
Quantum Polymorphisms of Relational Structures

Gideo Joubert

Feb 2026

Technische Universität Hambrug



Outline

1. Quantum homomorphisms via games

2. Quantum polymorphisms

3. Boolean case: ⊕Pol vs. qPol

Based on Quantum polymorphisms and commutativity gadgets, joint work with

Lorenzo Ciardo, Antoine Mottet, arXiv:2511.23445 (preprint).



Homomorphism games



The homomorphism game

• Setup: Two known relational structures X and Y with a relation R of arity r .

Cooperating players, A1, . . . ,Ar ; also a Verifier that runs the game.

• Players decide on a strategy f that takes domain elements from X and returns

elements from Y ; the game then proceeds as follows:

Verifier separates play-

ers, chooses a ∈ RX

Verifier provides

A1 with a1 ∈ a

A1 returns

f (a1) ∈ Y to Verifier

Verifier provides

Ar with ar ∈ a

A1 returns

f (ar ) ∈ Y to Verifier

...
...

Verifier checks whether

(f (a1), . . . f (ar )) ∈ RY

• Players win if ai = aj ⇒ f (ai ) = f (aj) and the check passes with a probability of

1.



The homomorphism game

• Setup: Two known relational structures X and Y with a relation R of arity r .

Cooperating players, A1, . . . ,Ar ; also a Verifier that runs the game.

• Players decide on a strategy f that takes domain elements from X and returns

elements from Y ; the game then proceeds as follows:

Verifier separates play-

ers, chooses a ∈ RX

Verifier provides

A1 with a1 ∈ a

A1 returns

f (a1) ∈ Y to Verifier

Verifier provides

Ar with ar ∈ a

A1 returns

f (ar ) ∈ Y to Verifier

...
...

Verifier checks whether

(f (a1), . . . f (ar )) ∈ RY

• Players win if ai = aj ⇒ f (ai ) = f (aj) and the check passes with a probability of

1.



The homomorphism game

• Setup: Two known relational structures X and Y with a relation R of arity r .

Cooperating players, A1, . . . ,Ar ; also a Verifier that runs the game.

• Players decide on a strategy f that takes domain elements from X and returns

elements from Y ; the game then proceeds as follows:

Verifier separates play-

ers, chooses a ∈ RX

Verifier provides

A1 with a1 ∈ a

A1 returns

f (a1) ∈ Y to Verifier

Verifier provides

Ar with ar ∈ a

A1 returns

f (ar ) ∈ Y to Verifier

...
...

Verifier checks whether

(f (a1), . . . f (ar )) ∈ RY

• Players win if ai = aj ⇒ f (ai ) = f (aj) and the check passes with a probability of

1.



The homomorphism game

• Setup: Two known relational structures X and Y with a relation R of arity r .

Cooperating players, A1, . . . ,Ar ; also a Verifier that runs the game.

• Players decide on a strategy f that takes domain elements from X and returns

elements from Y ; the game then proceeds as follows:

Verifier separates play-

ers, chooses a ∈ RX

Verifier provides

A1 with a1 ∈ a

A1 returns

f (a1) ∈ Y to Verifier

Verifier provides

Ar with ar ∈ a

A1 returns

f (ar ) ∈ Y to Verifier

...
...

Verifier checks whether

(f (a1), . . . f (ar )) ∈ RY

• Players win if ai = aj ⇒ f (ai ) = f (aj) and the check passes with a probability of

1.



The homomorphism game

• Setup: Two known relational structures X and Y with a relation R of arity r .

Cooperating players, A1, . . . ,Ar ; also a Verifier that runs the game.

• Players decide on a strategy f that takes domain elements from X and returns

elements from Y ; the game then proceeds as follows:

Verifier separates play-

ers, chooses a ∈ RX

Verifier provides

A1 with a1 ∈ a

A1 returns

f (a1) ∈ Y to Verifier

Verifier provides

Ar with ar ∈ a

A1 returns

f (ar ) ∈ Y to Verifier

...
...

Verifier checks whether

(f (a1), . . . f (ar )) ∈ RY

• Players win if ai = aj ⇒ f (ai ) = f (aj) and the check passes with a probability of

1.



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



The quantum homomorphism game

A strategy Q is quantum if, during play; players may exploit some shared randomness

through a shared quantum system ρ ∈ H, prepared by the players in the planning

phase.

