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The class of finite direct powers of a finite simple non-abelian group
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Boolean power of G, whose automorphism group has ample generics.

What about abelian G?

Question (M, Homogeneous Structures, Oberwolfach 2025)

Let V be the vector space of countable dimension over a finite field.
Does GL(V) have ample generics?

Answer of experts
Should follow from WAP via CAP and Hrushovski property.
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» G is a topological (Polish) group under pointwise convergence.

» (h1,...,h,) € G" is generic if its orbit under the diagonal
conjugation action of G,

{(hf,....h%) | g € G},

is comeager, i.e., contains the intersection of countably many
dense open subsets of G".

» G has ample generics if it has generic n-tuples for each n € N.
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Theorem (Kechris, Rosendal 2007)
Assume G := AutM for countable M has ample generics.

1. Then G has the small index property (SIP)
i.e., each H < G of index < 2™ is open;
2. If M is also w-categorical, then G has

a. uncountable cofinality,

i.e., G is not a countable union of a chain of proper subgroups,
b. the Bergman property,

i.e., for each generating set 1 € E = E~! of G there exists

k € N such that G = EX.

Example

» The automorphism groups of N, random graph, Cantor space,
free group on countably many generators, ...
have ample generics.

> Aut(Q, <) has a generic element, but no generic pair.
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» For a Fraissé class K, let K,g' be the class of expansions

(Av ¢17 o 7¢n)
where A € K and ¢1, ..., ¢, are isomorphisms between
substructures of A (partial isomorphisms).
> h: (A;¢1,...,6n) = (B;91,...,¢p) is an embedding if
h: A — B is an injective homomorphism and

hoi(a) = ¢;h(a) forallac A i < n.

» [ C K is cofinal in K if every A € K embeds into some B € L.

Theorem (Kechris, Rosendal 2007)

Let K be a Fraissé class with Fraissé limit M, let n > 1.

If K; has the JEP and a cofinal subclass with AP (CAP for short),
then AutM has generic n-tuples.
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1. Let K be the class of finite dimensional vector spaces over a
finite field F.

2. K is a Fraissé class (has the HP, JEP, AP) with limit the
vector space F(“) of countable dimension over F.

3. K has the Hrushovski property: any partial isomorphism on
any F¥ extends to an automorphism.

4. Let L" be the class of fin dim vector spaces expanded with n
automorphisms.

5. By the Hrushovski property L" is cofinal in K.
6. L" has the JEP and AP.
7. Hence GL(F®)) has ample generics.
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Characterizing finite simple abelian Mal'cev algebras

Lemma (Gumm, Hermann, Smith, Clark, Krauss, Szendrei)

Let A be a finite simple abelian Mal'cev algebra. Then there exist
a finite field F and n > 1 such that up to isomorphism

> A is polynomially equivalent to a simple module
(F",+,{ax|a€ F™"});
> A is term equivalent to either
A= (F',x—y+z{ax+(1—a)y|ae F™"} p/(x))

where p,(x1,...,xn) == (x1,...,%,0,...,0) € F" for some
0<r<nor

A, := the expansion of Ay by translations x+c for all c € F".
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Homomorphisms between finite direct powers

Recall
L Ap = (F7x —y + 2z, {ax + (1 - a)y | a € F™"} p,(x)
2. Ay := the expansion of A; by x + ¢ for all c € F".

Lemma
h: Af—‘ — Aff is a homomorphism iff there exist P € Ft<k
(with P-1 =1 in case i = 2) and ¢ € p,(A)’ such that

h(X)=P-X+c forall x € A
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B w o=

Let K := {A* | k € N}.
Ko = {(AK,¢1,...,¢n) | k € N, 91, ... 9, partial isos}.
L" = {(Ak,¢1, oy ®n) |k ENP1,..., 0 € Aut(Ak) fixing 0}.
L™ is cofinal in K since
> every partial isomorphism on AK extends to an automorphism,
> affine maps on A¥ embed into linear maps on Ak*".

5. L" has the JEP and AP.

6. Hence Aut(A2”) has ample generics.
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4. Aut((A%")a7&n) has ample generics.
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