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Introduction

Polyadic algebras was introduced by P.R.Halmos in [Hal54] as an
algebraic model of Lωω.

Cylindric algebras was introduced by A.Tarski [Tar52] as a
n-dimension relation algebra which also serve as an algebraic model of
L=
nm.

Not all polyadic algebras and cylindric algebras are representable
[HLT85, Ság12] as set-algebra. The representable cylindric algebras
are not finitely axiomatizable [Mon64].

Polyadic VB-algebras is an algebraic model for variable-binding
calculus [PS95].
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R. Maddux proposed a construction of 3-dimensional cylindric
algebras from relation algebras via network [Mad78].

I. Hodkinson gives a new construction of n-dimensional polyadic and
cylindric algebra from atomic relation algebra in [Hod12].

A network is a finite graph that “could be realized” inside some
representation of polyadic algebras or cylindric algebras.

Question : How do we design a ”network” for polyadic VB-algebra ?
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Setting

Give two sets I , J with J ⊆ I . We call a mapping σ : I → I a
transformation of I .

Notation

The identity transformation is denoted by ι;

For σ, τ ∈ I I , σJτ means that σ(i) = τ(i) for all i ∈ J. Also, we
denote σ(I \ J)τ as σJ∗τ ;

If σJ∗ι, we say J supports σ.
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Classical Polyadic Algebras – 1

Definition 1 (Halmos, 1956)

An (existential) quantifier on a Boolean algebra A is a mapping ∃ : A → A
such that

1 ∃0 = 0;

2 p ≤ ∃p;
3 ∃(p ∧ ∃q) = ∃p ∧ ∃q
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Classical Polyadic Algebras – 2

Definition 2 ([Hal54])

A (quasi-)polyadic algebra is a quadruple ⟨A, I ,S ,∃⟩ where A is a Boolean
algebra, I is a set (for variables), ∃ : P(I ) → AA is a mapping from subsets
of I to quantifiers on A, and S : I I → End(A) such that

∃(∅)p = p for all p ∈ A

∃(J ∪ K ) = ∃(J) ◦ ∃(K ) for all subsets J,K of A

S(1I ) = 1A

S(σ)(S(τ)) = S(στ)

If J ⊂ I and σ, τ are transformations on I such that
σ(I − J) = τ(I − J) then S(σ)∃(J) = S(τ)∃(J)
If J ⊆ I and τ is a transformation which is injective on τ−1J, then
∃(J)S(τ) = S(τ)∃(τ−1J)
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Classical Polyadic Algebras – 3

Some explanations :

no substitutions of variables, no corresponding changes to the
propositional functions.

applying substitution σ ◦ τ of variables in a propositional function
should have the same effect as applying τ first and then applying σ.

once a variable has been quantified, the replacement of that variable
by another one has no further effect.

once the variable has been replaced by another one, quantification on
the replaced variable has no further effect.
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Classical Polyadic Algebras – 4

How about equality ?

Definition ([Hal57])

(A, I ,S , ∃, e) is a polyadic algebra with equality (or, an e-algebra)
whenever (A, I ,S ,∃) is a polyadic algebra and e is a binary predicate
satisfying

e(i , i) = 1 for all i ∈ I ,

p ∧ e(i , j) ≤ S(i/j)p for all i , j ∈ I and p ∈ A.

The follow correspondence is from [Gal57] :

Every polyadic algebra with equality is a cylindric algebra,

In the presence of an infinite supply of variables and a local finiteness
condition, cylindric algebras are polyadic algebras with equality,

The correspondence is one-to-one.
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Language

Let L = ⟨O,Φ,P,Var , ρ, ν⟩ be a language where O is a set of non-binding
(propositional) connectives, P is a set of relation symbols, Var is a set of
variables, ρ : O ⊔Φ ⊔ P → ω is an arity function, and ν : Φ → ω + 1 \ {0}
is the binding rank function.
For Lκλ, ρ(∀) = , ν(∀) = λ
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([PS95]).Let I be a nonempty set. A polyadic ⟨L, I ⟩- algebra A is of the
form

⟨A, (◦A : ◦ ∈ O), (QA : Q ∈ Φ), SA,PA⟩

where ◦A : An → A if ρ(◦) = n, QA : Pω(I ) → AA, SA : I I → End(A), and
such that the following axioms are satisfied :

SA
ι x = x ;

SA
σ (S

A
τ x) = SA

στx , for all σ, τ ∈ I I ;

SA
σ (◦A(x1, . . . , xρ(◦))) = ◦A(SA

σ x1, . . . ,S
A
σ xn), for all ◦ ∈ O, σ ∈ I I ;

SA
σ Q

A
J x = SA

τ Q
A
J x for all q ∈ Φ, J ⊆ω I , and σ, τ ∈ I I such that

σJ∗τ ;

QA
J S

A
σ x = SA

σ Q
A
σ−1(J)x for all Q ∈ Φ, J ⊆ω I , and σ, τ ∈ I I such that

σ is injective on σ−1(J).
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Polyadic VB-Algebras – 1

Definition 3

A value L-algebra V is of the form

⟨V , (◦V : ◦ ∈ O), (QV : Q ∈ Φ)⟩

where ◦V : V ρ(◦) → V is a ρ(◦)-ary operation on V for each ◦ ∈ O, and
QV : P(V ) ⇀ V is a partial unary second-order operation on V for each
Q ∈ Φ.
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Polyadic VB-Algebras – 2

Given a value L-algebra V, two sets X , I , and an assignment
PV : X ρ(P) → V . A partial functional polyadic ⟨L, I ⟩- algebra over X, V̄,
is a structure of the form

