

Quantum Polymorphisms of Relational Structures

Gideo Joubert

Feb 2026

Technische Universität Hambrug

Outline

1. Quantum homomorphisms via games
2. Quantum polymorphisms
3. Boolean case: $\oplus\text{Pol}$ vs. qPol

Based on *Quantum polymorphisms and commutativity gadgets*, joint work with Lorenzo Ciardo, Antoine Mottet, [arXiv:2511.23445](https://arxiv.org/abs/2511.23445) (preprint).

Homomorphism games

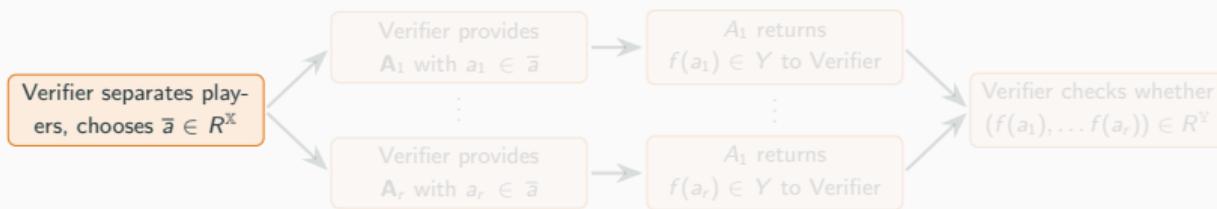
The homomorphism game

- Setup: Two known relational structures \mathbb{X} and \mathbb{Y} with a relation R of arity r . Cooperating players, $\mathbf{A}_1, \dots, \mathbf{A}_r$; also a Verifier that runs the game.
- Players decide on a strategy f that takes domain elements from X and returns elements from Y ; the game then proceeds as follows:

- Players win if $a_i = a_j \Rightarrow f(a_i) = f(a_j)$ and the check passes with a probability of 1.

The homomorphism game

- Setup: Two known relational structures \mathbb{X} and \mathbb{Y} with a relation R of arity r . Cooperating players, $\mathbf{A}_1, \dots, \mathbf{A}_r$; also a Verifier that runs the game.
- Players decide on a strategy f that takes domain elements from X and returns elements from Y ; the game then proceeds as follows:



- Players win if $a_i = a_j \Rightarrow f(a_i) = f(a_j)$ and the check passes with a probability of 1.

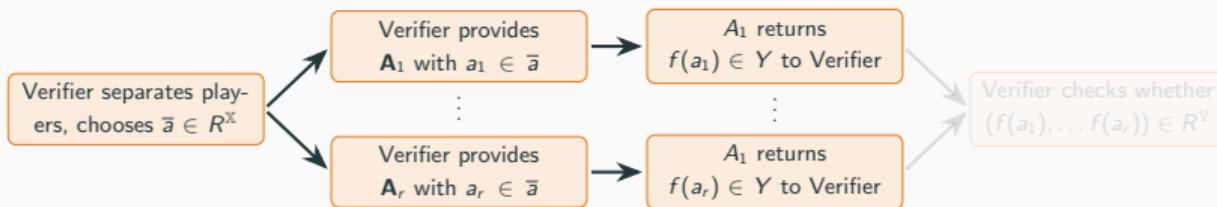
The homomorphism game

- Setup: Two known relational structures \mathbb{X} and \mathbb{Y} with a relation R of arity r . Cooperating players, $\mathbf{A}_1, \dots, \mathbf{A}_r$; also a Verifier that runs the game.
- Players decide on a strategy f that takes domain elements from X and returns elements from Y ; the game then proceeds as follows:

- Players win if $a_i = a_j \Rightarrow f(a_i) = f(a_j)$ and the check passes with a probability of 1.

The homomorphism game

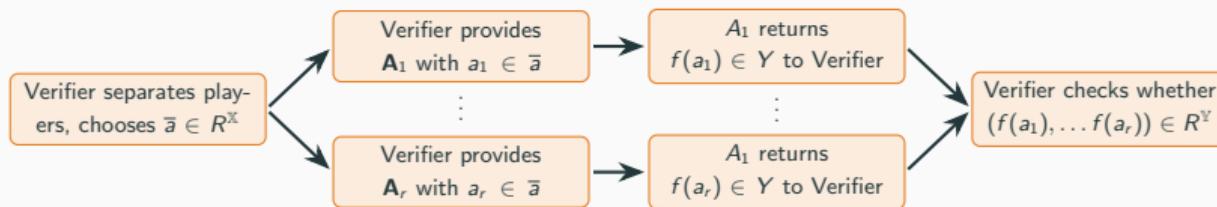
- Setup: Two known relational structures \mathbb{X} and \mathbb{Y} with a relation R of arity r . Cooperating players, $\mathbf{A}_1, \dots, \mathbf{A}_r$; also a Verifier that runs the game.
- Players decide on a strategy f that takes domain elements from X and returns elements from Y ; the game then proceeds as follows:



- Players win if $a_i = a_j \Rightarrow f(a_i) = f(a_j)$ and the check passes with a probability of 1.