• A quantum strategy Q : X →q Y consists of a set {Mx | x ∈ X} of measurements

on H that (WLOG) return elements from Y .

Alice receives a

classical input x ∈ X

Alice selects a

measurement Mx

Alice measures

ρ using Mx

Alice outputs out-

come y ∈ Y

Post-measurement

state My
x (ρ)

• Mathematically, Mx system of projection matrixes indexed by Y (possible

outcomes).



Quantum Homomorphisms

Definition
A quantum function Q : X →q Y over a Hilbert space H is a set {Qx ,y | x ∈ X , y ∈ Y }
of projection matrixes such that:

•
∑

y∈Y Qx ,y = id.

• Qx ,yQx ,y ′ = 0 for all y ̸= y ′ from Y .

Q is additionally a quantum homomorphism when:

(QH1)
∏

i∈[r ]Qxi ,yi = 0 if x = (x1, . . . , xn) is in RX but, y /∈ RY.

(QH2) [Qx ,y ,Qx ′,y ′ ] = 0 for any y , y ′ ∈ Y if x and x ′ appear together in RX.



Quantum Homomorphisms

Definition
A quantum function Q : X →q Y over a Hilbert space H is a set {Qx ,y | x ∈ X , y ∈ Y }
of projection matrixes such that:

•
∑

y∈Y Qx ,y = id.

• Qx ,yQx ,y ′ = 0 for all y ̸= y ′ from Y .

Q is additionally a quantum homomorphism when:

(QH1)
∏

i∈[r ]Qxi ,yi = 0 if x = (x1, . . . , xn) is in RX but, y /∈ RY.

(QH2) [Qx ,y ,Qx ′,y ′ ] = 0 for any y , y ′ ∈ Y if x and x ′ appear together in RX.



Quantum Homomorphisms

Definition
A quantum function Q : X →q Y over a Hilbert space H is a set {Qx ,y | x ∈ X , y ∈ Y }
of projection matrixes such that:

•
∑

y∈Y Qx ,y = id.

• Qx ,yQx ,y ′ = 0 for all y ̸= y ′ from Y .

Q is additionally a quantum homomorphism when:

(QH1)
∏

i∈[r ]Qxi ,yi = 0 if x = (x1, . . . , xn) is in RX but, y /∈ RY.

(QH2) [Qx ,y ,Qx ′,y ′ ] = 0 for any y , y ′ ∈ Y if x and x ′ appear together in RX.



Quantum Homomorphisms

Definition
A quantum function Q : X →q Y over a Hilbert space H is a set {Qx ,y | x ∈ X , y ∈ Y }
of projection matrixes such that:

•
∑

y∈Y Qx ,y = id.

• Qx ,yQx ,y ′ = 0 for all y ̸= y ′ from Y .

Q is additionally a quantum homomorphism when:

(QH1)
∏

i∈[r ]Qxi ,yi = 0 if x = (x1, . . . , xn) is in RX but, y /∈ RY.

(QH2) [Qx ,y ,Qx ′,y ′ ] = 0 for any y , y ′ ∈ Y if x and x ′ appear together in RX.



Quantum polymorphisms



From homomorphisms to polymorphisms

Consider Q : A →H B and R : B →H′ C, we have canonical R • Q : A →H⊗H′ C.

If we then take the quantum polymorphisms Q : An →q A and consider qPol(A):

• qPol(A) is closed under composition.

• qPol(A) contains projections.

I.e. qPol(A) is a clone.

Lemma

Let Q : X →H A and Q ′ : X →H′ A be quantum homomorphisms. Then Q ⊕ Q ′ is a

quantum homomorphism X →H⊕H′ A.

Quantum polymorphisms ̸= Clones of quantum operations



From homomorphisms to polymorphisms

Consider Q : A →H B and R : B →H′ C, we have canonical R • Q : A →H⊗H′ C.

If we then take the quantum polymorphisms Q : An →q A and consider qPol(A):

• qPol(A) is closed under composition.

• qPol(A) contains projections.

I.e. qPol(A) is a clone.

Lemma

Let Q : X →H A and Q ′ : X →H′ A be quantum homomorphisms. Then Q ⊕ Q ′ is a

quantum homomorphism X →H⊕H′ A.

