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Difference and pseudo-Heyting implication

b a
{x ∈ b : x ̸∈ a}

b \ a = min{x ∈ L : a ∨ x = a ∨ b}

a ⇝ b = max{x ∈ L : a ∧ x = a ∧ b}

An algebra (L, ∨, ∧,⇝, 0) is called A pseudo-Heyting if:
(a) (L, ∨, ∧, 0) is a lattice with zero,
(b) a ∧ (a ⇝ b) = a ∧ b,
(c) a ∧ x = a ∧ b implies x ⩽ a ⇝ b.
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a⇝ b = max{x ∈ L : a ∧ x = a ∧ b}
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a ⇝ b = b, c ⇝ 0 = a, g ⇝ d = e, g ⇝ 0 = h.

Heyting implications a → b and g → d do not exist.

Fact.
(a) 1 always exists.
(b) If a → b exists, then a → b = a ⇝ b.
(c) a ⇝ 0 is a pseudocomplement of a.
(d) Pseudo-Heyting algebras are ∧-semidistributive.
(e) Complete pseudo-Heyting algebras are completely ∧-semidistributive.
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Sectionally pseudocomplemented lattices
A lattice (L, ∧, ∨, 1) is called sectionally pseudocomplemented [Chajda 2003] if
for every a, b ∈ L there exists:

a ∗ b = max{x ∈ L : (a ∨ b) ∧ x = b}.

Fact. If a ⩾ b, then a ∗ b = a ⇝ b.
Fact. In general ∗ ̸= ⇝.
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c ∗ b = b, c ⇝ b = a, c → b = a,

(x ∨ y) ∧ (x ∗ y) = y ,

(c ∨ b) ∧ (c ⇝ b) ̸= b,

Fact.
(a) If L is Heyting, then operations →, ∗, ⇝ coincide.
(b) The operations are mutually definable:

a ∗ b = (a ∨ b)⇝ b, and a ⇝ b = a ∗ (a ∧ b).

(c) Let L be a pseudo-Heyting algebra. Then L is sectionally
pseudocomplemented. Moreover, L is Heyting iff ⇝ and ∗ coincide.
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Theorem [Chajda 2003]. A complete lattice L is pseudo-Heyting iff L is
completely ∧-semidistributive, i.e.,

(∀b ∈ B)(a ∧ b = c) ⇒ a ∧
∨

B = c, for all a, c ∈ L, B ⊆ L.

Theorem [Chajda, Länger, Paseka 2019]. Sectionally pseudocomplemented
lattices form a variety axiomatized by identities:
(a) lattice axioms,
(b) z ∨ y ⩽ x ∗ ((x ∨ y) ∧ (z ∨ y)),
(c) (x ∨ y) ∧ (x ∗ y) = y .

Theorem. Pseudo-Heyting algebras form a variety axiomatized by identities:
(a) lattice axioms,
(b) x ⇝ x = 1,
(c) x ∧ (x ⇝ y) = x ∧ y ,
(d) x ⇝ (x ∧ y) = x ⇝ y ,
(e) x ⩾ y ∧ z implies x ∧ (y ⇝ z) = x ∧ ((x ∧ y)⇝ (x ∧ z)).
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(i) x ⇝ (y ⇝ z) = (x ⇝ y)⇝ (a ⇝ z),
(j) x ∧ (y ⇝ z) = x ∧ ((x ∧ y)⇝ (x ∧ z)).

Theorem. Pseudo-Heyting algebra is complemented iff x ∨ (x ⇝ 0) = 1 holds.

Theorem. Pseudo-Heyting algebra is Boolean iff one of the following holds:
(a) (x ⇝ y)⇝ y = x ∨ y ,
(b) x ⇝ y = y ⇔ x ∨ y = 1,
(c) (x ⇝ 0)⇝ 0 = x .
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Congruences

Fact. The variety of pseudo-Heyting algebras is arithmetical
(congruence-distributive and congruence-permutable).

Proof follows from [Pixley 1963]: the term

m(x , y , z) =
(
(x ∨ y)⇝ x

)
∧

(
x ∨ z

)
∧

(
(y ∨ z)⇝ z

)
satisfies m(x , y , y) = m(y , y , x) = m(x , y , x) = x . ■

The standard construction Θa = {(x , y) : a ⩽ (x ⇝ y) ∧ (y ⇝ x)} fails in
pseudo-Heyting algebras; we have:

a
b

c
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0

(a, 0) ∈ Θc : (a ⇝ 0) ∧ (0⇝ a) = c ∧ 1 = c,

(0, b) ∈ Θc : (0⇝ b) ∧ (b ⇝ 0) = 1 ∧ c = c,

(a, b) ̸∈ Θc : (a ⇝ b) ∧ (b ⇝ a) = b ∧ 1 = b.

Theorem. If c is standard and dually distributive, then Θc is a congruence.
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Subdirectly irreducible algebras

Fact. Heyting algebra A is subdirectly irreducible iff it is trivial or A \ {1} has
the greatest element.

Fact. In pseudo-Heyting algebras
(a) (⇐) is true,
(b) (⇒) is not true: algebra N5 (induced by lattice N5) is subdirectly

irreducible.
(More: every non-distributive cell is subdirectly irreducible.)
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Subvarieties

Theorem. Let A be pseudo-Heyting algebra. Then A is Boolean if and only if it
contains neither H3 (the algebra induced by three element Heyting lattice H3)
nor N5 as a subalgebra.

Theorem. Let V be a subvariety of pseudo-Heyting algebras. Then:

x ∨ (x ⇝ 0) = 1 holds in V iff H3 ̸∈ V.

Theorem. There are continuum many subvarieties of pseudo-Heyting algebras
that are not Heyting subvarieties.
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Thank you for your attention!


