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Starting from a naive question

Theorem (M, Ruškuc 2025)
The class of finite direct powers of a finite simple non-abelian group
G has amalgamation.

Its generalized Fräıssé limit is a filtered
Boolean power of G , whose automorphism group has ample generics.

What about abelian G?

Question (M, Homogeneous Structures, Oberwolfach 2025)
Let V be the vector space of countable dimension over a finite field.
Does GL(V ) have ample generics?

Answer of experts
Should follow from WAP via CAP and Hrushovski property.
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Ample generics

Let M be a countable infinite structure, G := AutM.
▶ G is a topological (Polish) group under pointwise convergence.

▶ (h1, . . . , hn) ∈ Gn is generic if its orbit under the diagonal
conjugation action of G ,

{(hg
1 , . . . , h

g
n ) | g ∈ G},

is comeager, i.e., contains the intersection of countably many
dense open subsets of Gn.

▶ G has ample generics if it has generic n-tuples for each n ∈ N.
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Theorem (Kechris, Rosendal 2007)
Assume G := AutM for countable M has ample generics.

1. Then G has the small index property (SIP)
i.e., each H ≤ G of index < 2ℵ0 is open;

2. If M is also ω-categorical, then G has

a. uncountable cofinality,
i.e., G is not a countable union of a chain of proper subgroups,

b. the Bergman property,
i.e., for each generating set 1 ∈ E = E−1 of G there exists
k ∈ N such that G = E k .

Example

▶ The automorphism groups of N, random graph, Cantor space,
free group on countably many generators, . . .
have ample generics.

▶ Aut(Q,≤) has a generic element, but no generic pair.
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A sufficient condition for ample generics
▶ For a Fräıssé class K , let Kn

p be the class of expansions

(A;ϕ1, . . . , ϕn)

where A ∈ K and ϕ1, . . . , ϕn are isomorphisms between
substructures of A (partial isomorphisms).

▶ h : (A;ϕ1, . . . , ϕn) → (B;ψ1, . . . , ψn) is an embedding if
h : A → B is an injective homomorphism and

hϕi(a) = ψih(a) for all a ∈ A, i ≤ n.

▶ L ⊆ K is cofinal in K if every A ∈ K embeds into some B ∈ L.

Theorem (Kechris, Rosendal 2007)
Let K be a Fräıssé class with Fräıssé limit M, let n ≥ 1.
If Kn

p has the JEP and a cofinal subclass with AP (CAP for short),
then AutM has generic n-tuples.
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Example: finite vector spaces

1. Let K be the class of finite dimensional vector spaces over a
finite field F .

2. K is a Fräıssé class (has the HP, JEP, AP) with limit the
vector space F (ω) of countable dimension over F .

3. K has the Hrushovski property: any partial isomorphism on
any F k extends to an automorphism.

4. Let Ln be the class of fin dim vector spaces expanded with n
automorphisms.

5. By the Hrushovski property Ln is cofinal in Kn
p .

6. Ln has the JEP and AP.
7. Hence GL(F (ω)) has ample generics.
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Characterizing finite simple abelian Mal’cev algebras

Lemma (Gumm, Hermann, Smith, Clark, Krauss, Szendrei)
Let A be a finite simple abelian Mal’cev algebra. Then there exist
a finite field F and n ≥ 1 such that up to isomorphism

▶ A is polynomially equivalent to a simple module(
F n,+, {ax | a ∈ F n×n}

)
;

▶ A is term equivalent to either

A1 :=
(
F n, x − y + z , {ax + (1 − a)y | a ∈ F n×n}, pr (x)

)
where pr (x1, . . . , xn) := (x1, . . . , xr , 0, . . . , 0) ∈ F n for some
0 ≤ r ≤ n

or

A2 := the expansion of A1 by translations x+c for all c ∈ F n.
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Homomorphisms between finite direct powers

Recall
1. A1 :=

(
F n, x − y + z , {ax + (1 − a)y | a ∈ F n×n}, pr (x)

)

2. A2 := the expansion of A1 by x + c for all c ∈ F n.

Lemma
h : Ak

i → Aℓ
i is a homomorphism iff there exist P ∈ F ℓ×k

(with P · 1̄ = 1̄ in case i = 2) and c ∈ pr (A)ℓ such that

h(x) = P · x + c for all x ∈ Ak .
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The Fräıssé limit of direct powers

Theorem (M, Ruškuc 2026)
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where 2ω is the Cantor space.
3. Aut(A2ω ) ∼= (F r ,+)2ω ⋊ GL(F (ω)) for some finite field F , r ≥ 0.
4. Aut(A2ω ) has ample generics.
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Proof steps for 4. (ample generics)

1. Let K := {Ak | k ∈ N}.

2. Kn
p := {(Ak , ψ1, . . . , ψn) | k ∈ N, ψ1, . . . , ψn partial isos}.

3. Ln := {(Ak , ϕ1, . . . , ϕn) | k ∈ N, ϕ1, . . . , ϕn ∈ Aut(Ak) fixing 0}.
4. Ln is cofinal in Kn

p since

▶ every partial isomorphism on Ak extends to an automorphism,
▶ affine maps on Ak embed into linear maps on Ak+r .

5. Ln has the JEP and AP.
6. Hence Aut(A2ω ) has ample generics.
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2. The generalized Fräıssé limit of K is a filtered Boolean power

(A2ω )x1,...,xn
e1,...,en := {f : 2ω → A|f continuous, f (x1) = e1, .., f (xn) = en}

where 2ω is the Cantor space, e1, . . . , en is the list of all 1-element
subalgebras of A and x1, . . . , xn ∈ 2ω are distinct.

3. If A is non-abelian, then

Aut
(
(A2ω )x1,...,xn

e1,...,en

) ∼= N ⋊ Homeo (2ω)x1,...,xn

where N is the topological closure of
(
Aut(A)2ω )x1,...,xn

1,...,1 .

4. Aut
(
(A2ω )x1,...,xn

e1,...,en

)
has ample generics.



The general case (abelian and non-abelian combined)
Theorem (M, Ruškuc 2026)
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