Quantum polymorphisms ̸= Clones of quantum operations



From homomorphisms to polymorphisms

Consider Q : A →H B and R : B →H′ C, we have canonical R • Q : A →H⊗H′ C.

If we then take the quantum polymorphisms Q : An →q A and consider qPol(A):

• qPol(A) is closed under composition.

• qPol(A) contains projections.

I.e. qPol(A) is a clone.

Lemma

Let Q : X →H A and Q ′ : X →H′ A be quantum homomorphisms. Then Q ⊕ Q ′ is a

quantum homomorphism X →H⊕H′ A.

Quantum polymorphisms ̸= Clones of quantum operations



From homomorphisms to polymorphisms

Consider Q : A →H B and R : B →H′ C, we have canonical R • Q : A →H⊗H′ C.

If we then take the quantum polymorphisms Q : An →q A and consider qPol(A):

• qPol(A) is closed under composition.

• qPol(A) contains projections.

I.e. qPol(A) is a clone.

Lemma

Let Q : X →H A and Q ′ : X →H′ A be quantum homomorphisms. Then Q ⊕ Q ′ is a

quantum homomorphism X →H⊕H′ A.

Quantum polymorphisms ̸= Clones of quantum operations



Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F .

If F is classical, then quantum closure is just direct sums from ⟨F⟩.

Defined by the property that any Q has [Qx ,y ,Qx ′,y ′ ] = 0.

Quantum closing Pol(A), gives ⊕Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine ⊕Pol(A) versus qPol(A).



Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F .

If F is classical, then quantum closure is just direct sums from ⟨F⟩.

Defined by the property that any Q has [Qx ,y ,Qx ′,y ′ ] = 0.

Quantum closing Pol(A), gives ⊕Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine ⊕Pol(A) versus qPol(A).



Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F .

If F is classical, then quantum closure is just direct sums from ⟨F⟩.

Defined by the property that any Q has [Qx ,y ,Qx ′,y ′ ] = 0.

Quantum closing Pol(A), gives ⊕Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine ⊕Pol(A) versus qPol(A).



Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F .

If F is classical, then quantum closure is just direct sums from ⟨F⟩.

Defined by the property that any Q has [Qx ,y ,Qx ′,y ′ ] = 0.

Quantum closing Pol(A), gives ⊕Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine ⊕Pol(A) versus qPol(A).



Quantum closure

Definition
For any set F of operations, the quantum closure of F is the smallest quantum clone

containing F .

If F is classical, then quantum closure is just direct sums from ⟨F⟩.

Defined by the property that any Q has [Qx ,y ,Qx ′,y ′ ] = 0.

Quantum closing Pol(A), gives ⊕Pol(A), the (quantum) closure clone of A.

Goal: In boolean setting, determine ⊕Pol(A) versus qPol(A).



Quantum polymorphism example

Consider the boolean structure

B := ({0, 1}; S00, S11, S10)
Pol(B) is the majority clone.

Claim: ⊕Pol(B) ̸= qPol(B)
Witness Q : B4 →q B

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

0

0 0 0 0

[
1 0

0 0

]
1
2

[
1 1

1 1

]
1
2

[
1 −i

i 1

]
1
2

[
1 i

−i 1

]
1
2

[
1 −1

−1 1

] [
0 0

0 1

]

id id id id

id



Quantum polymorphism example

Consider the boolean structure

B := ({0, 1}; S00, S11, S10)
Pol(B) is the majority clone.

Claim: ⊕Pol(B) ̸= qPol(B)
Witness Q : B4 →q B

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

0

0 0 0 0

[
1 0

0 0

]
1
2

[
1 1

1 1

]
1
2

[
1 −i

i 1

]
1
2

[
1 i

−i 1

]
1
2

[
1 −1

−1 1

] [
0 0

0 1

]

id id id id

id



Quantum polymorphism example

Consider the boolean structure

B := ({0, 1}; S00, S11, S10)
Pol(B) is the majority clone.

Claim: ⊕Pol(B) ̸= qPol(B)
Witness Q : B4 →q B

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

0

0 0 0 0

[
1 0

0 0

]
1
2

[
1 1

1 1

]
1
2

[
1 −i

i 1

]
1
2

[
1 i

−i 1

]
1
2

[
1 −1

−1 1

] [
0 0

0 1

]

id id id id

id



Quantum polymorphism example

Consider the boolean structure

B := ({0, 1}; S00, S11, S10)
Pol(B) is the majority clone.