⟨V X I
, (◦V̄ : ◦ ∈ O), (QV̄ : Q ∈ Φ),S V̄,P V̄⟩

where ◦V̄ : (V X I
)ρ(◦) → V X I

, QV̄ : Pω(I ) → [V X I
,V X I

], and

S V̄ : I I → End(V) are defined as follows :

P V̄(p) = PV(p̄) where p̄ = p(k̄)k̄∈Iρ(P)

(◦V̄(p1, . . . , pρ(◦)))(x⃗) = ◦V(p1(x⃗), . . . , pρ(◦)(x⃗)) for all
p1, . . . , pρ(◦) ∈ V X I

and x⃗ ∈ X I ;

(QV̄
J p)(x⃗) = QV({p(y⃗) : x⃗J∗y⃗}), for all p ∈ V X I

, J ⊆ω I , and
x⃗ , y⃗ ∈ X I ;

(S V̄
σ p)(x⃗) = p(σ∗x) where (σ∗x⃗)i = (x⃗)σ(i) for all σ ∈ I (I ) and

x⃗ ∈ X I .
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Polyadic VB-Algebras – 4

Definition 4

A subalgebra Ū of V̄ such that QŪ
J p is a total function from X I to V is

called a functional polyadic ⟨L, I ⟩- algebra.

In [PS95], Pigozzi and Salibra prove the following two theorems :

Theorem 5 (Pigozzi and Salibra, 1995)

Every functional polyadic ⟨L, I ⟩-algebra is a polyadic ⟨L, I ⟩- algebra.
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Polyadic VB-Algebras – 5

For the converse, as the classical case in [Hal54], we need to make some
restrictions. An element a of a polyadic ⟨L, I ⟩-algebra has a finite support
J ⊆ I if Sσa = Sτa for all σ, τ ∈ I (I ) such that σJτ . A polyadic
⟨L, I ⟩-algebra is locally finite if every element has a finite support.

Theorem 6 (Pigozzi and Salibra, 1995)

Every locally finite polyadic ⟨L, I ⟩-algebra A of infinite dimension is
isomorphic to a functional polyadic ⟨L, I ⟩-algebra whose domain X is I
and universe of value L-algebra is A.
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Network – 1

From [Hod12], we know that the polyadic VB-type structure can be
defined as

(X I ,PV, J∗, σ∗)

To define a network, we need to assume that V is from an ideal determined
variety. A V-network over I is a map λX I : X I × X I → Con(V) satisfying

λX I (x̄ , x̄) = 0,

λX I (x̄ , ȳ) = λX I (ȳ , x̄),

λX I (x̄ , z̄) ≤ λX I (x̄ , ȳ) ∨ λX I (ȳ , z̄),

λX I (◦(x̄1, . . . , x̄n), ◦(ȳ1, . . . , ȳn)) =
∨

i≤n λX I (x̄i , ȳi )
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Network – 2

Let J ⊆ω I , Eq(X I ) to be the set of equivalence relations on X I ,
σ∗ : X

I → X I induced by σ : I → I

∼=J∼′ is defined as x̄ ∼ ȳ ⇐⇒ x̄ ∼′ ȳ for all x̄ , ȳ ∈ X I\J ,

H(∼) = {N ⊆ X I :
⋃
(N/ ∼) = N}

λη
N =J λη′

N is defined as λη
N = λη′

N on X I\J ,

x̄ ∼σ∗ ȳ is defined via σ∗(x̄) ∼ σ∗(ȳ).
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Network – 3

Consider the structure ⟨{η = (∼η, λη
N : N ∈ H(∼η))},≡J , σ∗⟩

∼η∈ Eq(X I )

η ≡J η′ iff ∼η=J∼η′ and λη
N =J λη′

N

σ∗(η) = ((∼η)σ∗ , λ
σ∗(η)
N : N ∈ H(∼η

σ∗))

▶ λ
σ∗(η)
N (i , j) = λη

σ∗,∼η (N)
(σ∗i , σ∗j)

▶ σ∗,∼η(N) = {x̄ : ∀ȳ x̄ ∼η σ∗(ȳ) → ȳ ∈ N}
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Network – 4

Theorem 7

The functional polyadic VB-algebra constructed from
⟨{η = (∼η, λη

N : N ∈ H(∼η))},≡J , σ∗⟩ is a polyadic VB-algebra.

Is this really a network construction in the sense of [Mad78] and [Hod12] ?
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Network – 5

The construction can be modified to study MV-relation algebra [Pop05].
A MV-relation algebra A is a structure ⟨A,⊕,⊙,− , 0, 1, ; ,′ , I ⟩ such that

⟨A,⊕,⊙,− , 0, 1⟩ is an MV-algebra

⟨A, ; , I ⟩ is a monoid

(x ; y)⊙ z = 0 iff (x ′; z)⊙ y = 0 iff (z ; y ′)⊙ x = 0

(x ⊕ y)′ = x ′ ⊕ y ′
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Network – 6

We assume that I to be finite. A MV-network over I is a map
λI : I × I → Jp(A) satisfying

λI (x , y) ≤ 1,

λI (x , y) = λI (y , x)
′,

λI (x , z) ≤ λI (x , y);λI (y , z),

Adopt the construction above, we can construction a polyadic MV-algebra
[Sch80].
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More work

Generalize the network construction of polyadic algebras from

Weakening relation algebras,[JŠ23, CR26]

FL2 algebras [GJ20].
√

Work in progress with Peter Jipsen.
For polyadic VB-algebras :

Non-classical hyperdoctrine (work in progress based on [KP10b] and
[Mar21]).

Second-order equational logic [FH10], nominal universal algebra
[KP10a].
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Thank you !
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