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From Wikipedia, the free encyclopedia

For the Lie algebras or groups, see Malcev Lie algebra.

In mathematics, a Malcev algebra (or Maltsev algebra or Moufang—-Lie algebra)
over a field is a nonassociative algebra that is antisymmetric, so that

TY = —yx

and satisfies the Malcev identity

(zy)(z2) = ((zy)2)z + ((y2)z)z + ((22)7)y.
They were first defined by Anatoly Maltsev (1955).

Malcev algebras play a role in the theory of Moufang loops that generalizes the role
of Lie algebras in the theory of groups. Namely, just as the tangent space of the
identity element of a Lie group forms a Lie algebra, the tangent space of the identity
of a smooth Moufang loop forms a Malcev algebra. Moreover, just as a Lie group
can be recovered from its Lie algebra under certain supplementary conditions, a
smooth Moufang loop can be recovered from its Malcev algebra if certain
supplementary conditions hold. For example, this is true for a connected, simply
connected real-analytic Moufang Ioop.m
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