Claim: ⊕Pol(B) ̸= qPol(B)
Witness Q : B4 →q B

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

0

0 0 0 0

[
1 0

0 0

]
1
2

[
1 1

1 1

]
1
2

[
1 −i

i 1

]
1
2

[
1 i

−i 1

]
1
2

[
1 −1

−1 1

] [
0 0

0 1

]

id id id id

id



Quantum polymorphism example

Consider the boolean structure

B := ({0, 1}; S00, S11, S10)
Pol(B) is the majority clone.

Claim: ⊕Pol(B) ̸= qPol(B)
Witness Q : B4 →q B

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

0

0 0 0 0

[
1 0

0 0

]
1
2

[
1 1

1 1

]
1
2

[
1 −i

i 1

]
1
2

[
1 i

−i 1

]
1
2

[
1 −1

−1 1

] [
0 0

0 1

]

id id id id

id



Boolean clones



Boolean relational structures

• Classical polymorphisms are understood.

• Domain {0, 1} so, Qx ,0 = id−Qx ,1 for any Q : X →q Y with Y boolean. Moreover

{0, 1}n bijective to P[n], just map S ⊆ [n] to s ∈ {0, 1}n with si = 1 iff i ∈ S .

• Quantum polymorphism: Q : Xn →q X given by {QS | S ∈ [n]}.



Polymorphism clone versus Closure clone

Theorem
If A is a Boolean relational structure such that Pol(A) does not contain majority, then

qPol(A) = ⊕Pol(A).

We focus on the class Ot of boolean structures with relation given by t ⊕ r where

t ∈ {0, 1}k and r ∈ R1/k (the 1-in-k relation).

Example
If we take k = 3 and t = (1, 0, 0) then

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and so,

R(1,0,0) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}.



Polymorphism clone versus Closure clone

Theorem
If A is a Boolean relational structure such that Pol(A) does not contain majority, then

qPol(A) = ⊕Pol(A).

We focus on the class Ot of boolean structures with relation given by t ⊕ r where

t ∈ {0, 1}k and r ∈ R1/k (the 1-in-k relation).

Example
If we take k = 3 and t = (1, 0, 0) then

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and so,

R(1,0,0) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}.



Polymorphism clone versus Closure clone

Theorem
If A is a Boolean relational structure such that Pol(A) does not contain majority, then

qPol(A) = ⊕Pol(A).

We focus on the class Ot of boolean structures with relation given by t ⊕ r where

t ∈ {0, 1}k and r ∈ R1/k (the 1-in-k relation).

Example
If we take k = 3 and t = (1, 0, 0) then

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and so,

R(1,0,0) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}.



Proof sketch

Lemma
qPol(O(1,0,0)) = ⊕Pol(O(1,0,0))

Proof.

Consider Q : On
(1,0,0) →q O(1,0,0), S ,T ⊆ [n] with S ∩ T = ∅ and let R := S ∪ T .

Then (r , s, t) is in R(1,0,0), which gives identities:

• QS∪TQSQT = 0, since (1, 1, 1) is not in R(1,0,0),

• (id−QS∪T )QSQT = 0, since (0, 1, 1) is not in R(1,0,0),

• QS∪T (id−QS)(id−QT ) = 0, since (1, 0, 0) is not in R(1,0,0).

• (id−QS∪T )QS(id−QT ) = 0, since (0, 1, 0) is not in R(1,0,0).

• (id−QS∪T )(id−QS)QT = 0, since (0, 0, 1) is not in R(1,0,0).

Then manipulate these identities to derive QS =
∑

i∈S Q{i} for any S ⊆ [n]. Further

derive that [QS ,QT ] = 0, for every S ,T and thus qPol(O(1,0,0)) = ⊕Pol(O(1,0,0)).



Proof sketch

Lemma
qPol(O(1,0,0)) = ⊕Pol(O(1,0,0))

Proof.

Consider Q : On
(1,0,0) →q O(1,0,0), S ,T ⊆ [n] with S ∩ T = ∅ and let R := S ∪ T .