The homomorphism game

- Setup: Two known relational structures \mathbb{X} and \mathbb{Y} with a relation R of arity r . Cooperating players, $\mathbf{A}_1, \dots, \mathbf{A}_r$; also a Verifier that runs the game.
- Players decide on a strategy f that takes domain elements from X and returns elements from Y ; the game then proceeds as follows:



- Players win if $a_i = a_j \Rightarrow f(a_i) = f(a_j)$ and the check passes with a probability of 1.

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .

- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

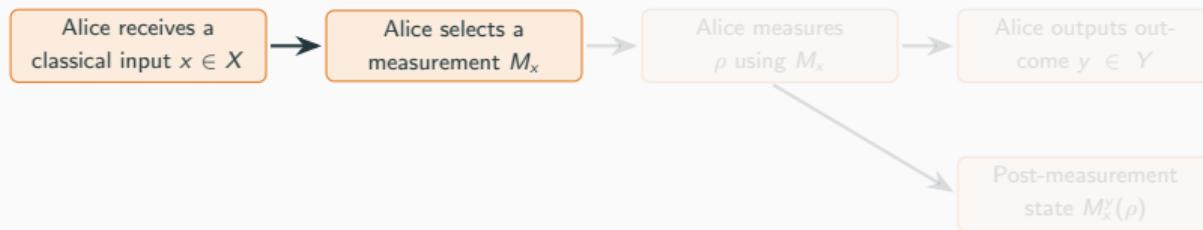
- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .

- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .

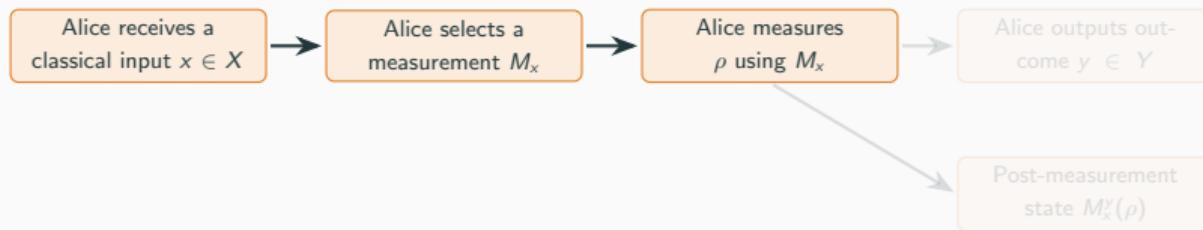


- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .

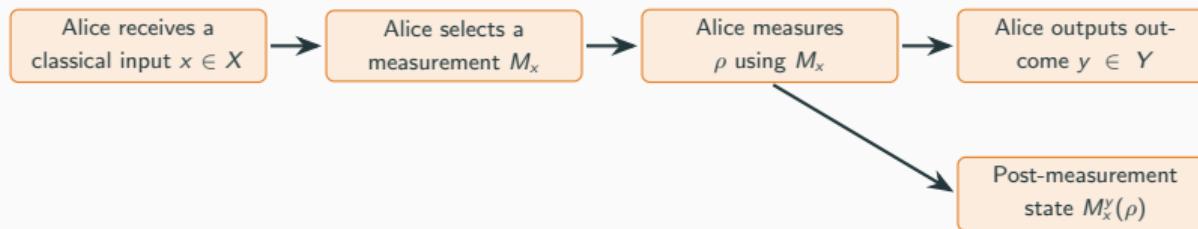


- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .

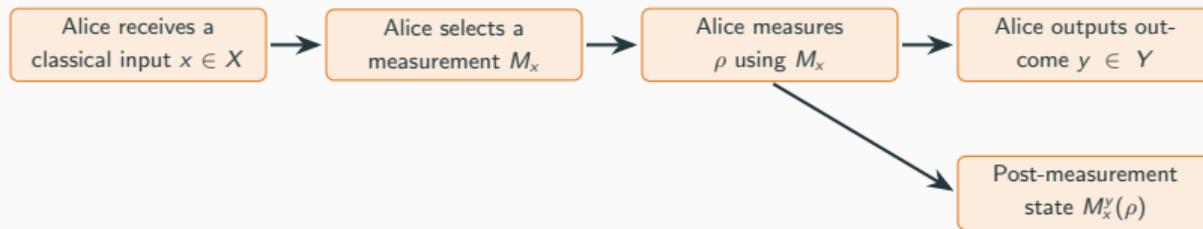


- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

The quantum homomorphism game

A strategy Q is *quantum* if, during play; players may exploit some shared randomness through a shared quantum system $\rho \in H$, prepared by the players in the planning phase.

