

Introduction

Relations on
M

Examples

Height of Q

Size of Q

A Pastime Study on Majority Functions

Hajime Machida

(Tokyo, Japan)

AAA108

February 6 7 8

Vienna, Austria

Introduction

Relations on
 \mathbb{M}

Examples

Height of \mathbb{Q}

Size of \mathbb{Q}

Outline

1 Introduction

2 Relations on \mathbb{M}

3 Height of \mathbb{Q}

4 Size of \mathbb{Q}

- **Pastime** (*noun*) something that you enjoy doing when you are not working (SYN) **hobby**

⟨⟨ Oxford Dictionary ⟩⟩

- **Pastime** (*noun*) something that you enjoy doing when you are not working (SYN) **hobby**

⟨⟨ Oxford Dictionary ⟩⟩

- **Pastime** (*noun*) something that you do because you think it is enjoyable or interesting → **hobby**

⟨⟨ LONGMAN Dictionary of Contemporary English ⟩⟩

- **Pastime** (*noun*) something that you **enjoy** doing when you are not working (SYN) **hobby**

⟨⟨ Oxford Dictionary ⟩⟩

- **Pastime** (*noun*) something that you do because you think it is **enjoyable** or interesting → **hobby**

⟨⟨ LONGMAN Dictionary of Contemporary English ⟩⟩

Introduction

Relations on
M

Examples

Height of Q

Size of Q

I Introduction

Notation

Introduction

Relations on
M

Examples

Height of Q

Size of Q

$$E_k = \{0, 1, \dots, k - 1\} \quad \text{for } k > 2$$

Notation

$$E_k = \{0, 1, \dots, k-1\} \quad \text{for } k > 2$$

$\mathcal{O}_k^{(n)}$: the set of n -variable functions from E_k^n into E_k

$$f : E_k \times \dots \times E_k \longrightarrow E_k$$

$$\mathcal{O}_k = \bigcup_{n=1}^{\infty} \mathcal{O}_k^{(n)}$$

Majority Function

What is a majority function?

A function $f \in \mathcal{O}_k^{(3)}$ is a *majority function* if it satisfies

$$f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x.$$

Majority Function

Introduction

Relations on
M

Examples

Height of Q

Size of Q

What is a majority function?

A function $f \in \mathcal{O}_k^{(3)}$ is a *majority function* if it satisfies

$$f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x.$$

Let $W_k \subseteq E_k^3$ be defined by

$$W_k = \{(a, b, c) \in E_k^3 \mid |\{a, b, c\}| = 3\}.$$

Majority Function

Introduction

Relations on
M

Examples

Height of Q

Size of Q

What is a majority function?

A function $f \in \mathcal{O}_k^{(3)}$ is a *majority function* if it satisfies

$$f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx x.$$

Let $W_k \subseteq E_k^3$ be defined by

$$W_k = \{(a, b, c) \in E_k^3 \mid |\{a, b, c\}| = 3\}.$$

A majority function $f \in \mathcal{O}_k^{(3)}$ is completely determined by the values of f on W_k .

Why do majority functions attract attention?

Introduction

Relations on
 M

Examples

Height of Q

Size of Q

Why do majority functions attract attention?

One reason is:

some of them are generators of **minimal clones**.

Introduction

Relations on
 M

Examples

Height of Q

Size of Q

Why do majority functions attract attention?

One reason is:

some of them are generators of **minimal clones**.

Theorem (I. G. Rosenberg, 1986)

Any minimal function on E_k is of one of the five types :

- (1) unary function
- (2) binary idempotent function
- (3) ternary majority function
- (4) $x + y + z$ in a Boolean group
- (5) semiprojection

Why do majority functions attract attention?

One reason is:

some of them are generators of **minimal clones**.

Theorem (I. G. Rosenberg, 1986)

Any minimal function on E_k is of one of the five types :

- (1) unary function
- (2) binary idempotent function
- (3) ternary majority function
- (4) $x + y + z$ in a Boolean group
- (5) semiprojection

(1), (4): Solved

(2), (3), (5): **Not** yet solved

Why do majority functions attract attention?

One reason is:

some of them are generators of **minimal clones**.

Theorem (I. G. Rosenberg, 1986)

Any minimal function on E_k is of one of the five types :

- (1) unary function
- (2) binary idempotent function
- (3) ternary majority function
- (4) $x + y + z$ in a Boolean group
- (5) semiprojection

(1), (4): Solved

(2), (3), (5): **Not** yet solved

Minimality check for majority functions

Introduction

Relations on
 M

Examples

Height of Q

Size of Q

Minimality check for majority functions

To prove minimality for **majority functions**, we have the following (due to B. Csákány).

