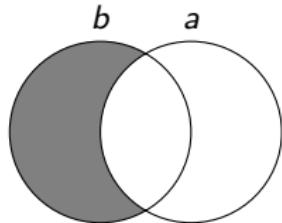


Pseudo-Heyting Algebras

Zalán Gyenis, Marcin Łazarz, Zalán Molnár

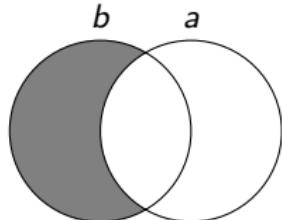
AAA 2026

Difference and pseudo-Heyting implication



$$\{x \in b : x \notin a\}$$

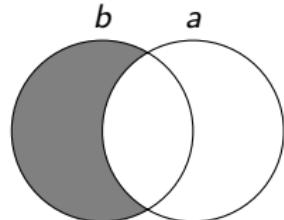
Difference and pseudo-Heyting implication



$$\{x \in b : x \notin a\}$$

$$b \setminus a = \min\{x \in L : a \vee x = a \vee b\}$$

Difference and pseudo-Heyting implication

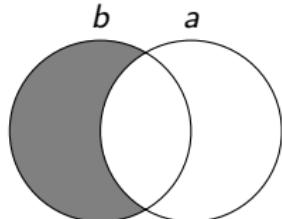


$$\{x \in b : x \notin a\}$$

$$b \setminus a = \min\{x \in L : a \vee x = a \vee b\}$$

$$a \rightsquigarrow b = \max\{x \in L : a \wedge x = a \wedge b\}$$

Difference and pseudo-Heyting implication



$$\{x \in b : x \notin a\}$$

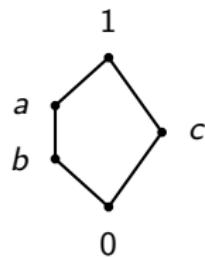
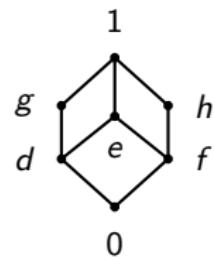
$$b \setminus a = \min\{x \in L : a \vee x = a \vee b\}$$

$$a \rightsquigarrow b = \max\{x \in L : a \wedge x = a \wedge b\}$$

An algebra $(L, \vee, \wedge, \rightsquigarrow, 0)$ is called A *pseudo-Heyting* if:

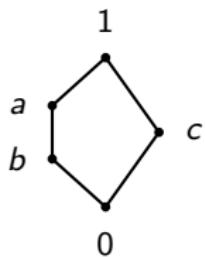
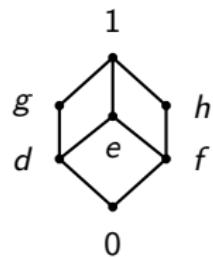
- (a) $(L, \vee, \wedge, 0)$ is a lattice with zero,
- (b) $a \wedge (a \rightsquigarrow b) = a \wedge b$,
- (c) $a \wedge x = a \wedge b$ implies $x \leqslant a \rightsquigarrow b$.

$$a \rightsquigarrow b = \max\{x \in L : a \wedge x = a \wedge b\}$$



$$a \rightsquigarrow b = b, \quad c \rightsquigarrow 0 = a, \quad g \rightsquigarrow d = e, \quad g \rightsquigarrow 0 = h.$$

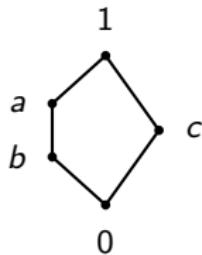
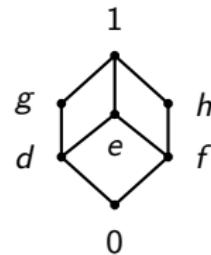
$$a \rightsquigarrow b = \max\{x \in L : a \wedge x = a \wedge b\}$$



$$a \rightsquigarrow b = b, \quad c \rightsquigarrow 0 = a, \quad g \rightsquigarrow d = e, \quad g \rightsquigarrow 0 = h.$$

Heyting implications $a \rightarrow b$ and $g \rightarrow d$ do not exist.

$$a \rightsquigarrow b = \max\{x \in L : a \wedge x = a \wedge b\}$$



$$a \rightsquigarrow b = b, \quad c \rightsquigarrow 0 = a, \quad g \rightsquigarrow d = e, \quad g \rightsquigarrow 0 = h.$$

Heyting implications $a \rightarrow b$ and $g \rightarrow d$ do not exist.