- A quantum strategy $Q : \mathbb{X} \rightarrow_q \mathbb{Y}$ consists of a set $\{M_x \mid x \in X\}$ of measurements on H that (WLOG) return elements from Y .



- Mathematically, M_x system of projection matrixes indexed by Y (possible outcomes).

Quantum Homomorphisms

Definition

A quantum function $Q: \mathbb{X} \rightarrow_q \mathbb{Y}$ over a Hilbert space H is a set $\{Q_{x,y} \mid x \in X, y \in Y\}$ of projection matrixes such that:

- $\sum_{y \in Y} Q_{x,y} = \text{id.}$
- $Q_{x,y} Q_{x,y'} = 0$ for all $y \neq y'$ from Y .

Q is additionally a quantum homomorphism when:

(QH_1) $\prod_{i \in [r]} Q_{x_i, y_i} = 0$ if $\bar{x} = (x_1, \dots, x_n)$ is in $R^{\mathbb{X}}$ but, $\bar{y} \notin R^{\mathbb{Y}}$.

(QH_2) $[Q_{x,y}, Q_{x',y'}] = 0$ for any $y, y' \in Y$ if x and x' appear together in $R^{\mathbb{X}}$.

Quantum Homomorphisms

Definition

A quantum function $Q: \mathbb{X} \rightarrow_q \mathbb{Y}$ over a Hilbert space H is a set $\{Q_{x,y} \mid x \in X, y \in Y\}$ of projection matrixes such that:

- $\sum_{y \in Y} Q_{x,y} = \text{id.}$
- $Q_{x,y} Q_{x,y'} = 0$ for all $y \neq y'$ from Y .

Q is additionally a quantum homomorphism when:

(QH_1) $\prod_{i \in [r]} Q_{x_i, y_i} = 0$ if $\bar{x} = (x_1, \dots, x_n)$ is in $R^{\mathbb{X}}$ but, $\bar{y} \notin R^{\mathbb{Y}}$.

(QH_2) $[Q_{x,y}, Q_{x',y'}] = 0$ for any $y, y' \in Y$ if x and x' appear together in $R^{\mathbb{X}}$.

Quantum Homomorphisms

Definition

A quantum function $Q: \mathbb{X} \rightarrow_q \mathbb{Y}$ over a Hilbert space H is a set $\{Q_{x,y} \mid x \in X, y \in Y\}$ of projection matrixes such that:

- $\sum_{y \in Y} Q_{x,y} = \text{id.}$
- $Q_{x,y} Q_{x,y'} = 0$ for all $y \neq y'$ from Y .

Q is additionally a quantum homomorphism when:

(QH_1) $\prod_{i \in [r]} Q_{x_i, y_i} = 0$ if $\bar{x} = (x_1, \dots, x_n)$ is in $R^{\mathbb{X}}$ but, $\bar{y} \notin R^{\mathbb{Y}}$.

(QH_2) $[Q_{x,y}, Q_{x',y'}] = 0$ for any $y, y' \in Y$ if x and x' appear together in $R^{\mathbb{X}}$.

Quantum Homomorphisms

Definition

A quantum function $Q: \mathbb{X} \rightarrow_q \mathbb{Y}$ over a Hilbert space H is a set $\{Q_{x,y} \mid x \in X, y \in Y\}$ of projection matrixes such that:

- $\sum_{y \in Y} Q_{x,y} = \text{id.}$
- $Q_{x,y} Q_{x,y'} = 0$ for all $y \neq y'$ from Y .

Q is additionally a quantum homomorphism when:

(QH₁) $\prod_{i \in [r]} Q_{x_i, y_i} = 0$ if $\bar{x} = (x_1, \dots, x_n)$ is in $R^{\mathbb{X}}$ but, $\bar{y} \notin R^{\mathbb{Y}}$.

(QH₂) $[Q_{x,y}, Q_{x',y'}] = 0$ for any $y, y' \in Y$ if x and x' appear together in $R^{\mathbb{X}}$.

Quantum polymorphisms

From homomorphisms to polymorphisms

Consider $Q: \mathbb{A} \rightarrow_H \mathbb{B}$ and $R: \mathbb{B} \rightarrow_{H'} \mathbb{C}$, we have canonical $R \bullet Q: \mathbb{A} \rightarrow_{H \otimes H'} \mathbb{C}$.

If we then take the quantum polymorphisms $Q: \mathbb{A}^n \rightarrow_q \mathbb{A}$ and consider $\text{qPol}(\mathbb{A})$:

- $\text{qPol}(\mathbb{A})$ is closed under composition.
- $\text{qPol}(\mathbb{A})$ contains projections.