Minimality check for majority functions

To prove minimality for **majority functions**, we have the following (due to B. Csákány).

Lemma

Let $f \in O_k^{(3)}$ be a majority function. Then,

f generates a **minimal clone**

if and only if

$f \in \langle g \rangle$ for any **essentially 3-ary** $g \in \langle f \rangle$.

Minimality check for majority functions

To prove minimality for **majority functions**, we have the following (due to B. Csákány).

Lemma

Let $f \in O_k^{(3)}$ be a majority function. Then,

f generates a **minimal clone**

if and only if

$f \in \langle g \rangle$ for any **essentially 3-ary** $g \in \langle f \rangle$.

The point is, we need to prove $f \in \langle g \rangle$ only for “**essentially 3-ary**” function g .

Minimality check for majority functions

To prove minimality for **majority functions**, we have the following (due to B. Csákány).

Lemma

Let $f \in O_k^{(3)}$ be a majority function. Then,

f generates a **minimal clone**

if and only if

$f \in \langle g \rangle$ for any **essentially 3-ary** $g \in \langle f \rangle$.

The point is, we need to prove $f \in \langle g \rangle$ only for “**essentially 3-ary**” function g .

Hence, in search of **minimal** majority functions, we can stay only in the range of 3-ary functions.

Introduction

Relations on
M

Examples

Height of Q

Size of Q

II Main Part

Relations on Majority Functions

Introduction

Relations on
 \mathbb{M}

Examples

Height of \mathbb{Q}

Size of \mathbb{Q}

Let $\mathbb{M} = \{f \in \mathcal{O}_k^{(3)} \mid f : \text{majority function}\}.$

Relations on Majority Functions

Introduction

Relations on
M

Examples

Height of Q

Size of Q

Let $\mathbb{M} = \{f \in \mathcal{O}_k^{(3)} \mid f : \text{majority function}\}.$

Definition

- (1) For $f, f' \in \mathbb{M}$, $f \rightarrow f'$ if $f' \in \langle f \rangle$.
- (2) For $f, f' \in \mathbb{M}$, $f \leftrightarrow f'$ if $f' \in \langle f \rangle$ and $f \in \langle f' \rangle$.

Relations on Majority Functions

Introduction

Relations on
M

Examples

Height of Q

Size of Q

Let $\mathbb{M} = \{f \in \mathcal{O}_k^{(3)} \mid f : \text{majority function}\}.$

Definition

- (1) For $f, f' \in \mathbb{M}$, $f \rightarrow f'$ if $f' \in \langle f \rangle$.
- (2) For $f, f' \in \mathbb{M}$, $f \leftrightarrow f'$ if $f' \in \langle f \rangle$ and $f \in \langle f' \rangle$.

Fact

- (1) For $f, f' \in \mathbb{M}$, $f \rightarrow f'$ iff $\langle f' \rangle \subseteq \langle f \rangle$.
- (2) For $f, f' \in \mathbb{M}$, $f \leftrightarrow f'$ iff $\langle f \rangle = \langle f' \rangle$.

Relations on Majority Functions

[Introduction](#)[Relations on
M](#)[Examples](#)[Height of Q](#)[Size of Q](#)

Let $\mathbb{M} = \{f \in \mathcal{O}_k^{(3)} \mid f : \text{majority function}\}.$

Definition

- (1) For $f, f' \in \mathbb{M}$, $f \rightarrow f'$ if $f' \in \langle f \rangle$.
- (2) For $f, f' \in \mathbb{M}$, $f \leftrightarrow f'$ if $f' \in \langle f \rangle$ and $f \in \langle f' \rangle$.

Fact

- (1) For $f, f' \in \mathbb{M}$, $f \rightarrow f'$ iff $\langle f' \rangle \subseteq \langle f \rangle$.
- (2) For $f, f' \in \mathbb{M}$, $f \leftrightarrow f'$ iff $\langle f \rangle = \langle f' \rangle$.

Clearly, \leftrightarrow is an equivalence relation on \mathbb{M} .

Introduction

Relations on
 \mathbb{M}

Examples

Height of \mathbb{Q}

Size of \mathbb{Q}

Let $\mathbb{Q} = \mathbb{M}/\leftrightarrow$.

