

Amalgamation property in quasivarieties of Sugihara algebras

W. Fussner and K. Krawczyk

Czech Academy of Sciences

AAA, Vienna, 07.02.2026

This research was supported by the Czech Science Foundation project
25-18306M, INTERACT.

Amalgamation property for some varieties of algebras corresponding to non-classical logics

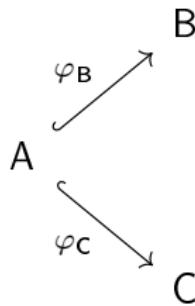
- Maksimova's 1977 characterization: Exactly eight subvarieties of Heyting algebras have the AP
- Gratzer Lakser 1971 exactly three subvarieties of pseudocomplemented distributive lattices have AP
- some classes of residuated lattices, particularly semilinear (Fussner Santschi, 2024, 2025)
- Sugihara monoids (Marchioni-Metcalfe 2012) exactly eight non-trivial varieties with AP.

Limitations and challenges

- known results restricted to varieties;
- no progress in terms of quasivarieties (quasivarieties correspond to consequence relations);
- Goal: get a deeper understanding of amalgamation-like properties in quasivarieties (interpolation-like properties for non-classical logic);
- Sugihara algebras as good case study (some nice properties, correspond historically well-known system of logic RM).

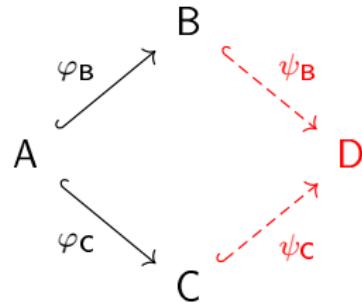
Amalgamation Property

class K has AP iff every span $\langle \varphi_B : A \hookrightarrow B, \varphi_C : A \hookrightarrow C \rangle$ in K can be completed in K (has an amalgam in K) i.e. there exists $D \in K$ and embeddings $\langle \psi_B : B \hookrightarrow D, \psi_C : C \hookrightarrow D \rangle$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.

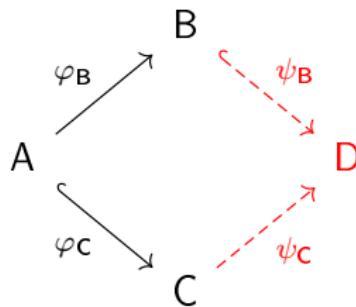


Amalgamation Property

class K has AP iff every span $\langle \varphi_B : A \hookrightarrow B, \varphi_C : A \hookrightarrow C \rangle$ in K can be completed in K (has an amalgam in K) i.e. there exists $D \in K$ and embeddings $\langle \psi_B : B \hookrightarrow D, \psi_C : C \hookrightarrow D \rangle$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.



Transferable injections TIP – just diagrammatically



A known algebraic fact:
 $TIP \Leftrightarrow AP + RCEP$

the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.

Many known techniques are based on (R)CEP properties.

usually we have something of the following form (the so-called transfer theorems).

the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.
Many known techniques are based on (R)CEP properties.
usually we have something of the following form (the so-called transfer theorems).

Lemma (Fussner-Metcalfe 2024)

Let Q be any quasivariety with the RCEP such that Q_{RFSI} is closed under subalgebras. Then Q has the AP if and only if every span of algebras in $Q_{\text{FG}} \cap Q_{\text{RFSI}}$ has an amalgam in Q .

the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.
Many known techniques are based on (R)CEP properties.
usually we have something of the following form (the so-called transfer theorems).

Lemma (Fussner-Metcalfe 2024)

Let Q be any quasivariety with the RCEP such that Q_{RFSI} is closed under subalgebras. Then Q has the AP if and only if every span of algebras in $Q_{\text{FG}} \cap Q_{\text{RFSI}}$ has an amalgam in Q .

Hard to apply in quasivarieties because of two hard problems:

the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.

Many known techniques are based on (R)CEP properties.

usually we have something of the following form (the so-called transfer theorems).

