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Ultraproduct

Let

1 G = (Gm)m∈N be a family of first order structures, groups;

2 U – a non-principal ultrafilter on N.

Definition

Ultraproduct of G is

G∗ =
∏
m∈N

Gm/ ∼

where
(gm) ∼ (hm) ⇐⇒ {m ∈ N : gm = hm} ∈ U

Ultraproducts are very useful, one can prove compactness theorem, many applications in
mathematics (algebra, topology).
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Generalization: metric ultraproduct

A metric group (G , ∥ · ∥) is a group with a norm ∥ · ∥ : G → [0,∞) such that
∥gh∥ ≤ ∥g∥ + ∥h∥,

∥∥g−1
∥∥ = ∥g∥, ∥g∥ = 0 ⇔ g = e, and ∥g∥ = ∥hgh−1∥

(bi-invariance), Norm gives a metric ∥ · ∥ ⇝ d(g , h) =
∥∥gh−1

∥∥ and vice versa
d(·, ·) ⇝ ∥g∥ = d(g , e)

Definition

G = (Gm, ∥ · ∥m)m∈N – a family of metric groups, U – a non-principal ultrafilter on N.
Metric ultraproduct is

G∗
met =

∏
m∈N

met
Gm = Gfin/NU

where

Gfin =

{
(gm) ∈

∏
m∈N

Gm : sup
m∈N

∥gm∥m < ∞

}
oraz NU =

{
(gm) : lim

m→U
∥gm∥m = 0

}
(the infinitesimal subgroup NU is a normal subgroup of Gfin)

G∗
met is a topological space, topology comes from a canonical norm (bi-invariant):

∥ · ∥ : G∗
met → R≥0 defined by ∥(gm)/NU∥ = lim

m→U
∥gm∥m.
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Examples of norms and metrics

Examples of bounded and unbounded norms

Discrete norm: ∥g∥ :=

{
1 : g ̸= e

0 : g = e

Hamming norm Sn: σ ∈ Sn, ∥σ∥H := ∥{i : σ(i) ̸= i}∥
Rank norm on GLn(F ) (F : field) ∥g∥r := rank(g − I ) (= dim(Im(g − I )))

Conjugacy length (pseudonorm) on a finite group G :

∥g∥=ℓc(g) :=
log

∣∣gG
∣∣

log |G |

it is a norm when Z(G) = {e}
Invariant word norm of a group G : let S = S−1 ⊆ G be a normal subset (that is
s ∈ S → sx = x−1sx ∈ S)

∥g∥S = min{n : g is a product of n conjugates of elements from S}.
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Motivation: Gottschalk conjecture, ,,1-1”⇒,,onto”
A bit of mathematics: let A be a finite set and G be a group. G acts on

AG = {f : G → A}

by homeomorphisms

g · f (x) = f (g−1x), for g , x ∈ G , f ∈ AG .

This actions is called Bernoulli shift.

Definition

A cellular automaton is a function T : AG → AG , which is continuous and G -equivariant
T (g · f ) = g · T (f ).

Conjecture (W. Gottschalk,’72)

If a cellular automaton T : AG → AG is ,,1-1” (injective), then T is ,,onto” (surjective).

Theorem (Ax–Grothendieck theorem)

If P : Cn → Cn is polynomial mapping and P is ,,1-1”, then P is ,,onto”.

Proof: Compactness thm. applied to an elementary statement about polynomials over
finite field.
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Metric ultraproduct and Gottschalk conjecture

Let

S =
∏
m∈N

met
(
Sm,

1

m
∥ · ∥H

)
be a metric ultraproduct of permutation groups Sm with the normalised Hamming norm

Definition

A group G is sofic, if G is a subgroup of S.

S is called an universal sofic group.

Theorem (M. Gromov ’99)

Gottschalk conjecture is true for sofic groups: If a cellular automaton T : AS → AS is
,,1-1”, then T is ,,onto”.

A major, unresolved problem in group theory: are all finitely generated groups sofic?

Aim

Our aim is to understand (first order metric) logic structure of metric ultraproducts in
general
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Compactness theorem for ultraproduct

X ⊆ G∗ is internal if there is a collection of sets {Xn}n∈N, Xn ⊆ Gn such that

X =
X0 × X1 × X2 × · · ·

∼ .