Fact.

- (a) 1 always exists.
- (b) If $a \rightarrow b$ exists, then $a \rightarrow b = a \rightsquigarrow b$.
- (c) $a \rightsquigarrow 0$ is a pseudocomplement of a .
- (d) Pseudo-Heyting algebras are \wedge -semidistributive.
- (e) Complete pseudo-Heyting algebras are completely \wedge -semidistributive.

Sectionally pseudocomplemented lattices

A lattice $(L, \wedge, \vee, 1)$ is called *sectionally pseudocomplemented* [Chajda 2003] if for every $a, b \in L$ there exists:

$$a * b = \max\{x \in L : (a \vee b) \wedge x = b\}.$$

Sectionally pseudocomplemented lattices

A lattice $(L, \wedge, \vee, 1)$ is called *sectionally pseudocomplemented* [Chajda 2003] if for every $a, b \in L$ there exists:

$$a * b = \max\{x \in L : (a \vee b) \wedge x = b\}.$$

Fact. If $a \geq b$, then $a * b = a \rightsquigarrow b$.

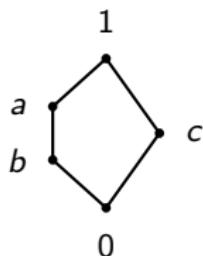
Sectionally pseudocomplemented lattices

A lattice $(L, \wedge, \vee, 1)$ is called *sectionally pseudocomplemented* [Chajda 2003] if for every $a, b \in L$ there exists:

$$a * b = \max\{x \in L : (a \vee b) \wedge x = b\}.$$

Fact. If $a \geq b$, then $a * b = a \rightsquigarrow b$.

Fact. In general $* \neq \rightsquigarrow$.



$$c * b = b, \quad c \rightsquigarrow b = a, \quad c \rightarrow b = a,$$

$$(x \vee y) \wedge (x * y) = y,$$

$$(c \vee b) \wedge (c \rightsquigarrow b) \neq b,$$

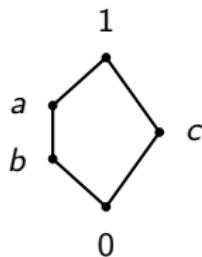
Sectionally pseudocomplemented lattices

A lattice $(L, \wedge, \vee, 1)$ is called *sectionally pseudocomplemented* [Chajda 2003] if for every $a, b \in L$ there exists:

$$a * b = \max\{x \in L : (a \vee b) \wedge x = b\}.$$

Fact. If $a \geq b$, then $a * b = a \rightsquigarrow b$.

Fact. In general $*$ $\neq \rightsquigarrow$.



$$c * b = b, \quad c \rightsquigarrow b = a, \quad c \rightarrow b = a,$$

$$(x \vee y) \wedge (x * y) = y,$$

$$(c \vee b) \wedge (c \rightsquigarrow b) \neq b,$$

Fact.

(a) If L is Heyting, then operations \rightarrow , $*$, \rightsquigarrow coincide.

(b) The operations are mutually definable:

$$a * b = (a \vee b) \rightsquigarrow b, \quad \text{and} \quad a \rightsquigarrow b = a * (a \wedge b).$$

(c) Let L be a pseudo-Heyting algebra. Then L is sectionally pseudocomplemented. Moreover, L is Heyting iff \rightsquigarrow and $*$ coincide.