Lemma (Fussner-Metcalfe 2024)

Let Q be any quasivariety with the RCEP such that Q_{RFSI} is closed under subalgebras. Then Q has the AP if and only if every span of algebras in $Q_{\text{FG}} \cap Q_{\text{RFSI}}$ has an amalgam in Q .

Hard to apply in quasivarieties because of two hard problems:

- (1) We usually have a bad handle on $R(F)SI$'s in quasivarieties (lack of good characterizations)

the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.

Many known techniques are based on (R)CEP properties.

usually we have something of the following form (the so-called transfer theorems).

Lemma (Fussner-Metcalfe 2024)

Let Q be any quasivariety with the RCEP such that Q_{RFSI} is closed under subalgebras. Then Q has the AP if and only if every span of algebras in $Q_{\text{FG}} \cap Q_{\text{RFSI}}$ has an amalgam in Q .

Hard to apply in quasivarieties because of two hard problems:

- (1) We usually have a bad handle on $R(F)SI$'s in quasivarieties (lack of good characterizations)
- (2) RCEP usually fails in (sub)quasivarieties even if the initial variety has it

Theorem

There are exactly five subquasivarieties (out of infinitely continuum?) of Sugihara algebras with Amalgamation Property. Furthermore, $AP \Rightarrow RCEP$ for Sugihara quasivarieties.

Sugihara algebras

$Z = \langle Z, \wedge, \vee, \rightarrow, \neg \rangle,$

$$x \rightarrow y = \begin{cases} (\neg x) \vee y & x \leq y \\ (\neg x) \wedge y & x \not\leq y. \end{cases}$$

Sugihara algebras are members of $\mathbb{V}(Z) = HSP(Z).$

Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe $E = Z - \{0\}$ by E .

Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe $E = Z - \{0\}$ by E .
Further, for each integer $n \geq 0$, each of the set
 $\{-2n - 1, -2n, \dots, -1, 0, 1, \dots, 2n, 2n + 1\}$ gives the universe of a algebra
of Z that we denote Z_{2n+1} , and,

Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe $E = Z - \{0\}$ by E .
Further, for each integer $n \geq 0$, each of the set
 $\{-2n - 1, -2n, \dots, -1, 0, 1, \dots, 2n, 2n + 1\}$ gives the universe of a algebra
of Z that we denote Z_{2n+1} , and, for $n \geq 1$, each of the sets
 $\{-2n - 1, -2n, \dots, -1, 1, \dots, 2n, 2n + 1\}$ gives the universe of a
subalgebra Z_{2n} of E .

Sugihara algebras continued

It turns out that the lattice of subvarieties of SA forms a countable chain given by

$$\mathbb{V}(Z_1) \subseteq \mathbb{V}(Z_2) \subseteq \mathbb{V}(Z_3) \subseteq \cdots \mathbb{V}(Z) = \mathbb{V}(E) = SA.$$

Sugihara algebras continued

It turns out that the lattice of subvarieties of SA forms a countable chain given by

$$\mathbb{V}(Z_1) \subseteq \mathbb{V}(Z_2) \subseteq \mathbb{V}(Z_3) \subseteq \cdots \mathbb{V}(Z) = \mathbb{V}(E) = SA.$$

Further, $V(Z) = \mathbb{Q}(Z) = \mathbb{Q}(\{Z_n \mid n \geq 1\}) = \mathbb{Q}(\{Z_{2n+1} \mid n \geq 0\})$, and also $\mathbb{Q}(E) = \mathbb{Q}(\{Z_{2n} \mid n \geq 1\})$ is a proper subquasivariety of SA.

Lemma (Czelakowski-Dziobiak 1999)

All subquasi-varieties of Sugihara algebras with RCEP are the following:

$$\mathbb{V}(Z) \cup \{\mathbb{V}(Z_n) : n \in \omega\} \cup \{\mathbb{Q}(E)\} \cup \{\mathbb{Q}(Z_{2n}) : n \in \omega\}.$$

Important results/useful lemmas

Lemma (Czelakowski-Dziobiak 1999)

All subquasivarieties of Sugihara algebras with RCEP are the following:

$$\mathbb{V}(Z) \cup \{\mathbb{V}(Z_n) : n \in \omega\} \cup \{\mathbb{Q}(E)\} \cup \{\mathbb{Q}(Z_{2n}) : n \in \omega\}.$$

Lemma (K.K. 2022)

Let Q be a quasivariety such that $\mathbb{Q}(Z_2) \subsetneq Q$. Then either $Z_2 \times Z_3 \in Q$ or $Z_2 \times Z_4 \in Q$.