Then (r , s, t) is in R(1,0,0), which gives identities:

• QS∪TQSQT = 0, since (1, 1, 1) is not in R(1,0,0),

• (id−QS∪T )QSQT = 0, since (0, 1, 1) is not in R(1,0,0),

• QS∪T (id−QS)(id−QT ) = 0, since (1, 0, 0) is not in R(1,0,0).

• (id−QS∪T )QS(id−QT ) = 0, since (0, 1, 0) is not in R(1,0,0).

• (id−QS∪T )(id−QS)QT = 0, since (0, 0, 1) is not in R(1,0,0).

Then manipulate these identities to derive QS =
∑

i∈S Q{i} for any S ⊆ [n]. Further

derive that [QS ,QT ] = 0, for every S ,T and thus qPol(O(1,0,0)) = ⊕Pol(O(1,0,0)).



Proof sketch

Lemma
qPol(O(1,0,0)) = ⊕Pol(O(1,0,0))

Proof.

Consider Q : On
(1,0,0) →q O(1,0,0), S ,T ⊆ [n] with S ∩ T = ∅ and let R := S ∪ T .

Then (r , s, t) is in R(1,0,0), which gives identities:

• QS∪TQSQT = 0, since (1, 1, 1) is not in R(1,0,0),

• (id−QS∪T )QSQT = 0, since (0, 1, 1) is not in R(1,0,0),

• QS∪T (id−QS)(id−QT ) = 0, since (1, 0, 0) is not in R(1,0,0).

• (id−QS∪T )QS(id−QT ) = 0, since (0, 1, 0) is not in R(1,0,0).

• (id−QS∪T )(id−QS)QT = 0, since (0, 0, 1) is not in R(1,0,0).

Then manipulate these identities to derive QS =
∑

i∈S Q{i} for any S ⊆ [n]. Further

derive that [QS ,QT ] = 0, for every S ,T and thus qPol(O(1,0,0)) = ⊕Pol(O(1,0,0)).



Proof sketch

Lemma
qPol(O(1,0,0)) = ⊕Pol(O(1,0,0))

Proof.

Consider Q : On
(1,0,0) →q O(1,0,0), S ,T ⊆ [n] with S ∩ T = ∅ and let R := S ∪ T .

Then (r , s, t) is in R(1,0,0), which gives identities:

• QS∪TQSQT = 0, since (1, 1, 1) is not in R(1,0,0),

• (id−QS∪T )QSQT = 0, since (0, 1, 1) is not in R(1,0,0),

• QS∪T (id−QS)(id−QT ) = 0, since (1, 0, 0) is not in R(1,0,0).

• (id−QS∪T )QS(id−QT ) = 0, since (0, 1, 0) is not in R(1,0,0).

• (id−QS∪T )(id−QS)QT = 0, since (0, 0, 1) is not in R(1,0,0).

Then manipulate these identities to derive QS =
∑

i∈S Q{i} for any S ⊆ [n]. Further

derive that [QS ,QT ] = 0, for every S ,T and thus qPol(O(1,0,0)) = ⊕Pol(O(1,0,0)).



Proof sketch

Claim
qPol(Ot) = ⊕Pol(Ot) for any t ∈ 0, 1k .

Lemma
Every relational structure A with a relation R that has any full binary projection has

the property that qPol(A) = ⊕Pol(A).

Theorem

For any relation R ⊆ {0, 1}k the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R,

and every binary projection of R is not full.

2. R = Rt for some tuple t.



Proof sketch

Claim
qPol(Ot) = ⊕Pol(Ot) for any t ∈ 0, 1k .

Lemma
Every relational structure A with a relation R that has any full binary projection has

the property that qPol(A) = ⊕Pol(A).

Theorem

For any relation R ⊆ {0, 1}k the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R,

and every binary projection of R is not full.

2. R = Rt for some tuple t.



Proof sketch

Claim
qPol(Ot) = ⊕Pol(Ot) for any t ∈ 0, 1k .

Lemma
Every relational structure A with a relation R that has any full binary projection has

the property that qPol(A) = ⊕Pol(A).

Theorem

For any relation R ⊆ {0, 1}k the following statements are equivalent:

1. R is not invariant under majority, majority preserves every proper projection of R,

and every binary projection of R is not full.

2. R = Rt for some tuple t.





Thank you for listening!

Questions?


	Homomorphism games
	Quantum polymorphisms
	Boolean clones
	