Theorem [Chajda 2003]. A complete lattice L is pseudo-Heyting iff L is completely \wedge -semidistributive, i.e.,

$$(\forall b \in B)(a \wedge b = c) \Rightarrow a \wedge \bigvee B = c, \quad \text{for all } a, c \in L, B \subseteq L.$$

Theorem [Chajda 2003]. A complete lattice L is pseudo-Heyting iff L is completely \wedge -semidistributive, i.e.,

$$(\forall b \in B)(a \wedge b = c) \Rightarrow a \wedge \bigvee B = c, \quad \text{for all } a, c \in L, B \subseteq L.$$

Theorem [Chajda, Länger, Paseka 2019]. Sectionally pseudocomplemented lattices form a variety axiomatized by identities:

- (a) lattice axioms,
- (b) $z \vee y \leqslant x * ((x \vee y) \wedge (z \vee y))$,
- (c) $(x \vee y) \wedge (x * y) = y$.

Theorem [Chajda 2003]. A complete lattice L is pseudo-Heyting iff L is completely \wedge -semidistributive, i.e.,

$$(\forall b \in B)(a \wedge b = c) \Rightarrow a \wedge \bigvee B = c, \quad \text{for all } a, c \in L, B \subseteq L.$$

Theorem [Chajda, Länger, Paseka 2019]. Sectionally pseudocomplemented lattices form a variety axiomatized by identities:

- (a) lattice axioms,
- (b) $z \vee y \leqslant x * ((x \vee y) \wedge (z \vee y)),$
- (c) $(x \vee y) \wedge (x * y) = y.$

Theorem. Pseudo-Heyting algebras form a variety axiomatized by identities:

- (a) lattice axioms,
- (b) $x \rightsquigarrow x = 1,$
- (c) $x \wedge (x \rightsquigarrow y) = x \wedge y,$
- (d) $x \rightsquigarrow (x \wedge y) = x \rightsquigarrow y,$
- (e) $x \geqslant y \wedge z \text{ implies } x \wedge (y \rightsquigarrow z) = x \wedge ((x \wedge y) \rightsquigarrow (x \wedge z)).$

Theorem. Pseudo-Heyting algebra is Heyting iff one of the following holds:

(a) $z \leqslant x \rightsquigarrow y \Leftrightarrow x \wedge z \leqslant y$	(e) $x \rightsquigarrow (y \wedge z) = (x \rightsquigarrow y) \wedge (x \rightsquigarrow z)$,
(b) $x \leqslant y \Rightarrow z \rightsquigarrow x \leqslant z \rightsquigarrow y$,	(f) $(x \vee y) \wedge (x \rightsquigarrow y) = y$,
(c) $(x \rightsquigarrow y) \wedge (y \rightsquigarrow z) \leqslant x \rightsquigarrow y$,	(g) $(x \vee y) \rightsquigarrow z = (x \rightsquigarrow z) \wedge (y \rightsquigarrow z)$,
(d) $x \rightsquigarrow (y \rightsquigarrow z) = (x \wedge y) \rightsquigarrow z$,	(h) $(x \vee y) \rightsquigarrow y = x \rightsquigarrow y$,
(i) $x \rightsquigarrow (y \rightsquigarrow z) = (x \rightsquigarrow y) \rightsquigarrow (a \rightsquigarrow z)$,	
(j) $x \wedge (y \rightsquigarrow z) = x \wedge ((x \wedge y) \rightsquigarrow (x \wedge z))$.	

Theorem. Pseudo-Heyting algebra is Heyting iff one of the following holds:

- (a) $z \leqslant x \rightsquigarrow y \Leftrightarrow x \wedge z \leqslant y$
- (e) $x \rightsquigarrow (y \wedge z) = (x \rightsquigarrow y) \wedge (x \rightsquigarrow z)$,
- (b) $x \leqslant y \Rightarrow z \rightsquigarrow x \leqslant z \rightsquigarrow y$,
- (f) $(x \vee y) \wedge (x \rightsquigarrow y) = y$,
- (c) $(x \rightsquigarrow y) \wedge (y \rightsquigarrow z) \leqslant x \rightsquigarrow y$,
- (g) $(x \vee y) \rightsquigarrow z = (x \rightsquigarrow z) \wedge (y \rightsquigarrow z)$,
- (d) $x \rightsquigarrow (y \rightsquigarrow z) = (x \wedge y) \rightsquigarrow z$,
- (h) $(x \vee y) \rightsquigarrow y = x \rightsquigarrow y$,
- (i) $x \rightsquigarrow (y \rightsquigarrow z) = (x \rightsquigarrow y) \rightsquigarrow (a \rightsquigarrow z)$,
- (j) $x \wedge (y \rightsquigarrow z) = x \wedge ((x \wedge y) \rightsquigarrow (x \wedge z))$.