Important results/useful lemmas

Lemma (Czelakowski-Dziobiak 1999)

All subquasivarieties of Sugihara algebras with RCEP are the following:

$$\mathbb{V}(Z) \cup \{\mathbb{V}(Z_n) : n \in \omega\} \cup \{\mathbb{Q}(E)\} \cup \{\mathbb{Q}(Z_{2n}) : n \in \omega\}.$$

Lemma (K.K. 2022)

Let Q be a quasivariety such that $\mathbb{Q}(Z_2) \subsetneq Q$. Then either $Z_2 \times Z_3 \in Q$ or $Z_2 \times Z_4 \in Q$.

Lemma (Gil-Ferez et al. 2020)

The class of totally ordered odd Sugihara monoids has the amalgamation property.

Lemma

Each of the quasivarieties $\mathbb{V}(Z_2)$, $\mathbb{V}(Z_3)$, $\mathbb{V}(Z)$, and $\mathbb{Q}(E)$ has the amalgamation property.

Easy part – all of them have RCEP, so we can apply the known techniques (transfer theorems). All (R)FSIs are chains – reducts of totally ordered Sugihara monoids.

The challenging part – negative part

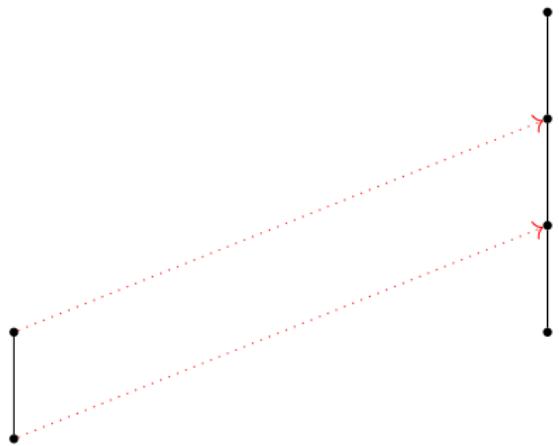
"Any other quasivariety does not have AP"

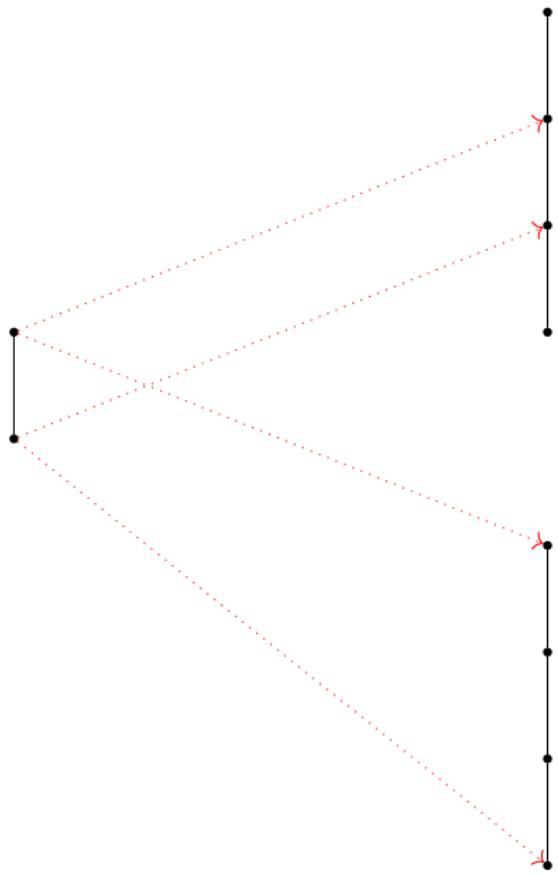
Our strategy is to use the so-called closure lemmas.

