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E. ={0,1,....k—1} for k>2

0" : the set of n-variable functions from EJ' into Ej
f: Ek><~--><Ek — Ek

Ok = G oY)

n=1
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What is a majority function?

A function f € (’),((3) is a majority function if it satisfies

f(x,x,y) = f(x,y,x) = f(y, x, x) = x.
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Wy = {(a’ b, C) € El? ’ Haa b, C}| = 3}
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Introduction

What is a majority function?

A function f € (’),((3) is a majority function if it satisfies

f(x,x,y) = f(x,y,x) = f(y, x, x) = x.

Let Wy C E? be defined by

Wy = {(a’ b, C) € El? ‘ Haa b, C}| = 3}

A majority function f (9,((3) is completely determined
by the values of f on W.
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Why do majority functions attract attention?

One reason is:
some of them are generators of minimal clones.

Theorem ( I. G. Rosenberg, 1986)

Any minimal function on Ej is of one of the five types :

1) unary function

2) binary idempotent function

) ternary majority function

4) x4+ y+ zin a Boolean group
5) semiprojection
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Why do majority functions attract attention?

One reason is:
some of them are generators of minimal clones.

Theorem ( I. G. Rosenberg, 1986)

Any minimal function on Ej is of one of the five types :

binary idempotent function
ternary majority function

semiprojection

Solved
(2), (3), (5): Not yet solved
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Why do majority functions attract attention?

One reason is:
some of them are generators of minimal clones.

Theorem ( I. G. Rosenberg, 1986)

Any minimal function on Ej is of one of the five types :

1) unary function

2) binary idempotent function

) ternary majority function

4) x+ y+ zin a Boolean group
5)

—_— o~~~ —~
W

semiprojection

(1), (4): Solved
(2), (3), (5): Not yet solved
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To prove minimality for majority functions, we have the
following (due to B. Csakany).
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Lemma
Letf e O,(f) be a majority function. Then,
f generates a minimal clone
if and only if
f € (g) for any essentially 3-ary g < (f).
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The point is, we need to prove f € (g) only for “essentially
3-ary” function g.
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Introduction

To prove minimality for majority functions, we have the
following (due to B. Csakany).

Lemma
Letf e O,(f) be a majority function. Then,
f generates a minimal clone
if and only if
f € (g) for any essentially 3-ary g < (f).

The point is, we need to prove f € (g) only for “essentially
3-ary” function g.

Hence, in search of minimal majority functions, we can stay
only in the range of 3-ary functions.
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Yo Let M= {fe (’),((3) | f: majority function}.
Definition
(1) Forf,f eM, f—f if f e/(f).
(2) Forf,feM, f« f if f e(f) and fe (f).
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Relations on Majority Functions

Let M= {fe (’),((3) | f: majority function}.

Definition
(1) Forf,f e M, f— f
() Forf,f e M, f <« f

Fact
(1) Forf,f e M, f— f

(2) Forf,f e M, f f'

if e (f).
if fe(fy and fe (f).

iff (') C (f).
iff (f) = (f).
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Let M= {fe (’),&3) | f: majority function}.

Definition
(1) Forf,f e M, f— f
() Forf,f e M, f <« f

Fact
(1) Forf,f e M, f— f

(2) Forf,f e M, f f'

if e (f).
if fe(fy and fe (f).

iff (') C (f).
iff (f) = (f).

Clearly, « is an equivalence relation on M.
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Let Q = M/ <.

The relation = is defined on Q.
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This definition is well-defined because the quotient sets are
closed under «.
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The relation = is defined on Q.

Definition
ForS,8e€Q, S=5if 3feS) 3 e8) f-f.

This definition is well-defined because the quotient sets are
closed under «.

Lemma
The relation = is a partial order on Q, thatis, (Q,=) is
a finite poset.
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Lemma

If Sis a “minimal element” in (Q,=-), then S consists of
minimal functions, i.e., any f in S is a minimal function.
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assuming theorder0 <1 < --- <k —11in E.
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Then [f] is proved to be a singleton.

Moreover,
[f] is @ minimal element in Q and, hence, f is a minimal
function.
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Examples

(1) Letf(x,y,z) = max{x,y,z},

assuming theorder0 <1 < --- <k —11in E.