Theorem. Pseudo-Heyting algebra is complemented iff $x \vee (x \rightsquigarrow 0) = 1$ holds.

Theorem. Pseudo-Heyting algebra is Heyting iff one of the following holds:

- (a) $z \leqslant x \rightsquigarrow y \Leftrightarrow x \wedge z \leqslant y$
- (e) $x \rightsquigarrow (y \wedge z) = (x \rightsquigarrow y) \wedge (x \rightsquigarrow z)$,
- (b) $x \leqslant y \Rightarrow z \rightsquigarrow x \leqslant z \rightsquigarrow y$,
- (f) $(x \vee y) \wedge (x \rightsquigarrow y) = y$,
- (c) $(x \rightsquigarrow y) \wedge (y \rightsquigarrow z) \leqslant x \rightsquigarrow y$,
- (g) $(x \vee y) \rightsquigarrow z = (x \rightsquigarrow z) \wedge (y \rightsquigarrow z)$,
- (d) $x \rightsquigarrow (y \rightsquigarrow z) = (x \wedge y) \rightsquigarrow z$,
- (h) $(x \vee y) \rightsquigarrow y = x \rightsquigarrow y$,
- (i) $x \rightsquigarrow (y \rightsquigarrow z) = (x \rightsquigarrow y) \rightsquigarrow (a \rightsquigarrow z)$,
- (j) $x \wedge (y \rightsquigarrow z) = x \wedge ((x \wedge y) \rightsquigarrow (x \wedge z))$.

Theorem. Pseudo-Heyting algebra is complemented iff $x \vee (x \rightsquigarrow 0) = 1$ holds.

Theorem. Pseudo-Heyting algebra is Boolean iff one of the following holds:

- (a) $(x \rightsquigarrow y) \rightsquigarrow y = x \vee y$,
- (b) $x \rightsquigarrow y = y \Leftrightarrow x \vee y = 1$,
- (c) $(x \rightsquigarrow 0) \rightsquigarrow 0 = x$.

Congruences

Fact. The variety of pseudo-Heyting algebras is arithmetical (congruence-distributive and congruence-permutable).

Proof follows from [Pixley 1963]: the term

$$m(x, y, z) = ((x \vee y) \rightsquigarrow x) \wedge (x \vee z) \wedge ((y \vee z) \rightsquigarrow z)$$

satisfies $m(x, y, y) = m(y, y, x) = m(x, y, x) = x$. ■

Congruences

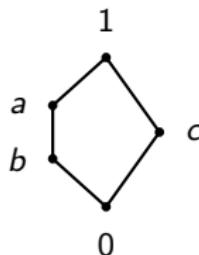
Fact. The variety of pseudo-Heyting algebras is arithmetical (congruence-distributive and congruence-permutable).

Proof follows from [Pixley 1963]: the term

$$m(x, y, z) = ((x \vee y) \rightsquigarrow x) \wedge (x \vee z) \wedge ((y \vee z) \rightsquigarrow z)$$

satisfies $m(x, y, y) = m(y, y, x) = m(x, y, x) = x$. ■

The standard construction $\Theta_a = \{(x, y) : a \leqslant (x \rightsquigarrow y) \wedge (y \rightsquigarrow x)\}$ fails in pseudo-Heyting algebras; we have:



$$(a, 0) \in \Theta_c: (a \rightsquigarrow 0) \wedge (0 \rightsquigarrow a) = c \wedge 1 = c,$$

$$(0, b) \in \Theta_c: (0 \rightsquigarrow b) \wedge (b \rightsquigarrow 0) = 1 \wedge c = c,$$

$$(a, b) \notin \Theta_c: (a \rightsquigarrow b) \wedge (b \rightsquigarrow a) = b \wedge 1 = b.$$