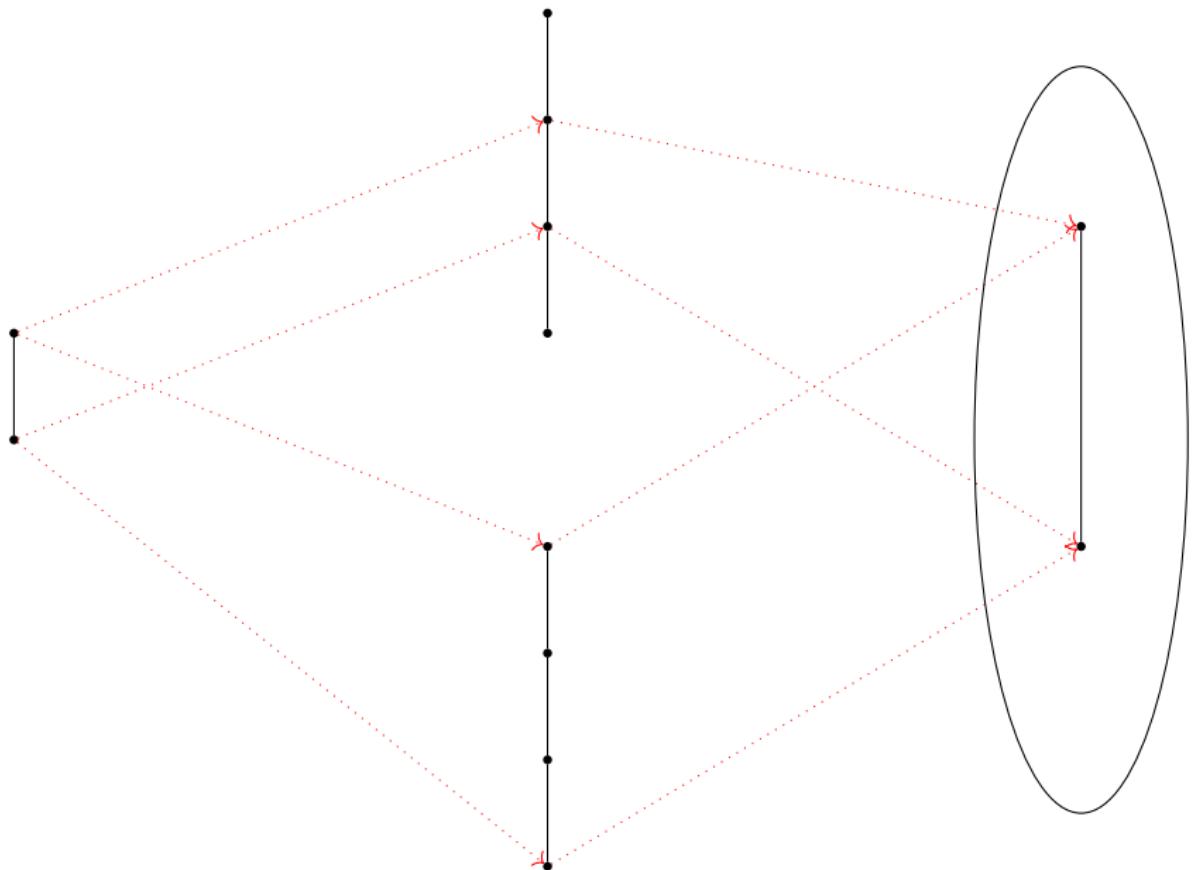
The two extending lemmas (even case)