I.e. $\text{qPol}(\mathbb{A})$ is a clone.

Lemma

Let $Q: \mathbb{X} \rightarrow_H \mathbb{A}$ and $Q': \mathbb{X} \rightarrow_{H'} \mathbb{A}$ be quantum homomorphisms. Then $Q \oplus Q'$ is a quantum homomorphism $\mathbb{X} \rightarrow_{H \oplus H'} \mathbb{A}$.

Quantum polymorphisms \neq Clones of quantum operations

From homomorphisms to polymorphisms

Consider $Q: \mathbb{A} \rightarrow_H \mathbb{B}$ and $R: \mathbb{B} \rightarrow_{H'} \mathbb{C}$, we have canonical $R \bullet Q: \mathbb{A} \rightarrow_{H \otimes H'} \mathbb{C}$.

If we then take the quantum polymorphisms $Q: \mathbb{A}^n \rightarrow_q \mathbb{A}$ and consider $\text{qPol}(\mathbb{A})$:

- $\text{qPol}(\mathbb{A})$ is closed under composition.
- $\text{qPol}(\mathbb{A})$ contains projections.

I.e. $\text{qPol}(\mathbb{A})$ is a clone.

Lemma

Let $Q: \mathbb{X} \rightarrow_H \mathbb{A}$ and $Q': \mathbb{X} \rightarrow_{H'} \mathbb{A}$ be quantum homomorphisms. Then $Q \oplus Q'$ is a quantum homomorphism $\mathbb{X} \rightarrow_{H \oplus H'} \mathbb{A}$.

Quantum polymorphisms \neq Clones of quantum operations

From homomorphisms to polymorphisms

Consider $Q: \mathbb{A} \rightarrow_H \mathbb{B}$ and $R: \mathbb{B} \rightarrow_{H'} \mathbb{C}$, we have canonical $R \bullet Q: \mathbb{A} \rightarrow_{H \otimes H'} \mathbb{C}$.

If we then take the quantum polymorphisms $Q: \mathbb{A}^n \rightarrow_q \mathbb{A}$ and consider $\text{qPol}(\mathbb{A})$:

- $\text{qPol}(\mathbb{A})$ is closed under composition.
- $\text{qPol}(\mathbb{A})$ contains projections.

I.e. $\text{qPol}(\mathbb{A})$ is a clone.

Lemma

Let $Q: \mathbb{X} \rightarrow_H \mathbb{A}$ and $Q': \mathbb{X} \rightarrow_{H'} \mathbb{A}$ be quantum homomorphisms. Then $Q \oplus Q'$ is a quantum homomorphism $\mathbb{X} \rightarrow_{H \oplus H'} \mathbb{A}$.

Quantum polymorphisms \neq Clones of quantum operations

From homomorphisms to polymorphisms

Consider $Q: \mathbb{A} \rightarrow_H \mathbb{B}$ and $R: \mathbb{B} \rightarrow_{H'} \mathbb{C}$, we have canonical $R \bullet Q: \mathbb{A} \rightarrow_{H \otimes H'} \mathbb{C}$.

If we then take the quantum polymorphisms $Q: \mathbb{A}^n \rightarrow_q \mathbb{A}$ and consider $\text{qPol}(\mathbb{A})$:

- $\text{qPol}(\mathbb{A})$ is closed under composition.
- $\text{qPol}(\mathbb{A})$ contains projections.

I.e. $\text{qPol}(\mathbb{A})$ is a clone.

Lemma

Let $Q: \mathbb{X} \rightarrow_H \mathbb{A}$ and $Q': \mathbb{X} \rightarrow_{H'} \mathbb{A}$ be quantum homomorphisms. Then $Q \oplus Q'$ is a quantum homomorphism $\mathbb{X} \rightarrow_{H \oplus H'} \mathbb{A}$.

Quantum polymorphisms \neq Clones of quantum operations

Definition

For any set \mathcal{F} of operations, the *quantum closure* of \mathcal{F} is the smallest quantum clone containing \mathcal{F} .

If \mathcal{F} is classical, then quantum closure is just direct sums from $\langle \mathcal{F} \rangle$.

Defined by the property that any Q has $[Q_{x,y}, Q_{x',y'}] = 0$.

Quantum closing $\text{Pol}(\mathbb{A})$, gives $\oplus\text{Pol}(\mathbb{A})$, the (quantum) closure clone of \mathbb{A} .

Goal: In boolean setting, determine $\oplus\text{Pol}(\mathbb{A})$ versus $\text{qPol}(\mathbb{A})$.

Definition

For any set \mathcal{F} of operations, the *quantum closure* of \mathcal{F} is the smallest quantum clone containing \mathcal{F} .

If \mathcal{F} is classical, then quantum closure is just direct sums from $\langle \mathcal{F} \rangle$.