Let $\mathbb{Q} = \mathbb{M}/\leftrightarrow$.

The relation \Rightarrow is defined on \mathbb{Q} .

Let $\mathbb{Q} = \mathbb{M}/\leftrightarrow$.

The relation \Rightarrow is defined on \mathbb{Q} .

Definition

For $S, S' \in \mathbb{Q}$, $S \Rightarrow S'$ if $(\exists f \in S) (\exists f' \in S') f \rightarrow f'$.

Let $\mathbb{Q} = \mathbb{M}/\leftrightarrow$.

The relation \Rightarrow is defined on \mathbb{Q} .

Definition

For $S, S' \in \mathbb{Q}$, $S \Rightarrow S'$ if $(\exists f \in S) (\exists f' \in S') f \rightarrow f'$.

This definition is **well-defined** because the quotient sets are closed under \leftrightarrow .

Let $\mathbb{Q} = \mathbb{M}/\leftrightarrow$.

The relation \Rightarrow is defined on \mathbb{Q} .

Definition

For $S, S' \in \mathbb{Q}$, $S \Rightarrow S'$ if $(\exists f \in S) (\exists f' \in S') f \rightarrow f'$.

This definition is **well-defined** because the quotient sets are closed under \leftrightarrow .

Lemma

The relation \Rightarrow is a partial order on \mathbb{Q} , that is, $(\mathbb{Q}, \Rightarrow)$ is a finite poset.

Introduction

Relations on
 M

Examples

Height of Q

Size of Q

Concerning minimal clones:

Introduction

Relations on
 \mathbb{M}

Examples

Height of \mathbb{Q}

Size of \mathbb{Q}

Concerning minimal clones:

Lemma

If S is a “minimal element” in $(\mathbb{Q}, \Rightarrow)$, then S consists of **minimal functions**, i.e., any f in S is a minimal function.

Examples

Examples of equivalence classes [f]

Examples

Examples of equivalence classes $[f]$

(1) Let $f(x, y, z) = \max\{x, y, z\}$,
assuming the order $0 < 1 < \dots < k - 1$ in E_k .

Examples

Examples of equivalence classes $[f]$

(1) Let $f(x, y, z) = \max\{x, y, z\}$,
assuming the order $0 < 1 < \dots < k - 1$ in E_k .

Then $[f]$ is proved to be a singleton.
Moreover,
 $[f]$ is a minimal element in \mathbb{Q} and, hence, f is a minimal function.

Examples

Examples of equivalence classes $[f]$

(1) Let $f(x, y, z) = \max\{x, y, z\}$,

assuming the order $0 < 1 < \dots < k - 1$ in E_k .

Then $[f]$ is proved to be a singleton.

Moreover,

$[f]$ is a minimal element in \mathbb{Q} and, hence, f is a minimal function.

Clearly, $f'(a, b, c) = \text{median}\{a, b, c\}$ and
 $f''(a, b, c) = \min\{a, b, c\}$ have the same property.

Introduction

Relations on
M

Examples

Height of Q

Size of Q

(2) Let $f \in \mathbb{M}$ be defined by

$$f(x, y, z) = \begin{cases} 0 & \text{if } 0 \in \{x, y, z\}, \\ 1 & \text{otherwise} \end{cases}$$

Introduction

Relations on
M

Examples

Height of Q

Size of Q

(2) Let $f \in \mathbb{M}$ be defined by

$$f(x, y, z) = \begin{cases} 0 & \text{if } 0 \in \{x, y, z\}, \\ 1 & \text{otherwise} \end{cases}$$

Then $[f]$ is a singleton.

Moreover,

$[f]$ is a minimal element in \mathbb{Q} and, hence, f is a minimal function.

(2) Let $f \in \mathbb{M}$ be defined by

$$f(x, y, z) = \begin{cases} 0 & \text{if } 0 \in \{x, y, z\}, \\ 1 & \text{otherwise} \end{cases}$$

Then $[f]$ is a singleton.

Moreover,

$[f]$ is a minimal element in \mathbb{Q} and, hence, f is a minimal function.

This f easily admits a generalization as shown in the next slide.

(3) Generalization of (2):

(3) Generalization of (2):

Let $(S_1, S_2) \in \mathcal{P}(E_k)^2$ be a (non-trivial) partition of E_k ,
i.e., $S_1 \cup S_2 = E_k$, $S_1 \cap S_2 = \emptyset$, $S_1 \neq \emptyset$, $S_2 \neq \emptyset$.