Then [f] is proved to be a singleton.

Moreover,
[f] is @ minimal element in Q and, hence, f is a minimal
function.

Clearly, f'(a, b,c) = median{a, b, c} and
f’(a, b, c) = min{a, b, c} have the same property.



Majority
Functions

(2) Let f € M be defined by
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f(x,y,2) = 1 otherwise
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(2) Let f € M be defined by

0 if 0 € {x,y,z},
Exampes f(x.y.2) = 1 otherwise

Then [f] is a singleton.
Moreover,

[f] is @ minimal element in Q and, hence, f is a minimal
function.
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0 if 0 € {x,y,z},
f(x,y,2) = 1 otherwise

Examples

Then [f] is a singleton.

Moreover,
[f] is @ minimal element in Q and, hence, f is a minimal
function.

This f easily admits a generalization as shown in the
next slide.
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e, S{US =E,, S1NS =0, S 75@, Sz#@.

Let ay,a> € Ex be any elements s.t. a; € Sjfori=1,2.
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(3) Generalization of (2):
e Let (Sy, Sz) € P(Ex)? be a (non-trivial) partition of E,
e, SfUS =E, S1NS =0, S #0, So # 0.
Let ay,a> € Ex be any elements s.t. a; € Sjfori=1,2.

Let f € M be defined by

ay if a1 € {x,y,z},
fix.y,2) = a otherwise

Then, as above, [f] is a singleton and f is a minimal
function.
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Height of @
How tall is Q ?

Answer:  ??? ... Sorry, | don’t know !!

But, | can give a (fairly long) chain of classes in Q.
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Now, we want to study the shape of the poset Q.

Examples
Height of Q@
How tall is Q ?

Answer:  ?2?? ... Sorry, | don’t know !!

But, | can give a (fairly long) chain of classes in Q.

The next lemma plays a key role in the rest of my talk.
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Key Lemma
Forf,ge M, if g(Wi)\f(Wx)#0 then f 4 g.

Recall: W, = {(a,b,c) € E2||{a,b,c}| = 3}.

Proof. Let d € g(Wk) \ f(Wk). There exists (a, b, c) € W
such that g(a,b,c) = d.

For any h € (f) we shall show h # g. Suppose his
expressed as

hix,y,z) = HTi(x,y,2), Ta(X, ¥,2), T3(X, ¥, 2))
for Ty, To, T3 € (f). So, for (a, b, c) € Wy
h(a,b,c) = f(Ti(a,b,c), T2(a,b,c), Tz(a,b,c)).
(Cont.)
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h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).
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Height of Q
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For (a, b,c) € Wk, we have g(a, b,c) =d and
h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).

Case 1. The values of Tq(a, b, c), T>(a, b, c), T3(a, b, c) are
pairwise distinct:

Case 2. Ti(a,b,c) = Ti(a,b,c) and T;, T; have the form

Case 3. Ti(a,b,c) = Ti(a, b, c) and T; has the form f(- - -)
and T is a variable:

Case 4. Ti(a,b,c) = Ti(a,b,c) and T; and T; are variables:
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For (a, b,c) € Wk, we have g(a, b,c) =d and
h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).
Case 1. The values of Tq(a, b, c), T>(a, b, c), T3(a, b, c) are

pairwise distinct:
Then h(a, b, c) € f(Wk) and h(a, b, c) # d, implying h # g.

Case 2. Ti(a,b,c) = Ti(a,b,c) and T;, T; have the form

Case 3. Ti(a,b,c) = Ti(a, b, c) and T; has the form f(- - -)
and T is a variable:

Case 4. Ti(a,b,c) = Ti(a,b,c) and T; and T; are variables:
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For (a, b,c) € Wk, we have g(a, b,c) =d and
h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).

Case 1. The values of Tq(a, b, c), T>(a, b, c), T3(a, b, c) are
pairwise distinct:

Then h(a, b, c) € f(Wk) and h(a, b, c) # d, implying h # g.

Case 2. Ti(a,b,c) = Ti(a,b,c) and T;, T; have the form

Then h(a,b,c) = Ti(a,b,c) € f(Wk) and h(a, b, c) # d,

implying h # g.