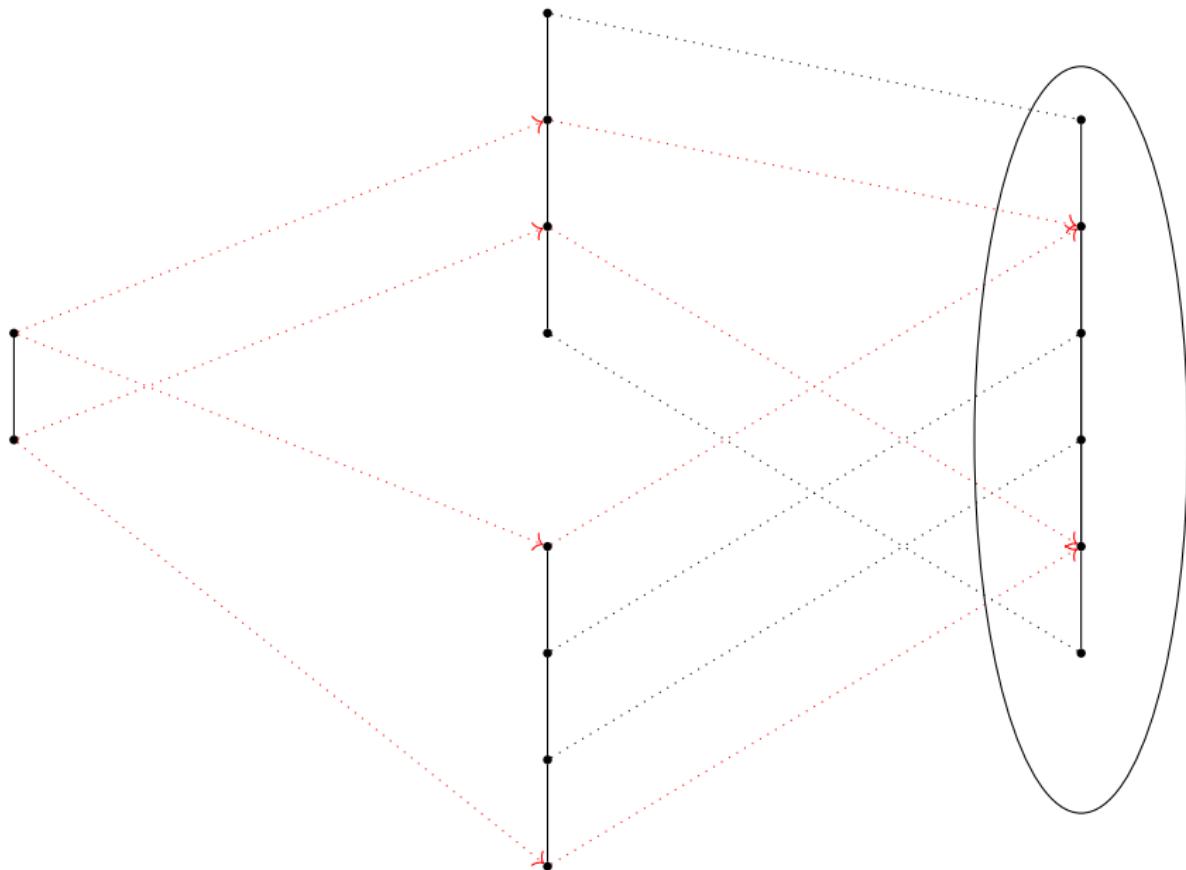
Lemma

Assume Q has AP. If $Z_4 \in Q$, then $Z_{2n} \in Q$ for every positive integer n . Consequently, if $Z_4 \in Q$, then $E \in Q$.









The two extending lemmas (odd case)

Lemma

Assume Q has AP. If $Z_3, Z_4 \in Q$, then $Q = SA$.

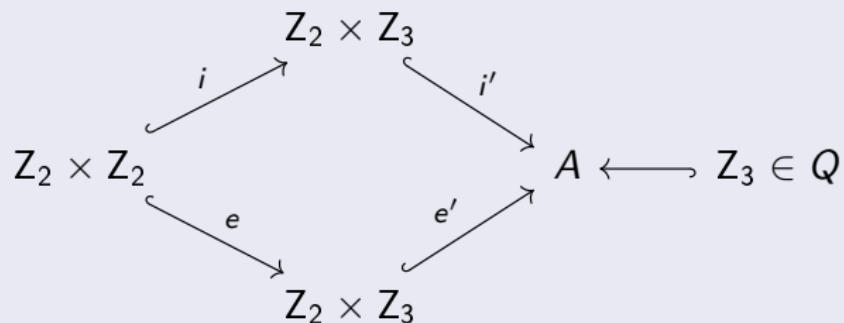
"The coordinate switch" embedding – odd and even cases

Lemma

Let Q has AP. If $Z_2 \times Z_3 \in Q$, then $Z_3 \in Q$.

