c,d) € F} satisfy {a,b,c,d} N (FF\ FF~1) # 0

]Fk+1 ]F;C+1 IFécJﬁl IF;C+1 F;wrl

5o 51 ) e 5ol S2l+1
pppP p P . p p
pppq | so(pppq)  s1(pppq) s2(pppq) so(pppq)  sa+1(pppq)
ppap | so(ppgp)  si(ppgp) < si(pPap) soi(ppap)  sai+1(ppap)
ppqq | so(ppqq) < so(ppaa)  sa2(ppqq) ... sa(ppqq) < sa(ppaq)
papp | so(pgpp) < so(papp)  s2(pgpp) ... su(pgpp) < s21(pPaApPp)
papq | so(papq)  si(pgpq) < si(papq) sa(papq)  sa+1(papq)
pqqp | so(pqap)  s1(pqqp) sa(paqp) ... su(pagp)  s2y1(pagp)
Pq9qq 51(pqqq) s52(pqqq) s21(Pqqq) p

Input tuples (a,b,c,d) € FfF satisfy {a,b,c,d} N (FF\ FF™') # 0 and |{a,b,c,d}| >3

]F;C+1 F;C+1 ]F;V‘l’l F;C+1 ]Ff+1
5o 51 ) - 521 52141
abed | so(abed)  si(abed)  so(abed) soi(abed)  sg141(abed)
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Lemma
Letl > 1, and m > 1. Consider a set of 1;-terms of the form
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Iy _
T‘jl (CLJ'I s bj1 » Ci1s dj1) = Tj2

G _ .G . . ) .
T (ajl 3 D0 G5 dj1) =Tj, (a]w bizs Cjas d]2)7
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where G = Fyy, ,(U1<j<mias, bj, cj,d;}) is the algebra for W ; freely generated by
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s s s s

pPPP p P P P P

pppq | polpppg) s1(pppq) s2(pppq) sa(pppq)  saie1(ppPpg)
prap | so(ppgp) s1(ppgp) + s1(ppPgp) su(ppgp)  su+1(ppgp)
prqq | solppgg) + solPPaq) s2(ppaq) sat(ppgq) + s21(ppaq)
papp | polpgprp)  + solpapp) s2(pgpp) sar(pgpp)  + sa1(papp)
papq | so(papq) s1(pgpq) + s1(papq) sa(papq)  s2a+1(pgpq)
paqp | so(pggp) s1(pgqp) sa2(paqp) sul(pggp)  su+1(pggp)
Paqq q s1(pggqq) s2(pqqq) s21(pgqq) P

Intution: if i € Z, where Z is the set of indices of basic 7;-operation symbols being used,
then we at most need to use identities involving s;_1, s;, and s;1+1 to find the normal form
for some s;(a,b,c,d).

Hence, for fixed n, there is obviously [ large enough so that the lemma applies when |Z| = 4™.
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Summarizing:
e Fix n > 0 and choose [ so that the lemma applies ( [ > 2 - 4" for example).
® \We want to show that W; has no ¥,,-terms. Assume to the contrary, then

and

x PR
We defined Ey = \
:L' PR

8——8

r Yy—y v—zx Yy—Yy v —Y Y—

2
Eyiq = {T(FZ)Q (o, 8,7,0) :r €1 and o, 3,0, € Ex} for k > 0.



Summarizing:
e Fix n > 0 and choose [ so that the lemma applies ( [ > 2 - 4" for example).
® \We want to show that W; has no ¥,,-terms. Assume to the contrary, then

r—2x
| e UV o) (By(a,y).
r—0 n>0
T T Yy—y Yy—y v—z =—Y Y—0u
We defined Ey = ‘ , , , , , ‘ and
r—z Yy—Yy z—zx Yy—Y rz—Y Y——u
Brpr = {r®7 (0, 8,7,0) : v € 7 and , B,0, € By} for k > 0.
T—u
® Choose k minimal so that ‘ ‘ € Up>o(V o H)"(Ex(x,y)). Obviously, k # 0.
r—Y

We apply the lemma and find that £ — 1 works also, contradiction.



i (zzae) re(zzae)

N\ — — — 4
‘ ri(a1, B1,71,01) ‘;‘ r2(@2, B2; 12, 02) ‘_‘ 75(a, 85,75 05) ‘;‘ 76 (a6, Bs: 76, 06) ‘
I B Tl B I
‘ r3(as: B3, 73:03) ‘;‘ a4, Bas vas 04) ‘:‘ rr(az, Br; 7, 07) ‘;‘ rs(as, Bs, Vs, Is) ‘
I B _ B I
‘ 7“9(049759779-,59) ‘;‘ T10(0107/3107’Y107510) ‘_‘ 7"13(06137513,7137513) ‘;‘ r14(a14,614,’yl4,514)‘
I B Il B I
‘ r11(aa1, Bi1, V11, 011) ‘;‘ r12(0a2, fi2, V12, 012) ‘:‘ r15(aus, Bis, V15, 015) ‘;‘ r16(a16, Bi6; V16, 016)
% N\
r(zzre) ris(yyyy)

r(a, 8,7,90) stands for 7~ng< @ @>



Thank you for your attention!
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