Let $a_1, a_2 \in E_k$ be any elements s.t. $a_i \in S_i$ for $i = 1, 2$.

(3) Generalization of (2):

Let $(S_1, S_2) \in \mathcal{P}(E_k)^2$ be a (non-trivial) partition of E_k , i.e., $S_1 \cup S_2 = E_k$, $S_1 \cap S_2 = \emptyset$, $S_1 \neq \emptyset$, $S_2 \neq \emptyset$.

Let $a_1, a_2 \in E_k$ be any elements s.t. $a_i \in S_i$ for $i = 1, 2$.

Let $f \in \mathbb{M}$ be defined by

$$f(x, y, z) = \begin{cases} a_1 & \text{if } a_1 \in \{x, y, z\}, \\ a_2 & \text{otherwise} \end{cases}$$

(3) Generalization of (2):

Let $(S_1, S_2) \in \mathcal{P}(E_k)^2$ be a (non-trivial) partition of E_k , i.e., $S_1 \cup S_2 = E_k$, $S_1 \cap S_2 = \emptyset$, $S_1 \neq \emptyset$, $S_2 \neq \emptyset$.

Let $a_1, a_2 \in E_k$ be any elements s.t. $a_i \in S_i$ for $i = 1, 2$.

Let $f \in \mathbb{M}$ be defined by

$$f(x, y, z) = \begin{cases} a_1 & \text{if } a_1 \in \{x, y, z\}, \\ a_2 & \text{otherwise} \end{cases}$$

Then, as above, $[f]$ is a singleton and f is a minimal function.

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

How tall is \mathbb{Q} ?

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

How tall is \mathbb{Q} ?

Answer:

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

How tall is \mathbb{Q} ?

Answer: **???** ... Sorry, I don't know !!

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

How tall is \mathbb{Q} ?

Answer: **???** ... Sorry, I don't know !!

But, I can give a (fairly long) chain of classes in \mathbb{Q} .

Shape of \mathbb{Q} (1)

Now, we want to study the **shape** of the poset \mathbb{Q} .

How tall is \mathbb{Q} ?

Answer: **???** ... Sorry, I don't know !!

But, I can give a (fairly long) chain of classes in \mathbb{Q} .

The next lemma plays a key rôle in the rest of my talk.

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Introduction

Relations on
 \mathbb{M}

Examples

Height of \mathbb{Q}

Size of \mathbb{Q}

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Recall: $W_k = \{(a, b, c) \in E_k^3 \mid |\{a, b, c\}| = 3\}$.

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Recall: $W_k = \{(a, b, c) \in E_k^3 \mid |\{a, b, c\}| = 3\}$.

Proof. Let $d \in g(W_k) \setminus f(W_k)$. There exists $(a, b, c) \in W_k$ such that $g(a, b, c) = d$.

For any $h \in \langle f \rangle$ we shall show $h \neq g$. Suppose h is expressed as

$$h(x, y, z) \approx f(T_1(x, y, z), T_2(x, y, z), T_3(x, y, z))$$

for $T_1, T_2, T_3 \in \langle f \rangle$. So, for $(a, b, c) \in W_k$

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

(Cont.)

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

Case 1. The values of $T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)$ are pairwise distinct:

Case 2. $T_i(a, b, c) = T_j(a, b, c)$ and T_i, T_j have the form $f(\dots)$ and $f(\dots)$:

Case 3. $T_i(a, b, c) = T_j(a, b, c)$ and T_i has the form $f(\dots)$ and T_j is a variable:

Case 4. $T_i(a, b, c) = T_j(a, b, c)$ and T_i and T_j are variables:

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

Case 1. The values of $T_1(a, b, c)$, $T_2(a, b, c)$, $T_3(a, b, c)$ are pairwise distinct:

Then $h(a, b, c) \in f(W_k)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 2. $T_i(a, b, c) = T_j(a, b, c)$ and T_i , T_j have the form $f(\dots)$ and $f(\dots)$:

Case 3. $T_i(a, b, c) = T_j(a, b, c)$ and T_i has the form $f(\dots)$ and T_j is a variable:

Case 4. $T_i(a, b, c) = T_j(a, b, c)$ and T_i and T_j are variables:

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

Case 1. The values of $T_1(a, b, c)$, $T_2(a, b, c)$, $T_3(a, b, c)$ are pairwise distinct:

Then $h(a, b, c) \in f(W_k)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 2. $T_i(a, b, c) = T_j(a, b, c)$ and T_i , T_j have the form $f(\dots)$ and $f(\dots)$:

Then $h(a, b, c) = T_i(a, b, c) \in f(W_k)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 3. $T_i(a, b, c) = T_j(a, b, c)$ and T_i has the form $f(\dots)$ and T_j is a variable:

Case 4. $T_i(a, b, c) = T_j(a, b, c)$ and T_i and T_j are variables:

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

Case 1. The values of $T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)$ are pairwise distinct:

Then $h(a, b, c) \in f(W_K)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 2. $T_i(a, b, c) = T_j(a, b, c)$ and T_i, T_j have the form $f(\dots)$ and $f(\dots)$:

Then $h(a, b, c) = T_i(a, b, c) \in f(W_K)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 3. $T_i(a, b, c) = T_j(a, b, c)$ and T_i has the form $f(\dots)$ and T_j is a variable:

Then similarly as above, $h \neq g$.

Case 4. $T_i(a, b, c) = T_j(a, b, c)$ and T_i and T_j are variables:

For $(a, b, c) \in W_k$, we have $g(a, b, c) = d$ and

$$h(a, b, c) = f(T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)).$$

Case 1. The values of $T_1(a, b, c), T_2(a, b, c), T_3(a, b, c)$ are pairwise distinct:

Then $h(a, b, c) \in f(W_k)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 2. $T_i(a, b, c) = T_j(a, b, c)$ and T_i, T_j have the form $f(\dots)$ and $f(\dots)$:

Then $h(a, b, c) = T_i(a, b, c) \in f(W_k)$ and $h(a, b, c) \neq d$, implying $h \neq g$.

Case 3. $T_i(a, b, c) = T_j(a, b, c)$ and T_i has the form $f(\dots)$ and T_j is a variable:

Then similarly as above, $h \neq g$.

Case 4. $T_i(a, b, c) = T_j(a, b, c)$ and T_i and T_j are variables:

Since $(a, b, c) \in W_k$, we must have the same variable (say, x) for T_i and T_j . Then h is a projection and so $h \neq g$. \square

Introduction

Relations on
M

Examples

Height of Q

Size of Q

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Later, we shall make use of the following easy corollaries.

Key Lemma

For $f, g \in \mathbb{M}$, **if** $g(W_k) \setminus f(W_k) \neq \emptyset$ **then** $f \not\rightarrow g$.

Later, we shall make use of the following easy corollaries.

Corollary 1

For $f, g \in \mathbb{M}$, **if** $f(W_k) \subset g(W_k)$ **then** $f \not\rightarrow g$.

Corollary 2

For $f, g \in \mathbb{M}$,

if $g(W_k) \setminus f(W_k) \neq \emptyset$ and $f(W_k) \setminus g(W_k) \neq \emptyset$
then $f \not\rightarrow g$ and $g \not\rightarrow f$.

Now, as promised, we present a (fairly long) chain of classes in \mathbb{Q} .

Now, as promised, we present a (fairly long) chain of classes in \mathbb{Q} .

Definition

For $t \in E_k$ ($k > 2$), let $f_t \in \mathbb{M}$ be the majority function which takes the following values on $(a, b, c) \in W_k$.

$$f_t(a, b, c) = \begin{cases} t & \text{if } \min\{a, b, c\} > t, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t, \\ 0 & \text{if } \min\{a, b, c\} = 0 \end{cases}$$

[Here, the natural order and the subtraction “ $-$ ” are assumed on E_k .]

Now, as promised, we present a (fairly long) chain of classes in \mathbb{Q} .

Definition

For $t \in E_k$ ($k > 2$), let $f_t \in \mathbb{M}$ be the majority function which takes the following values on $(a, b, c) \in W_k$.

$$f_t(a, b, c) = \begin{cases} t & \text{if } \min\{a, b, c\} > t, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t, \\ 0 & \text{if } \min\{a, b, c\} = 0 \end{cases}$$

[Here, the natural order and the subtraction “ $-$ ” are assumed on E_k .]

Note. $f_t(W_k) = \{u \in E_k \mid 0 \leq u \leq t\}$.