Defined by the property that any Q has $[Q_{x,y}, Q_{x',y'}] = 0$.

Quantum closing $\text{Pol}(\mathbb{A})$, gives $\oplus\text{Pol}(\mathbb{A})$, the (quantum) closure clone of \mathbb{A} .

Goal: In boolean setting, determine $\oplus\text{Pol}(\mathbb{A})$ versus $\text{qPol}(\mathbb{A})$.

Definition

For any set \mathcal{F} of operations, the *quantum closure* of \mathcal{F} is the smallest quantum clone containing \mathcal{F} .

If \mathcal{F} is classical, then quantum closure is just direct sums from $\langle \mathcal{F} \rangle$.

Defined by the property that any Q has $[Q_{x,y}, Q_{x',y'}] = 0$.

Quantum closing $\text{Pol}(\mathbb{A})$, gives $\oplus\text{Pol}(\mathbb{A})$, the (quantum) closure clone of \mathbb{A} .

Goal: In boolean setting, determine $\oplus\text{Pol}(\mathbb{A})$ versus $\text{qPol}(\mathbb{A})$.

Definition

For any set \mathcal{F} of operations, the *quantum closure* of \mathcal{F} is the smallest quantum clone containing \mathcal{F} .

If \mathcal{F} is classical, then quantum closure is just direct sums from $\langle \mathcal{F} \rangle$.

Defined by the property that any Q has $[Q_{x,y}, Q_{x',y'}] = 0$.

Quantum closing $\text{Pol}(\mathbb{A})$, gives $\oplus\text{Pol}(\mathbb{A})$, the (quantum) closure clone of \mathbb{A} .

Goal: In boolean setting, determine $\oplus\text{Pol}(\mathbb{A})$ versus $\text{qPol}(\mathbb{A})$.

Definition

For any set \mathcal{F} of operations, the *quantum closure* of \mathcal{F} is the smallest quantum clone containing \mathcal{F} .

If \mathcal{F} is classical, then quantum closure is just direct sums from $\langle \mathcal{F} \rangle$.

Defined by the property that any Q has $[Q_{x,y}, Q_{x',y'}] = 0$.

Quantum closing $\text{Pol}(\mathbb{A})$, gives $\oplus\text{Pol}(\mathbb{A})$, the (quantum) closure clone of \mathbb{A} .

Goal: In boolean setting, determine $\oplus\text{Pol}(\mathbb{A})$ versus $\text{qPol}(\mathbb{A})$.

Quantum polymorphism example

Consider the boolean structure

$$\mathbb{B} := (\{0, 1\}; S_{00}, S_{11}, S_{10})$$

$\text{Pol}(\mathbb{B})$ is the majority clone.

Claim: $\oplus\text{Pol}(\mathbb{B}) \neq \text{qPol}(\mathbb{B})$

Witness $Q: \mathbb{B}^4 \rightarrow_q B$

Quantum polymorphism example

Consider the boolean structure

$$\mathbb{B} := (\{0, 1\}; S_{00}, S_{11}, S_{10})$$

$\text{Pol}(\mathbb{B})$ is the majority clone.

Claim: $\oplus\text{Pol}(\mathbb{B}) \neq \text{qPol}(\mathbb{B})$

Witness $Q: \mathbb{B}^4 \rightarrow_q B$

Quantum polymorphism example

Consider the boolean structure

$$\mathbb{B} := (\{0, 1\}; S_{00}, S_{11}, S_{10})$$

$\text{Pol}(\mathbb{B})$ is the majority clone.

