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1. Quantum homomorphisms via games
2. Quantum polymorphisms

3. Boolean case: @Pol vs. qPol

Based on Quantum polymorphisms and commutativity gadgets, joint work with
Lorenzo Ciardo, Antoine Mottet, arXiv:2511.23445 (preprint).
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The homomorphism game

e Setup: Two known relational structures X and Y with a relation R of arity r.

Cooperating players, Aq, ...

,A,; also a Verifier that runs the game.

e Players decide on a strategy f that takes domain elements from X and returns
elements from Y'; the game then proceeds as follows:

Verifier separates play- separates play
ers, chooses 3 € R*

Verifier provides ‘ ‘ A1 returns

A; with a; € 3 f(a1) € Y to Verifier

\ Verifier checks whether

§ (f(ar),...f(as)) € RY
Verifier provides A returns
A, with a, € 3 f(ar) € Y to Verifier

e Players win if a; = a; = f(a;) = f(a;) and the check passes with a probability of

1.



The quantum homomorphism game

A strategy @ is quantum if, during play; players may exploit some shared randomness
through a shared quantum system p € H, prepared by the players in the planning
phase.

e A quantum strategy Q : X —, Y consists of a set {M, | x € X} of measurements
on H that (WLOG) return elements from Y.
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The quantum homomorphism game

A strategy @ is quantum if, during play; players may exploit some shared randomness
through a shared quantum system p € H, prepared by the players in the planning
phase.

e A quantum strategy Q : X —, Y consists of a set {M, | x € X} of measurements
on H that (WLOG) return elements from Y.

Alice receives a Alice selects a Alice measures Alice outputs out-
classical input x € X measurement M p using M, comey € Y
Post-measurement
state MY(p)

e Mathematically, My system of projection matrixes indexed by Y (possible
outcomes).
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Quantum Homomorphisms

Definition
A quantum function Q: X —, Y over a Hilbert space Hisaset {Qyx, | x € X,y € Y}

of projection matrixes such that:

° Zer Qx,y = id.
® QyQxy =0forall y #y from Y.

@ is additionally a quantum homomorphism when:

(QH1) [Tiepg @xiys =0 if X = (x1,...,xa) is in R* but, ¥ ¢ R".
(QH2) [Qx,y, Qu,] =0forany y,y’ € Y if x and x’ appear together in R*.
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From homomorphisms to polymorphisms

Consider Q: A —y B and R: B — 4 C, we have canonical Re Q: A — e C.
If we then take the quantum polymorphisms Q: A" —, A and consider qPol(A):
e Pol(A) is closed under composition.
e Pol(A) contains projections.
l.e. gPol(A) is a clone.

Lemma

Let Q: X —y A and Q": X — A be quantum homomorphisms. Then Q ® Q' is a
quantum homomorphism X — yao A.

Quantum polymorphisms # Clones of quantum operations
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Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F.

If F is classical, then quantum closure is just direct sums from (F).
Defined by the property that any Q has [Qx,y, Qv /] = 0.

Quantum closing Pol(A), gives @Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine @Pol(A) versus qPol(A).
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Boolean relational structures

e Classical polymorphisms are understood.

e Domain {0,1} so, Qx0 =id —Qx 1 for any Q: X —4 Y with Y boolean. Moreover
{0,1}" bijective to P[n], just map S C [n] to s € {0,1}" with s; =1 iff i € S.

e Quantum polymorphism: Q: X" —, X given by {Qs | S € [n]}.
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If A is a Boolean relational structure such that Pol(A) does not contain majority, then

qPol(A) = @Pol(A).
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Polymorphism clone versus Closure clone

Theorem
If A is a Boolean relational structure such that Pol(A) does not contain majority, then

qPol(A) = @Pol(A).

We focus on the class O; of boolean structures with relation given by t @& r where
t € {0,1}* and r € Ry (the 1-in-k relation).

Example
If we take k =3 and t = (1,0,0) then

Rz ={(1,0,0),(0,1,0),(0,0,1)}

and so,
Ra0,0) = {(0,0,0),(1,1,0),(1,0,1)}.
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Lemma
qPol(01,0,0)) = ©Pol(0(1,0,0))

Proof.
Consider Q: (O)Fl,O,O) —q0@,00), S; T C[n]withSNT=0andlet R:=SUT.
Then (r,s, t) is in R10,0), which gives identities:

® QsuTQsQ7 =0, since (1,1,1) is not in Ry ,0,0),

e (id—QsuT)QsQT =0, since (0,1,1) is not in R(1,0,0):

e QsyT(id—Qs)(id —Q7) = 0, since (1,0,0) is not in R3,0,0)-
e (id—QsuT)Qs(id —Q7) = 0, since (0,1,0) is not in R10,0).-
e (id—QsuT)(id —Qs)Q7 = 0, since (0,0,1) is not in Ry 0,0)-

Then manipulate these identities to derive Qs = ;.5 Qqjy for any S C [n]. Further
derive that [Qs, Q7] = 0, for every S, T and thus qPol(O(10,0)) = ©Pol(O(10,0)). [T
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Proof sketch

Claim
qPol(0;) = ©Pol(Qy) for any t € 0, 1.

Lemma
Every relational structure A with a relation R that has any full binary projection has

the property that qPol(A) = @Pol(A).
Theorem

For any relation R C {0,1}* the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R,
and every binary projection of R is not full.

2. R = R; for some tuple t.






Thank you for listening!

Questions?



	Homomorphism games
	Quantum polymorphisms
	Boolean clones
	

