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Amalgamation property for some varieties of algebras

corresponding to non-classical logics

o Maksimova’'s 1977 characterization: Exactly eight subvarieties of
Heyting algebras have the AP

o Gratzer Lakser 1971 exactly three subvarieties of pseudocomplemented
distributive lattices have AP

@ some classes of residuated lattices, particularly semilinear (Fussner
Santschi, 2024, 2025)

@ Sugihara monoids (Marchioni-Metcalfe 2012) exactly eight non-trivial
varieties with AP.
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Limitations and challenges

@ known results restricted to varieties;

@ no progress in terms of quasivarieties (quasivarieties correspond to
consequence relations);

@ Goal: get a deeper understanding of amalgamation-like properties in
quasivarieites (interpolation-like properties for non-classical logic);

@ Sugihara algebras as good case study (some nice properties,
correspond historically well-known system of logic RM).
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Amalgamation Property

class K has AP iff every span (pg: A < B,pc: A < C) in K can be
completed in K (has an amalgam in K) i.e. there exists D € K and
embeddings (¢g: B < D,¢c: C < D) such that g = Ycec.
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Transferable injections TIP — just diagramatically

A known algebraic fact:
TIP < AP + RCEP
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the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.

Many known techniques are based on (R)CEP properties.

usually we have something of the following form (the so-called transfer
theorems).
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the quasivariety challenge

Results on amalgamation predominantly restricted to varieties.

Many known techniques are based on (R)CEP properties.

usually we have something of the following form (the so-called transfer
theorems).

Lemma (Fussner-Metcalfe 2024)

Let Q be any quasivariety with the RCEP such that Qgrpsr is closed under
subalgebras. Then Q has the AP if and only if every span of algebras in
Qre N Qrrsr has an amalgam in Q.

Hard to apply in quasivarieties because of two hard problems:

(1) We usually have a bad handle on R(F)SI’s in quasivarieties (lack of
good characterizations)

(2) RCEP usually fails in (sub)quasivarieties even if the initial variety has it
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Our result

There are exactly five subquasivarieties (out of innfinitely continuum?) of
Sugihara algebras with Amalgamation Property. Furthermore, AP—-RCEP
for Sugihara quasivarieties.
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Sugihara algebras

Z={(Z,N\V,—, ),

Hy:{(—x)vy x<y
(—x)Ay xZy.

Sugihara algebras are memebers of V(Z) = HSP(Z).
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Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe E =Z — {0} by E.

. Fussner and K. Krawczyk (Czech AcaAmalgamation property in quasivarieties « 10 /30



Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe E =Z — {0} by E.
Further, for each integer n > 0, each of the set

{-2n—-1,-2n,...,—-1,0,1,...,2n,2n+ 1} gives the universe of a algebra
of Z that we denote Z5,11, and,
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Subchains (finitely subdirectly irreducibles)

We will denote the subalgebra of Z with universe E =Z — {0} by E.
Further, for each integer n > 0, each of the set

{-2n—-1,-2n,...,—-1,0,1,...,2n,2n+ 1} gives the universe of a algebra
of Z that we denote Z,11, and,for n > 1, each of the sets
{-2n—1,-2n,...,-1,1,...,2n,2n + 1} gives the universe of a

subalgebra Z5, of E.
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Sugihara algebras continued

It turns out that the lattice of subvarieties of SA forms a countable chain
given by

V(Z1) € V(Z) € V(Z3) C -+ V(Z) = V(E) = SA.
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Sugihara algebras continued

It turns out that the lattice of subvarieties of SA forms a countable chain
given by

V(Z1) € V(Z) € V(Z3) C -+ V(Z) = V(E) = SA.

Further, V(Z) = Q(Z) = Q({Z, | n > 1}) = Q({Z2n+1 | n > 0}), and also
Q(E) = Q({Z2n | n > 1}) is a proper subquasivariety of SA.
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Important results/useful lemmas

Lemma (Czelakowski-Dziobiak 1999)

All subquasiivarieties of Sugihara algebras with RCEP are the following:
V(Z)u{V(Z,):new}tU{Q(E)} U{Q(Z2n) : n € w}.
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Lemma (K.K. 2022)

Let Q be a quasivariety such that Q(Zy) C Q. Then either Zy x Z3 € Q or
7o X Z4 € Q.
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Important results/useful lemmas

Lemma (Czelakowski-Dziobiak 1999)

All subquasiivarieties of Sugihara algebras with RCEP are the following:
V(Z)u{V(Z,):new}tU{Q(E)} U{Q(Z2n) : n € w}.

Lemma (K.K. 2022)

Let Q be a quasivariety such that Q(Zy) C Q. Then either Zy x Z3 € Q or
7o X Z4 € Q.

V.

Lemma (Gil-Ferez et al. 2020)

The class of totally ordered odd Sugihara monoids has the amalgamation
property.
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Positive part

Each of the quasivarieties V(Z3), V(Z3), V(Z), and Q(E) has the
amalgamation property.

Easy part — all of them have RCEP, so we can apply the known techniques
(transfer theorems). All (R)FSls are chains — reducts of totally ordered
Sugihara monoids.
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The challenging part— negative part

"Any other quasivariety does not have AP"
Our strategy is to use the so-called closure lemmas.
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The two extending lemmas (even case)

Assume Q has AP. If Z, € Q, then Z5, € Q for every positive integer n.
Consequently, if 74 € Q, then E € Q.
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The two extending lemmas (odd case)

Assume Q has AP. If 73,74 € Q, then Q = SA.
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"The coordinate switch" embedding — odd and even cases

Let Q has AP. If 7, x Z3 € Q, then Z3 € Q.

v

Sketch of an argument.