Claim: $\oplus\text{Pol}(\mathbb{B}) \neq \text{qPol}(\mathbb{B})$

Witness $Q: \mathbb{B}^4 \rightarrow_q B$

Quantum polymorphism example

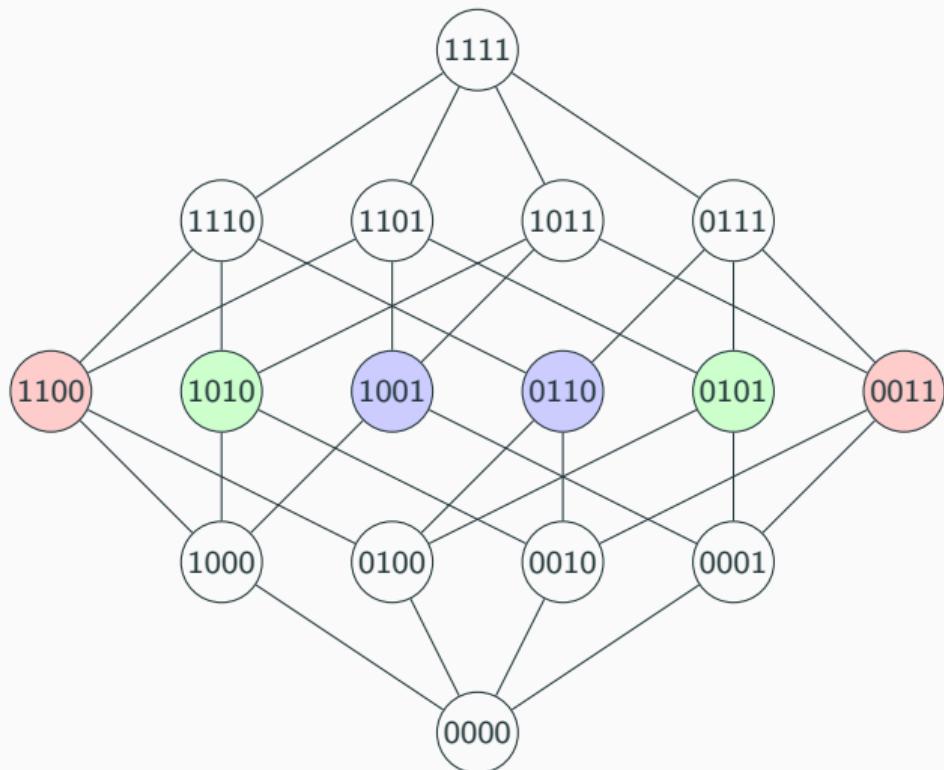
Consider the boolean structure

$$\mathbb{B} := (\{0, 1\}; S_{00}, S_{11}, S_{10})$$

$\text{Pol}(\mathbb{B})$ is the majority clone.

Claim: $\oplus\text{Pol}(\mathbb{B}) \neq \text{qPol}(\mathbb{B})$

Witness $Q: \mathbb{B}^4 \rightarrow_q B$



Quantum polymorphism example

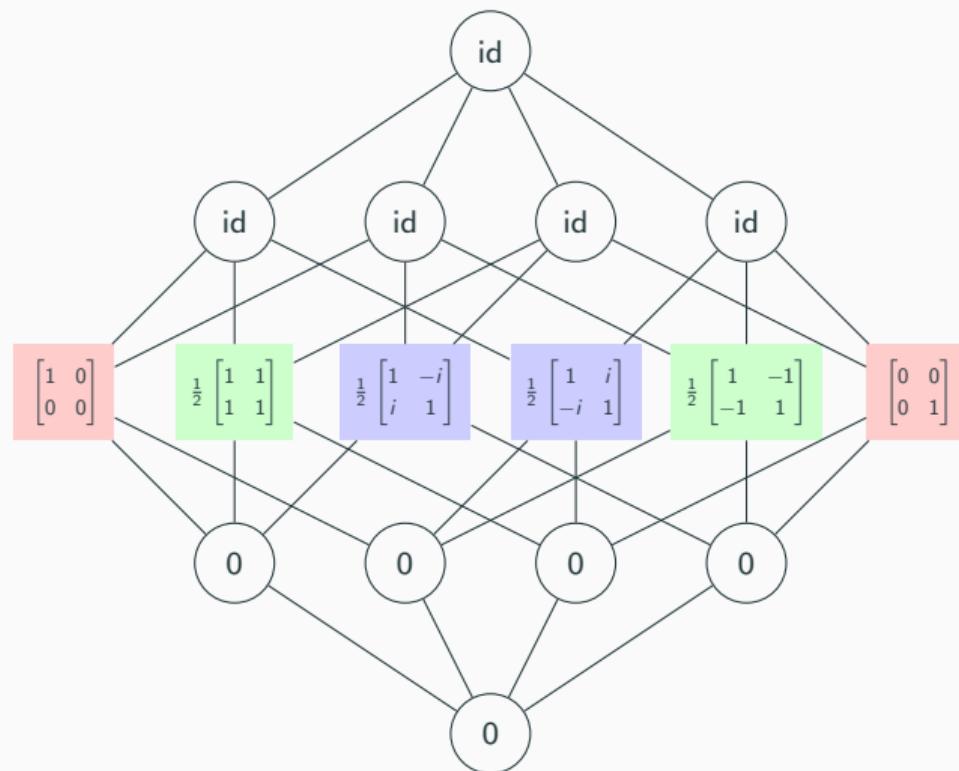
Consider the boolean structure

$$\mathbb{B} := (\{0, 1\}; S_{00}, S_{11}, S_{10})$$

$\text{Pol}(\mathbb{B})$ is the majority clone.