Sketch of an argument.

Take a span $\langle i: Z_2 \times Z_2 \hookrightarrow Z_2 \times Z_3, e: Z_2 \times Z_2 \hookrightarrow Z_2 \times Z_3 \rangle$ where i is the identity embedding and e is the 'coordinate-switch' embedding $(n, m) \mapsto (m, n)$.



Second 'switch embedding' closure lemma

Lemma

Let Q has AP. If $\mathbb{Z}_2 \times \mathbb{Z}_4 \in Q$, then $\mathbb{Z}_4 \in Q$.

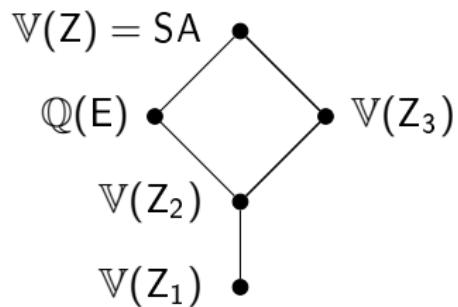
Theorem

Assume a nontrivial subquasivariety of SA , Q has AP. Then it is one of the four: $\mathbb{V}(Z_2)$, $\mathbb{V}(Z_3)$, $\mathbb{V}(Z)$, and $\mathbb{Q}(E)$.

proof idea

Since Q is nontrivial, $\mathbb{V}(Z_2) = \mathbb{Q}(Z_2) \subseteq Q$. Assume that this containment is proper. Then, by Lemma (K K 2022), either $Z_2 \times Z_3 \in Q$ or $Z_2 \times Z_4 \in Q$. We consider three mutually exclusive cases and end up in one of the three remaining quasivarieties: $\mathbb{V}(Z_3)$, $\mathbb{V}(Z)$, or $\mathbb{Q}(E)$

Poset of Qs with AP



- ① In quasivarieties of Sugihara algebras $AP \implies RCEP$. (Opposite direction is false) and additionally $AP \Leftrightarrow TIP$ (TIP always implies AP, but not the other way around)

- ① In quasivarieties of Sugihara algebras $AP \implies RCEP$. (Opposite direction is false) and additionally $AP \Leftrightarrow TIP$ (TIP always implies AP, but not the other way around)
- ② There is only one proper subquasivariety of Sugiharas which has AP/TIP.

R – an axiomatic formulation

$$A1 \ p \rightarrow p$$

$$A2 \ (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

$$A3 \ p \rightarrow ((p \rightarrow q) \rightarrow q)$$

$$A4 \ (p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow q)$$

$$A5 \ p \wedge q \rightarrow p$$

$$A6 \ p \wedge q \rightarrow q$$

$$A7 \ ((p \rightarrow q) \wedge (p \rightarrow r)) \rightarrow (p \rightarrow q \wedge r)$$

$$A8 \ p \rightarrow p \vee q$$

$$A9 \ p \rightarrow q \vee p$$

$$A10 \ ((q \rightarrow p) \wedge (r \rightarrow p)) \rightarrow (q \vee r \rightarrow p)$$

$$A11 \ p \wedge (q \vee r) \rightarrow (p \wedge q) \vee r$$

$$A12 \ (p \rightarrow \neg q) \rightarrow (q \rightarrow \neg p)$$

$$A13 \ \neg \neg p \rightarrow p$$

The two rules of the system is modus ponens MP $\{\varphi, \varphi \rightarrow \psi\}/\psi$ and the adjunction rule AD $\{\varphi, \psi\}/\varphi \wedge \psi$.

R-mingle and Sugihara algebras

the logic R-mingle results from adding the 'mingle axiom' to basic system of relevance logic R

$$p \rightarrow (p \rightarrow p).$$

Interpolation properties

If $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (PCIP)

Interpolation properties

If $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (PCIP)

Fails in R and E - Urquhart. FDE has it – Anderson Belnap.

Interpolation properties

If $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (PCIP)

Fails in R and E - Urquhart. FDE has it – Anderson Belnap.