Case 3. Ti(a,b,c) = Ti(a, b, c) and T; has the form f(- - -)
and T is a variable:

Case 4. Ti(a,b,c) = Ti(a,b,c) and T; and T; are variables:
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h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).
Case 1. The values of Tq(a, b, c), T>(a, b, c), T3(a, b, c) are

Height of © pairwise distinct:
Then h(a, b, c) € f(Wk) and h(a, b, c) # d, implying h # g.

Case 2. Ti(a,b,c) = Ti(a,b,c) and T;, T; have the form

f(---)and f(---):
Then h(a,b,c) = Ti(a,b,c) € f(Wk) and h(a, b, c) # d,
implying h # g.

Case 3. Ti(a,b,c) = Ti(a, b, c) and T; has the form f(- - -)
and T is a variable:
Then similarly as above, h # g.

Case 4. Ti(a,b,c) = Ti(a,b,c) and T; and T; are variables:
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For (a, b,c) € Wk, we have g(a, b,c) =d and
h(a,b,c) = f(Ty(a,b,c), To(a,b,c), T3(a, b,c)).

Case 1. The values of Tq(a, b, c), T>(a, b, c), T3(a, b, c) are
pairwise distinct:
Then h(a, b, c) € f(Wk) and h(a, b, c) # d, implying h # g.

Case 2. Ti(a,b,c) = Ti(a,b,c) and T;, T; have the form
f(---)and f(---):

Then h(a,b,c) = Ti(a,b,c) € f(Wk) and h(a, b, c) # d,

implying h # g.

Case 3. Ti(a,b,c) = Ti(a, b, c) and T; has the form f(- - -)
and T is a variable:

Then similarly as above, h # g.

Case 4. Ti(a,b,c) = Ti(a,b,c) and T; and T; are variables:
Since (a, b, c) € W, we must have the same variable (say,
x) for T; and T;. Then his a projection and so h # g. O
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Key Lemma
Forf,geM, if g(Wk)\ f(Wx)#0 then f /4 g.

Examples

Height of @ . .
e Later, we shall make use of the following easy corollaries.

Corollary 1
Forf,ge M, if f(Wy)cC g(Wk) then f 4 g.

Corollary 2
For f,g € M,

if g(Wi) \ f(Wg) # 0 and f(Wj)\ g(Wk) # 0
then f4A g and g A f.
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Now, as promised, we present a (fairly long) chain of
classes in Q.

Definition
Fort € Ex (k > 2), let f; € M be the majority function which
takes the following values on (a, b, c) € W.

t if min{a, b,c} > t,
fi(a b,c)=¢ min{a,b,c} -1 if 1 <min{a,b,c} <t,
0 if min{a,b,c} =0

[ Here, the natural order and the subtraction “—” are
assumed on Ey. |
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Now, as promised, we present a (fairly long) chain of
classes in Q.

Definition
Fort € Ex (k > 2), let f; € M be the majority function which
takes the following values on (a, b, c) € W.

t if min{a, b,c} > t,
fi(a b, c) = min{a,b,c} —1 if 1 <min{a, b,c} <,
0 if min{a,b,c} =0

[ Here, the natural order and the subtraction “—” are
assumed on Ey. |

Note. fi (W) ={uec Ex|0<u<t}.
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Example. Let k > 5. For t = 5, the definition of f5 on W is

5 if min{a, b,c} > 6,
fs(a,b,c) = { min{a,b,c} —1 if 1 <min{a, b, c} <5,
Height of @ 0 if min{a,b,c} =0

and, therefore, the values of f5 on W, are as follows.