Claim: $\oplus\text{Pol}(\mathbb{B}) \neq \text{qPol}(\mathbb{B})$

Witness $Q: \mathbb{B}^4 \rightarrow_q B$



Boolean clones

Boolean relational structures

- Classical polymorphisms are understood.
- Domain $\{0, 1\}$ so, $Q_{x,0} = \text{id} - Q_{x,1}$ for any $Q: \mathbb{X} \rightarrow_q \mathbb{Y}$ with Y boolean. Moreover $\{0, 1\}^n$ bijective to $\mathcal{P}[n]$, just map $S \subseteq [n]$ to $s \in \{0, 1\}^n$ with $s_i = 1$ iff $i \in S$.
- Quantum polymorphism: $Q: \mathbb{X}^n \rightarrow_q \mathbb{X}$ given by $\{Q_S \mid S \in [n]\}$.

Polymorphism clone versus Closure clone

Theorem

If \mathbb{A} is a Boolean relational structure such that $\text{Pol}(\mathbb{A})$ does not contain majority, then $\text{qPol}(\mathbb{A}) = \oplus\text{Pol}(\mathbb{A})$.

We focus on the class \mathbb{O}_t of boolean structures with relation given by $t \oplus r$ where $t \in \{0, 1\}^k$ and $r \in R_{1/k}$ (the 1-in- k relation).

Example

If we take $k = 3$ and $t = (1, 0, 0)$ then

$$R_{1/3} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

and so,

$$R_{(1,0,0)} = \{(0, 0, 0), (1, 1, 0), (1, 0, 1)\}.$$

Polymorphism clone versus Closure clone

Theorem

If \mathbb{A} is a Boolean relational structure such that $\text{Pol}(\mathbb{A})$ does not contain majority, then $\text{qPol}(\mathbb{A}) = \oplus\text{Pol}(\mathbb{A})$.

We focus on the class \mathbb{O}_t of boolean structures with relation given by $t \oplus r$ where $t \in \{0, 1\}^k$ and $r \in R_{1/k}$ (the 1-in- k relation).

Example

If we take $k = 3$ and $t = (1, 0, 0)$ then

$$R_{1/3} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

and so,

$$R_{(1,0,0)} = \{(0, 0, 0), (1, 1, 0), (1, 0, 1)\}.$$

Polymorphism clone versus Closure clone

Theorem

If \mathbb{A} is a Boolean relational structure such that $\text{Pol}(\mathbb{A})$ does not contain majority, then $\text{qPol}(\mathbb{A}) = \oplus \text{Pol}(\mathbb{A})$.

We focus on the class \mathbb{O}_t of boolean structures with relation given by $t \oplus r$ where $t \in \{0, 1\}^k$ and $r \in R_{1/k}$ (the 1-in- k relation).

Example

If we take $k = 3$ and $t = (1, 0, 0)$ then

$$R_{1/3} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

and so,

$$R_{(1,0,0)} = \{(0, 0, 0), (1, 1, 0), (1, 0, 1)\}.$$

Proof sketch

Lemma

$$\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$$

Proof.

Consider $Q: \mathbb{O}_{(1,0,0)}^n \rightarrow_q \mathbb{O}_{(1,0,0)}$, $S, T \subseteq [n]$ with $S \cap T = \emptyset$ and let $R := S \cup T$.

Then (r, s, t) is in $R_{(1,0,0)}$, which gives identities:

- $Q_{S \cup T} Q_S Q_T = 0$, since $(1, 1, 1)$ is not in $R_{(1,0,0)}$,
- $(\text{id} - Q_{S \cup T}) Q_S Q_T = 0$, since $(0, 1, 1)$ is not in $R_{(1,0,0)}$,
- $Q_{S \cup T} (\text{id} - Q_S)(\text{id} - Q_T) = 0$, since $(1, 0, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T}) Q_S (\text{id} - Q_T) = 0$, since $(0, 1, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T})(\text{id} - Q_S) Q_T = 0$, since $(0, 0, 1)$ is not in $R_{(1,0,0)}$.

Then manipulate these identities to derive $Q_S = \sum_{i \in S} Q_{\{i\}}$ for any $S \subseteq [n]$. Further derive that $[Q_S, Q_T] = 0$, for every S, T and thus $\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$. \square

Proof sketch

Lemma

$$\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$$

Proof.

Consider $Q: \mathbb{O}_{(1,0,0)}^n \rightarrow_q \mathbb{O}_{(1,0,0)}$, $S, T \subseteq [n]$ with $S \cap T = \emptyset$ and let $R := S \cup T$.

Then (r, s, t) is in $R_{(1,0,0)}$, which gives identities:

- $Q_{S \cup T} Q_S Q_T = 0$, since $(1, 1, 1)$ is not in $R_{(1,0,0)}$,
- $(\text{id} - Q_{S \cup T}) Q_S Q_T = 0$, since $(0, 1, 1)$ is not in $R_{(1,0,0)}$,
- $Q_{S \cup T} (\text{id} - Q_S)(\text{id} - Q_T) = 0$, since $(1, 0, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T}) Q_S (\text{id} - Q_T) = 0$, since $(0, 1, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T})(\text{id} - Q_S) Q_T = 0$, since $(0, 0, 1)$ is not in $R_{(1,0,0)}$.