Congruences

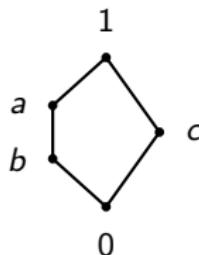
Fact. The variety of pseudo-Heyting algebras is arithmetical (congruence-distributive and congruence-permutable).

Proof follows from [Pixley 1963]: the term

$$m(x, y, z) = ((x \vee y) \rightsquigarrow x) \wedge (x \vee z) \wedge ((y \vee z) \rightsquigarrow z)$$

satisfies $m(x, y, y) = m(y, y, x) = m(x, y, x) = x$. ■

The standard construction $\Theta_a = \{(x, y) : a \leqslant (x \rightsquigarrow y) \wedge (y \rightsquigarrow x)\}$ fails in pseudo-Heyting algebras; we have:



$$(a, 0) \in \Theta_c: (a \rightsquigarrow 0) \wedge (0 \rightsquigarrow a) = c \wedge 1 = c,$$

$$(0, b) \in \Theta_c: (0 \rightsquigarrow b) \wedge (b \rightsquigarrow 0) = 1 \wedge c = c,$$

$$(a, b) \notin \Theta_c: (a \rightsquigarrow b) \wedge (b \rightsquigarrow a) = b \wedge 1 = b.$$

Theorem. If c is standard and dually distributive, then Θ_c is a congruence.

Subdirectly irreducible algebras

Fact. Heyting algebra \mathfrak{A} is subdirectly irreducible iff it is trivial or $A \setminus \{1\}$ has the greatest element.

Subdirectly irreducible algebras

Fact. Heyting algebra \mathfrak{A} is subdirectly irreducible iff it is trivial or $A \setminus \{1\}$ has the greatest element.

Fact. In pseudo-Heyting algebras

- (a) (\Leftarrow) is true,
- (b) (\Rightarrow) is not true: algebra \mathfrak{N}_5 (induced by lattice N_5) is subdirectly irreducible.
(More: every non-distributive cell is subdirectly irreducible.)

Subvarieties

Theorem. Let \mathfrak{A} be pseudo-Heyting algebra. Then \mathfrak{A} is Boolean if and only if it contains neither \mathfrak{H}_3 (the algebra induced by three element Heyting lattice H_3) nor \mathfrak{N}_5 as a subalgebra.

Subvarieties

Theorem. Let \mathfrak{A} be pseudo-Heyting algebra. Then \mathfrak{A} is Boolean if and only if it contains neither \mathfrak{H}_3 (the algebra induced by three element Heyting lattice H_3) nor \mathfrak{N}_5 as a subalgebra.

Theorem. Let \mathbb{V} be a subvariety of pseudo-Heyting algebras. Then:

$$x \vee (x \rightsquigarrow 0) = 1 \text{ holds in } \mathbb{V} \quad \text{iff} \quad \mathfrak{H}_3 \notin \mathbb{V}.$$

Subvarieties

Theorem. Let \mathfrak{A} be pseudo-Heyting algebra. Then \mathfrak{A} is Boolean if and only if it contains neither \mathfrak{H}_3 (the algebra induced by three element Heyting lattice H_3) nor \mathfrak{N}_5 as a subalgebra.

Theorem. Let \mathbb{V} be a subvariety of pseudo-Heyting algebras. Then:

$$x \vee (x \rightsquigarrow 0) = 1 \text{ holds in } \mathbb{V} \quad \text{iff} \quad \mathfrak{H}_3 \notin \mathbb{V}.$$

Theorem. There are continuum many subvarieties of pseudo-Heyting algebras that are not Heyting subvarieties.

Thank you for your attention!