If $\text{var}(\alpha) \cap \text{var}(\beta) \neq \emptyset$, and $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (CIP)

Interpolation properties

If $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (PCIP)

Fails in R and E - Urquhart. FDE has it – Anderson Belnap.

If $\text{var}(\alpha) \cap \text{var}(\beta) \neq \emptyset$, and $\vdash \alpha \rightarrow \beta$, then there is a formula δ such that $\text{var}(\delta) \subseteq \text{var}(\alpha) \cap \text{var}(\beta)$ and both $\vdash \alpha \rightarrow \delta$ and $\vdash \delta \rightarrow \beta$. (CIP)

RM fails the imperfect CIP

DIP, MIP and Robinson property

If $\Gamma \vdash \beta$ and $\text{var}(\Gamma) \cap \text{var}(\beta) \neq \emptyset$, then there is a set of formulas Δ such that $\text{var}(\Delta) \subseteq \text{var}(\Gamma) \cap \text{var}(\beta)$ and both $\Gamma \vdash \Delta$ and $\Delta \vdash \beta$. (DIP)

DIP, MIP and Robinson property

If $\Gamma \vdash \beta$ and $\text{var}(\Gamma) \cap \text{var}(\beta) \neq \emptyset$, then there is a set of formulas Δ such that $\text{var}(\Delta) \subseteq \text{var}(\Gamma) \cap \text{var}(\beta)$ and both $\Gamma \vdash \Delta$ and $\Delta \vdash \beta$. (DIP)

If $\text{var}(\Sigma \cup \{\alpha\}) \cap \text{var}(\Gamma) \neq \emptyset$ and $\Sigma, \Gamma \vdash \alpha$, there exists a set of formulas Δ such that $\text{var}(\Delta) \subseteq \text{var}(\Sigma \cup \{\alpha\}) \cap \text{var}(\Gamma)$ and both $\Gamma \vdash \Delta$ and $\Sigma, \Delta \vdash \alpha$. (MIP)

DIP, MIP and Robinson property

If $\Gamma \vdash \beta$ and $\text{var}(\Gamma) \cap \text{var}(\beta) \neq \emptyset$, then there is a set of formulas Δ such that $\text{var}(\Delta) \subseteq \text{var}(\Gamma) \cap \text{var}(\beta)$ and both $\Gamma \vdash \Delta$ and $\Delta \vdash \beta$. (DIP)

If $\text{var}(\Sigma \cup \{\alpha\}) \cap \text{var}(\Gamma) \neq \emptyset$ and $\Sigma, \Gamma \vdash \alpha$, there exists a set of formulas Δ such that $\text{var}(\Delta) \subseteq \text{var}(\Sigma \cup \{\alpha\}) \cap \text{var}(\Gamma)$ and both $\Gamma \vdash \Delta$ and $\Sigma, \Delta \vdash \alpha$. (MIP)

Whenever $X, Y \subseteq \text{var}$ such that $X \cap Y \neq \emptyset$, T is a theory of \mathcal{L} over X , and S is a theory of \mathcal{L} over Y such that $T \cap \text{Fm}_{\mathcal{L}}(X \cap Y) = S \cap \text{Fm}_{\mathcal{L}}(X \cap Y)$, there exists a theory R of \mathcal{L} over $X \cup Y$ such that $T = R \cap \text{Fm}_{\mathcal{L}}(X)$ and $S = R \cap \text{Fm}_{\mathcal{L}}(Y)$. (RP)

$AP \Leftrightarrow RP$

$TIP \Leftrightarrow MIP$

Thus, as a corollary we have $AP + RCEP \Leftrightarrow MIP$

- ① There are exactly five consequence relations extending the system of R-mingle which have MIP.

- ① There are exactly five consequence relations extending the system of R-mingle which have MIP.
- ② In extensions of R-mingle $RP \Leftrightarrow MIP$

- ① There are exactly five consequence relations extending the system of R-mingle which have MIP.
- ② In extensions of R-mingle $RP \Leftrightarrow MIP$
- ③ There is only one non-axiomatic extension of RM which has RP/MIP

Thank you!