5 if min{a,b,c} > 6,
if min{a,b,c} =5,
if min{a, b,c} = 4,
if min{a, b,c} =3,
if min{a,b,c} =2
if min{a,b,c} =0,1

fs(a, b, c) =

O = NN W b
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ftf1(X,y,Z) ~ ft(f[(X,y,Z),X,y)
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Lemma
For t € Ex \ {0}, the following holds.

ftf1(X,y,Z) ~ ft(ft(X,y,Z),X,y)

Examples

Height of Q@
Proof. Easy. If you watch the following for 2 minutes,

you would agree.

t if min{a, b,c} > t,
fi(a,b,c) = min{a,b,c} —1 if 1 <min{a, b,c} <t
0 if min{a,b,c} =0,
t—1 if min{a,b,c} >t—1,
fi_1(a b,c) = min{a,b,c} —1 if 1 <min{a,b,c} <t—1,
0 if min{a,b,c} =0.
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Lemma
For t € Ex \ {0}, the following holds.

ftf1(X,y,Z) ~ ft(ft(X,y,Z),X,y)

Examples

Height of Q@
Proof. Easy. If you watch the following for 2 minutes,

you would agree.

t if min{a, b,c} > t,
fi(a,b,c) = min{a,b,c} —1 if 1 <min{a, b,c} <t
0 if min{a,b,c} =0,
t—1 if min{a,b,c} >t—1,
fi_1(a b,c) = min{a,b,c} —1 if 1 <min{a,b,c} <t—1,
0 if min{a,b,c} =0.
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fuq > feo> > bhb>fi> fo
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Notation
Forf,geM, fr>rg < f—gand g-ATf.

Examples

Height of @ Proposition

fk_1 > fk_g > - B fg > f1 > fo

Proof.
e By the above lemma,

fk,1—)fk,2—>-~—>f2—>f1—>fo.

e Since f;_1 (W) C fi (W), Corollary 1 of Key Lemma
yields

foAhAhr Pl .
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Size of @ Answer:  Very big !!

Shape of Q (2)
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How big is Q ?

Examples

Size of @ Answer:  Very big !!

We shall show the existence of a set of
mutually incomparable classes
in Q, whose size is exponential of k.
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Size of Q For f’ ge M’

it g(Wi) \ f(Wk) # 0 and f(Wi)\ g(Wk) # 0
then f A g and g A f.
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For each U € H, take fy € M which satisfies f,(Wy) = U.
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For each U € H, take fy € M which satisfies f,(Wy) = U.

Examples

Size of Q
Lemma
Forany U,U’ € H,
if U # U’ then [fy] and [fy/] are incomparable,
i.e., [fu] # [fu] and [fu] # [fu].
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For convenience, suppose K is even.

Let H={UeP(Ex)||Ul =k/2}.
For each U € H, take fy € M which satisfies f,(Wy) = U.

Examples

Size of Q
Lemma
Forany U,U’ € H,
if U # U’ then [fy] and [fy/] are incomparable,
i.e., [fu] # [fu] and [fu] # [fu].

Proof. Since |U| = |U'| (= k/2), there is no inclusion
relation between U and U’ unless U = U'.

Therefore, by Corollary 2, we have fy 4 fy and fyr 4 fur,
which imply [fy] # [fu] and [fy/] % [fu]. O
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Let S={[ful €eQ|UeH}
Proposition

(1) S is a set of mutually incomparable classes in Q.
(2) 18] =242

Size of Q

Proof. (1) By the above lemma.

(2) Since |S| = |H| = < kl/(z > the claim follows easily as
k B k! _ k(k—1)---(k/2+1)
(k/2> -~ (k/2)\(k/2)0 (k/2)!
kj2—! k/2—!

k—r k)2 k—r K/2
pr— p— —_— >
H)k/Z—r 2 rl—‘[)k—2r 2 2
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Quite recently,
Martin Goldstern (TU) gave me a better lower bound on
the size of Q with simple proof.
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Size of Q
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Final remark

Quite recently,
Martin Goldstern (TU) gave me a better lower bound on
the size of Q with simple proof.

Proposition
S k!
o > %

Proof. Let R be any linear order on E,. Then the median

function mg generates no other ternary function (except for
projections), and, for different orders R and S, the functions
mpg and mg must be different - except when R is the inverse
order of S. O
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Final remark

Quite recently,
Martin Goldstern (TU) gave me a better lower bound on
the size of Q with simple proof.

Proposition
S k!
o > %

Proof. Let R be any linear order on E,. Then the median

function mg generates no other ternary function (except for
projections), and, for different orders R and S, the functions
mpg and mg must be different - except when R is the inverse
order of S. O

Note. A trivial upper bound: |[M]| = kkk-Dk=2)
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Thank you
for

your attention !
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