Example. Let $k > 5$. For $t = 5$, the definition of f_5 on W_k is

$$f_5(a, b, c) = \begin{cases} 5 & \text{if } \min\{a, b, c\} \geq 6, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq 5, \\ 0 & \text{if } \min\{a, b, c\} = 0 \end{cases}$$

and, therefore, the values of f_5 on W_k are as follows.

$$f_5(a, b, c) = \begin{cases} 5 & \text{if } \min\{a, b, c\} \geq 6, \\ 4 & \text{if } \min\{a, b, c\} = 5, \\ 3 & \text{if } \min\{a, b, c\} = 4, \\ 2 & \text{if } \min\{a, b, c\} = 3, \\ 1 & \text{if } \min\{a, b, c\} = 2 \\ 0 & \text{if } \min\{a, b, c\} = 0, 1 \end{cases}$$

Lemma

For $t \in E_k \setminus \{0\}$, the following holds.

$$f_{t-1}(x, y, z) \approx f_t(f_t(x, y, z), x, y)$$

Lemma

For $t \in E_k \setminus \{0\}$, the following holds.

$$f_{t-1}(x, y, z) \approx f_t(f_t(x, y, z), x, y)$$

Proof. Easy. If you watch the following for **2 minutes**, you would agree.

$$f_t(a, b, c) = \begin{cases} t & \text{if } \min\{a, b, c\} > t, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t, \\ 0 & \text{if } \min\{a, b, c\} = 0, \end{cases}$$

$$f_{t-1}(a, b, c) = \begin{cases} t - 1 & \text{if } \min\{a, b, c\} > t - 1, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t - 1, \\ 0 & \text{if } \min\{a, b, c\} = 0. \end{cases}$$

Lemma

For $t \in E_k \setminus \{0\}$, the following holds.

$$f_{t-1}(x, y, z) \approx f_t(f_t(x, y, z), x, y)$$

Proof. Easy. If you watch the following for **2 minutes**, you would agree.

$$f_t(a, b, c) = \begin{cases} t & \text{if } \min\{a, b, c\} > t, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t, \\ 0 & \text{if } \min\{a, b, c\} = 0, \end{cases}$$

$$f_{t-1}(a, b, c) = \begin{cases} t - 1 & \text{if } \min\{a, b, c\} > t - 1, \\ \min\{a, b, c\} - 1 & \text{if } 1 \leq \min\{a, b, c\} \leq t - 1, \\ 0 & \text{if } \min\{a, b, c\} = 0. \end{cases}$$

Introduction

Relations on
M

Examples

Height of Q

Size of Q

Notation

For $f, g \in \mathbb{M}$, $f \triangleright g \iff f \rightarrow g$ and $g \not\rightarrow f$.

Notation

For $f, g \in \mathbb{M}$, $f \triangleright g \iff f \rightarrow g$ and $g \not\rightarrow f$.

Proposition

$$f_{k-1} \triangleright f_{k-2} \triangleright \cdots \triangleright f_2 \triangleright f_1 \triangleright f_0$$

Notation

For $f, g \in \mathbb{M}$, $f \triangleright g \iff f \rightarrow g$ and $g \not\rightarrow f$.

Proposition

$$f_{k-1} \triangleright f_{k-2} \triangleright \cdots \triangleright f_2 \triangleright f_1 \triangleright f_0$$

Proof.

- By the above lemma,

$$f_{k-1} \rightarrow f_{k-2} \rightarrow \cdots \rightarrow f_2 \rightarrow f_1 \rightarrow f_0 .$$

- Since $f_{t-1}(W_k) \subset f_t(W_k)$, Corollary 1 of Key Lemma yields

$$f_0 \not\rightarrow f_1 \not\rightarrow f_2 \not\rightarrow \cdots \not\rightarrow f_{k-2} \not\rightarrow f_{k-1} .$$

□

Shape of \mathbb{Q} (2)

How big is \mathbb{Q} ?

Shape of \mathbb{Q} (2)

How big is \mathbb{Q} ?

Answer:

Shape of \mathbb{Q} (2)

How big is \mathbb{Q} ?

Answer: **Very big !!**

Shape of \mathbb{Q} (2)

How big is \mathbb{Q} ?

Answer: **Very big !!**

We shall show the existence of a set of
mutually incomparable classes
in \mathbb{Q} , whose size is **exponential** of k .

Recall:

Corollary 2

For $f, g \in \mathbb{M}$,

if $g(W_k) \setminus f(W_k) \neq \emptyset$ and $f(W_k) \setminus g(W_k) \neq \emptyset$
then $f \not\rightarrow g$ and $g \not\rightarrow f$.