Theorem

(Xm)m∈N – a sequence of internal subsets of G∗, the following conditions are equivalent:

1 G∗ =
⋃

m∈N Xm

2 there is N ∈ N such that
G∗ = X0 ∪ . . . ∪ XN
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Compactness theorem for metric ultraproduct
X ⊆ G∗

met is metrically internal if there is a collection of sets {Xn}n∈N, Xn ⊆ Gn such that

X =
X0 × X1 × X2 × · · ·

NU
,

where NU is the infinitesimal subgroup.

Theorem (J. G., K. Majcher, M. Ziegler)

(Xm)m∈N – a sequence of metrically internal subsets of G∗
met, where

Xm = (Xm,0 ×Xm,1 ×Xm,2 × . . .)/NU , Xm,n ⊆ Gn, the following conditions are equivalent:

1 G∗
met =

⋃
m∈N Xm

2 for any sequence (ε0, ε1, . . .) ⊂ R>0 there is N ∈ N such that

G∗
met = X0B(ε0) ∪ . . . ∪ XNB(εN),

where B(ε) = {g : ∥g∥ < ε}.

Corollary

(Xn)n∈N – an increasing sequence of internal subsets of G∗
met, If G∗

met =
⋃

m∈N Xm, then
there is N ∈ N such that

G∗
met = XN · XN .
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Application: metric ultraproducts as simple groups

A group G is simple is G has no nontrivial proper normal subgroups.

Question

When a (discrete) ultraproduct of groups is simple?

In case of discrete norm, we have the following easy criterion

Fact∏
m∈NGm/U is simple ⇔ there is N ∈ N, such that for U-almost m ∈ N group Gm is

N-uniformly simple, that is

Gm =
(
gGm ∪ g−1Gm

)≤N

for all g ∈ Gm, g ̸= e, where gG = {h−1gh : h ∈ G}.
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Examples of simple metric ultraproducts of groups

Question

When a metric ultraproduct of groups is simple?

Some results:

Theorem (G. Elek - E. Szabó, ’05)

S =
∏

m∈N
met(Sm,

1
m
∥ · ∥H) is a simple group

Let {(Gm, ℓc)}m∈N be a family of finite simple groups, where ℓc(g) =
log|gG |
log |G | .

Theorem (N. Nikolov ’09, Stolz - Thom, ’14, Ivanov, ’14)

1
∏

m∈N
met(Gm, ℓc) is a simple group

2 Metric ultraproduct of centerless projective classical groups (e.g. PGL) over finite
fields is a simple group
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When a metric ultrapower of a group is simple?

(G , ∥ · ∥) - metric group

Theorem (JG, K. Majcher, M. Ziegler)

Metric ultrapower G∗
met of G is simple ⇔ for all r > 0 and t > 0, for every infinite

sequence (ε0, . . . , εn, . . .) ⊂ R>0, there is N ∈ N such that for all g ∈ G, r < ∥g∥ < t

Bt(e) ⊆ C0(g)Bε0 (e) ∪ . . . ∪ CN(g)BεN (e).

Corollary∏
m∈N

met(S∞, 1
m
∥ · ∥H) is simple
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Metric ultrapower of matrix groups with ranks norm

Km - field, Gm = PSLm(Km) (more generally Gm(Km) – simple centerless Chevalley group
(Z(Gm(Km)) = {e}))

When each Km is simple, ∏
m∈N

met
(Gm, ℓc)

is simple, where ℓc(g) :=
log|gG |
log |G | (Stolz - Thom, ’14, Nikolov ’09).

How about infinite fields? Consider another norm, e.g. rank norm

∥g∥r :=
1

m
rank(g − I ).

We conjecture, that for all fields Km, metric ultrapower
∏

m∈N
met(Gm(Km), ∥ · ∥r ) is

simple.

Corollary

If each field Km is algebraically closed, then
∏

m∈N
met(Gm(Km), ∥ · ∥r ) is simple.

Idea of the proof: ℓc and ∥ · ∥r are asymptotically equivalent, use Liebeck-Shalev result
for the rank norm, which is first order expressible.
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An open problem

In every ultraproduct of groups G∗ =
∏

m∈NGm/ ∼, it is true that if we have an element
of arbitrarily large finite order, then there is an element of infinite order:

∀n ∈ N ∃gn ∈ G∗ n < o(gn) < ∞ =⇒ ∃g∞ ∈ G∗ o(g∞) = ∞.

How about metric ultraproduct G∗
met? We can prove, that the same is true, if G∗

met is
nilpotent.

However, this does not seem to be true in general, in the metric ultraproduct G∗
met, but

we cannot find a counterexample.
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Thank you for your attention!
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