Take a span (i: Zy X Zy < Zy X Z3,e: Zy X Ly < Z X Z3) where i is the
identity embedding and e is the ‘coordinate-switch® embedding
(n,m) = (m, n).

ZzXZ3
Zo X Zs A+——7Z3€Q@
\ /
ZzXZ3

[]
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Second 'switch embedding’ closure lemma

Let Q has AP. If 7, x Z4 € Q, then Z4 € Q.
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Assume a nontrivial subquasivariety of SA, Q has AP. Then it is one of the
four: V(Z3), V(Z3), V(Z), and Q(E).
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Since Q is nontrivial, V(Z3) = Q(Z2) € Q. Assume that this containment
is proper. Then, by Lemma (K K 2022), either Z; x Z3 € Q or

Zy x Z4 € Q. We consider three mutually exclusive cases and end up in one
of the three remaining quasivarieties: V(Z3), V(Z), or Q(E)
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Poset of Qs with AP
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comments/corollaries

© In quasivarieties of Sugihara algebras AP = RCEP. (Opposite
direction is false) and additionally AP < TIP (TIP always implies AP,
but not the other way around)
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comments/corollaries

© In quasivarieties of Sugihara algebras AP = RCEP. (Opposite
direction is false) and additionally AP < TIP (TIP always implies AP,
but not the other way around)

@ There is only one proper subquasivariety of Sugiharas which has
AP/TIP.
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R — an axiomatic formulation

Al
A2
A3
A4
Ab
A6
A7
A8
A9
Al0
All
Al2
Al3

p—p
(p—=4q)—=>((g—=r)—=>(p—r))
p—((p—q)—q)
(p=>(Pp—q))—(p—q)
pPAG—Pp

pPAG—q
(p=a)A(p—=r))—=(p—qAT)
p—pVq

p—qVp
((g—=>p)A(r—p))—=(qVr—p)
pA(@Vr)—=(pAq)Vr
(p——q) = (g — —p)

—p = p

The two rules of the system is modus ponens MP {¢, ¢ — 1}/ and the
adjunction rule AD {p,¥}/p A 1.
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R-mingle and Sugihara algebras

the logic R-mingle results from adding the 'mingle axiom’ to basic system
of relevance logic R

p—(p—p)
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Interpolation properties

If H o — (3, then there is a formula § such that var(d) C

var(a) Nvar(B) and both F o — § and - § — B. (PCIP)
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Interpolation properties

If H o — (3, then there is a formula § such that var(d) C

var(a) Nvar(B) and both F o — § and - § — B. (PCIP)

Fails in R and E - Urquhart. FDE has it — Anderson Belnap.
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Interpolation properties

If H o — (3, then there is a formula § such that var(d) C

var(a) Nvar(B) and both F o — § and - § — B. (PCIP)

Fails in R and E - Urquhart. FDE has it — Anderson Belnap.

If var(a)) Nvar(B) # 0, and - o — 3, then there is a formula
d such that var(d) C var(a) Nvar(B) and both - a — § and  (CIP)
Fdo—p.

. Fussner and K. Krawczyk (Czech AcaAmalgamation property in quasivarieties « 26 /30



Interpolation properties

If H o — (3, then there is a formula § such that var(d) C

var(a) Nvar(B) and both F o — § and - § — B. (PCIP)

Fails in R and E - Urquhart. FDE has it — Anderson Belnap.

If var(a)) Nvar(B) # 0, and - o — 3, then there is a formula
d such that var(d) C var(a) Nvar(B) and both - a — § and  (CIP)
Fdo—p.

RM fails the imperfect CIP
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DIP, MIP and Robinson property

If I = 3 and var(I)Nvar(3) # 0, then there is a set of formulas
A such that var(A) C var(I') Nvar(8) and both ' - A and  (DIP)
AFB.

. Fussner and K. Krawczyk (Czech AcaAmalgamation property in quasivarieties « 27 /30



DIP, MIP and Robinson property

If I = 3 and var(I)Nvar(3) # 0, then there is a set of formulas
A such that var(A) C var(I') Nvar(8) and both ' - A and  (DIP)

At B,

If var(X U {a}) Nvar(l") # 0 and X, T I «, there exists a set
of formulas A such that var(A) C var(XU{a})Nvar(F) and  (MIP)
both ' A and ¥, A+ «.
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DIP, MIP and Robinson property

If I = 3 and var(I)Nvar(3) # 0, then there is a set of formulas

A such that var(A) C var(I') Nvar(8) and both ' - A and  (DIP)
At B,

If var(X U {a}) Nvar(l") # 0 and X, T I «, there exists a set
of formulas A such that var(A) C var(XU{a})Nvar(F) and  (MIP)
both ' A and ¥, A+ «.

Whenever X, Y C var such that XN'Y # (, T is a theory
of L over X, and S is a theory of L over Y such that T N
Fmg(XNY)=SNFmg(XNY), there exists a theory R of L (RP)
over XUY such that T = RNFm,(X) and S = RNFm,(Y).
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AAL characterization Czelakowski-Pigozzi 1999

AP < RP
TIP & MIP
Thus, as a corollary we have AP + RCEP < MIP
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logical corollaries

© There are exactly five consequence relations extending the system of
R-mingle which hava MIP.
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logical corollaries

© There are exactly five consequence relations extending the system of
R-mingle which hava MIP.

@ In extensions of R—-mingle RP < MIP

© There is only one non-axiomatic extension of RM which has RP/MIP
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Thank you!
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