Introduction

Relations on
M

Examples

Height of Q

Size of Q

For convenience, suppose k is even.

Let $\mathcal{H} = \{U \in \mathcal{P}(E_k) \mid |U| = k/2\}$.

For each $U \in \mathcal{H}$, take $f_U \in \mathbb{M}$ which satisfies $f_U(W_k) = U$.

Introduction

Relations on
M

Examples

Height of Q

Size of Q

For convenience, suppose k is even.

Let $\mathcal{H} = \{U \in \mathcal{P}(E_k) \mid |U| = k/2\}$.

For each $U \in \mathcal{H}$, take $f_U \in \mathbb{M}$ which satisfies $f_U(W_k) = U$.

Lemma

For any $U, U' \in \mathcal{H}$,

if $U \neq U'$ then $[f_U]$ and $[f_{U'}]$ are *incomparable*,
i.e., $[f_U] \not\Rightarrow [f_{U'}]$ and $[f_{U'}] \not\Rightarrow [f_U]$.

Introduction

Relations on
M

Examples

Height of Q

Size of Q

For convenience, suppose k is even.

Let $\mathcal{H} = \{U \in \mathcal{P}(E_k) \mid |U| = k/2\}$.

For each $U \in \mathcal{H}$, take $f_U \in \mathbb{M}$ which satisfies $f_U(W_k) = U$.

Lemma

For any $U, U' \in \mathcal{H}$,

if $U \neq U'$ then $[f_U]$ and $[f_{U'}]$ are *incomparable*,
i.e., $[f_U] \not\Rightarrow [f_{U'}]$ and $[f_{U'}] \not\Rightarrow [f_U]$.

Proof. Since $|U| = |U'| (= k/2)$, there is no inclusion relation between U and U' unless $U = U'$.

Therefore, by Corollary 2, we have $f_U \not\rightarrow f_{U'}$ and $f_{U'} \not\rightarrow f_{U'}$,
which imply $[f_U] \not\Rightarrow [f_{U'}]$ and $[f_{U'}] \not\Rightarrow [f_U]$. □

Let $\mathcal{S} = \{ [f_U] \in \mathbb{Q} \mid U \in \mathcal{H} \}$

Proposition

- (1) \mathcal{S} is a set of mutually incomparable classes in \mathbb{Q} .
- (2) $|\mathcal{S}| \geq 2^{k/2}$.

Proof. (1) By the above lemma.

(2) Since $|\mathcal{S}| = |\mathcal{H}| = \binom{k}{k/2}$, the claim follows easily as

$$\binom{k}{k/2} = \frac{k!}{(k/2)!(k/2)!} = \frac{k(k-1)\cdots(k/2+1)}{(k/2)!}$$
$$= \prod_{r=0}^{k/2-1} \frac{k-r}{k/2-r} = 2^{k/2} \prod_{r=0}^{k/2-1} \frac{k-r}{k-2r} \geq 2^{k/2}$$

□

Final remark

Quite recently,

Martin Goldstern (TU) gave me a better lower bound on the size of \mathbb{Q} with simple proof.

Final remark

Quite recently,

Martin Goldstern (TU) gave me a better lower bound on the size of \mathbb{Q} with simple proof.

Proposition

$$|\mathbb{Q}| \geq \frac{k!}{2}$$

Final remark

Quite recently,

Martin Goldstern (TU) gave me a better lower bound on the size of \mathbb{Q} with simple proof.

Proposition

$$|\mathbb{Q}| \geq \frac{k!}{2}$$

Proof. Let R be any **linear order** on E_k . Then the **median function** m_R generates no other ternary function (except for projections), and, for different orders R and S , the functions m_R and m_S must be different - except when R is the inverse order of S . □

Final remark

Quite recently,

Martin Goldstern (TU) gave me a better lower bound on the size of \mathbb{Q} with simple proof.

Proposition

$$|\mathbb{Q}| \geq \frac{k!}{2}$$

Proof. Let R be any **linear order** on E_k . Then the **median function** m_R generates no other ternary function (except for projections), and, for different orders R and S , the functions m_R and m_S must be different - except when R is the inverse order of S . \square

Note. A trivial upper bound: $|\mathbb{M}| = k^{k(k-1)(k-2)}$.

Majority
Functions

Introduction

Relations on
M

Examples

Height of Q

Size of Q

**Thank you
for
your attention !**