Then manipulate these identities to derive $Q_S = \sum_{i \in S} Q_{\{i\}}$ for any $S \subseteq [n]$. Further derive that $[Q_S, Q_T] = 0$, for every S, T and thus $\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$. \square

Proof sketch

Lemma

$$\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$$

Proof.

Consider $Q: \mathbb{O}_{(1,0,0)}^n \rightarrow_q \mathbb{O}_{(1,0,0)}$, $S, T \subseteq [n]$ with $S \cap T = \emptyset$ and let $R := S \cup T$. Then (r, s, t) is in $R_{(1,0,0)}$, which gives identities:

- $Q_{S \cup T} Q_S Q_T = 0$, since $(1, 1, 1)$ is not in $R_{(1,0,0)}$,
- $(\text{id} - Q_{S \cup T}) Q_S Q_T = 0$, since $(0, 1, 1)$ is not in $R_{(1,0,0)}$,
- $Q_{S \cup T} (\text{id} - Q_S)(\text{id} - Q_T) = 0$, since $(1, 0, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T}) Q_S (\text{id} - Q_T) = 0$, since $(0, 1, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T})(\text{id} - Q_S) Q_T = 0$, since $(0, 0, 1)$ is not in $R_{(1,0,0)}$.

Then manipulate these identities to derive $Q_S = \sum_{i \in S} Q_{\{i\}}$ for any $S \subseteq [n]$. Further derive that $[Q_S, Q_T] = 0$, for every S, T and thus $\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$. \square

Proof sketch

Lemma

$$\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$$

Proof.

Consider $Q: \mathbb{O}_{(1,0,0)}^n \rightarrow_q \mathbb{O}_{(1,0,0)}$, $S, T \subseteq [n]$ with $S \cap T = \emptyset$ and let $R := S \cup T$. Then (r, s, t) is in $R_{(1,0,0)}$, which gives identities:

- $Q_{S \cup T} Q_S Q_T = 0$, since $(1, 1, 1)$ is not in $R_{(1,0,0)}$,
- $(\text{id} - Q_{S \cup T}) Q_S Q_T = 0$, since $(0, 1, 1)$ is not in $R_{(1,0,0)}$,
- $Q_{S \cup T} (\text{id} - Q_S)(\text{id} - Q_T) = 0$, since $(1, 0, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T}) Q_S (\text{id} - Q_T) = 0$, since $(0, 1, 0)$ is not in $R_{(1,0,0)}$.
- $(\text{id} - Q_{S \cup T})(\text{id} - Q_S) Q_T = 0$, since $(0, 0, 1)$ is not in $R_{(1,0,0)}$.

Then manipulate these identities to derive $Q_S = \sum_{i \in S} Q_{\{i\}}$ for any $S \subseteq [n]$. Further derive that $[Q_S, Q_T] = 0$, for every S, T and thus $\text{qPol}(\mathbb{O}_{(1,0,0)}) = \oplus\text{Pol}(\mathbb{O}_{(1,0,0)})$. \square

Proof sketch

Claim

$$\text{qPol}(\mathbb{O}_t) = \oplus\text{Pol}(\mathbb{O}_t) \text{ for any } t \in 0,1^k.$$

Lemma

Every relational structure \mathbb{A} with a relation R that has any full binary projection has the property that $\text{qPol}(\mathbb{A}) = \oplus\text{Pol}(\mathbb{A})$.

Theorem

For any relation $R \subseteq \{0,1\}^k$ the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R , and every binary projection of R is not full.
2. $R = R_t$ for some tuple t .

Proof sketch

Claim

$\text{qPol}(\mathbb{O}_t) = \oplus\text{Pol}(\mathbb{O}_t)$ for any $t \in 0, 1^k$.

Lemma

Every relational structure \mathbb{A} with a relation R that has any full binary projection has the property that $\text{qPol}(\mathbb{A}) = \oplus\text{Pol}(\mathbb{A})$.

Theorem

For any relation $R \subseteq \{0, 1\}^k$ the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R , and every binary projection of R is not full.
2. $R = R_t$ for some tuple t .

Proof sketch

Claim

$\text{qPol}(\mathbb{O}_t) = \oplus\text{Pol}(\mathbb{O}_t)$ for any $t \in 0, 1^k$.

Lemma

Every relational structure \mathbb{A} with a relation R that has any full binary projection has the property that $\text{qPol}(\mathbb{A}) = \oplus\text{Pol}(\mathbb{A})$.

Theorem

For any relation $R \subseteq \{0, 1\}^k$ the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R , and every binary projection of R is not full.
2. $R = R_t$ for some tuple t .

Thank you for listening!

Questions?