

A Few Words on Metric Ultraproduct of Groups¹

Jakub Gismatullin (University of Wrocław)

108. Arbeitstagung Allgemeine Algebra

February 6, 2026

¹joint work with Krzysztof Majcher (TU Wrocław) and Martin Ziegler (Mathematisches Institut, Albert-Ludwigs-Universität Freiburg), Journal of Algebra 663 (2025): 171-209

Ultraproduct

Let

- ① $\mathcal{G} = (G_m)_{m \in \mathbb{N}}$ be a family of first order structures, groups;
- ② \mathcal{U} – a non-principal ultrafilter on \mathbb{N} .

Definition

Ultraproduct of \mathcal{G} is

$$G^* = \prod_{m \in \mathbb{N}} G_m / \sim$$

where

$$(g_m) \sim (h_m) \iff \{m \in \mathbb{N} : g_m = h_m\} \in \mathcal{U}$$

Ultraproducts are very useful, one can prove compactness theorem, many applications in mathematics (algebra, topology).

Generalization: metric ultraproduct

A *metric group* $(G, \|\cdot\|)$ is a group with a norm $\|\cdot\|: G \rightarrow [0, \infty)$ such that

$$\|gh\| \leq \|g\| + \|h\|, \|g^{-1}\| = \|g\|, \|g\| = 0 \Leftrightarrow g = e, \text{ and } \|g\| = \|hgh^{-1}\|$$

(bi-invariance), Norm gives a metric $\|\cdot\| \rightsquigarrow d(g, h) = \|gh^{-1}\|$ and vice versa
 $d(\cdot, \cdot) \rightsquigarrow \|g\| = d(g, e)$

Definition

$\mathcal{G} = (G_m, \|\cdot\|_m)_{m \in \mathbb{N}}$ – a family of metric groups, \mathcal{U} – a non-principal ultrafilter on \mathbb{N} .
Metric ultraproduct is

$$G_{\text{met}}^* = \prod_{m \in \mathbb{N}}^{\text{met}} G_m = G_{\text{fin}} / N_{\mathcal{U}}$$

where

$$G_{\text{fin}} = \left\{ (g_m) \in \prod_{m \in \mathbb{N}} G_m : \sup_{m \in \mathbb{N}} \|g_m\|_m < \infty \right\} \text{ oraz } N_{\mathcal{U}} = \left\{ (g_m) : \lim_{m \rightarrow \mathcal{U}} \|g_m\|_m = 0 \right\}$$

(the infinitesimal subgroup $N_{\mathcal{U}}$ is a normal subgroup of G_{fin})

G_{met}^* is a topological space, topology comes from a canonical norm (bi-invariant):

$$\|\cdot\|: G_{\text{met}}^* \rightarrow \mathbb{R}_{\geq 0} \text{ defined by } \|(g_m) / N_{\mathcal{U}}\| = \lim_{m \rightarrow \mathcal{U}} \|g_m\|_m.$$

Examples of norms and metrics

Examples of bounded and unbounded norms

- Discrete norm: $\|g\| := \begin{cases} 1 & : g \neq e \\ 0 & : g = e \end{cases}$
- Hamming norm S_n : $\sigma \in S_n$, $\|\sigma\|_H := \|\{i : \sigma(i) \neq i\}\|$
- Rank norm on $\mathrm{GL}_n(F)$ (F : field) $\|g\|_r := \mathrm{rank}(g - I)$ ($= \dim(\mathrm{Im}(g - I))$)
- Conjugacy length (pseudonorm) on a finite group G :

$$\|g\|_{\ell_c}(g) := \frac{\log |g^G|}{\log |G|}$$

it is a norm when $Z(G) = \{e\}$

- Invariant word norm of a group G : let $S = S^{-1} \subseteq G$ be a normal subset (that is $s \in S \rightarrow s^x = x^{-1}sx \in S$)

$\|g\|_S = \min\{n : g \text{ is a product of } n \text{ conjugates of elements from } S\}.$

Motivation: Gottschalk conjecture, „1-1” \Rightarrow „onto”

A bit of mathematics: let A be a finite set and G be a group. G acts on

$$A^G = \{f: G \rightarrow A\}$$

by homeomorphisms

$$g \cdot f(x) = f(g^{-1}x), \text{ for } g, x \in G, f \in A^G.$$

This actions is called *Bernoulli shift*.

Definition

A *cellular automaton* is a function $T: A^G \rightarrow A^G$, which is continuous and G -equivariant $T(g \cdot f) = g \cdot T(f)$.

Conjecture (W. Gottschalk, '72)

If a cellular automaton $T: A^G \rightarrow A^G$ is „1-1” (injective), then T is „onto” (surjective).

Theorem (Ax–Grothendieck theorem)

If $P: \mathbb{C}^n \rightarrow \mathbb{C}^n$ is polynomial mapping and P is „1-1”, then P is „onto”.

Proof: Compactness thm. applied to an elementary statement about polynomials over finite field.

Metric ultraproduct and Gottschalk conjecture

Let

$$\mathcal{S} = \prod_{m \in \mathbb{N}}^{\text{met}} \left(S_m, \frac{1}{m} \|\cdot\|_H \right)$$

be a metric ultraproduct of permutation groups S_m with the normalised Hamming norm

Definition

- A group G is sofic, if G is a subgroup of \mathcal{S} .
- \mathcal{S} is called an *universal sofic group*.

Theorem (M. Gromov '99)

Gottschalk conjecture is true for sofic groups: If a cellular automaton $T: A^{\mathcal{S}} \rightarrow A^{\mathcal{S}}$ is „1-1“, then T is „onto“.

A major, unresolved problem in group theory: are all finitely generated groups sofic?

Aim

Our aim is to understand (first order metric) logic structure of metric ultraproducts in general

Compactness theorem for ultraproduct

$X \subseteq \mathcal{G}^*$ is *internal* if there is a collection of sets $\{X_n\}_{n \in \mathbb{N}}$, $X_n \subseteq G_n$ such that

$$X = \frac{X_0 \times X_1 \times X_2 \times \cdots}{\sim}.$$

Theorem

$(X_m)_{m \in \mathbb{N}}$ – a sequence of internal subsets of \mathcal{G}^* , the following conditions are equivalent:

- ① $\mathcal{G}^* = \bigcup_{m \in \mathbb{N}} X_m$
- ② there is $N \in \mathbb{N}$ such that

$$\mathcal{G}^* = X_0 \cup \dots \cup X_N$$

Compactness theorem for metric ultraproduct

$X \subseteq \mathcal{G}_{\text{met}}^*$ is *metrically internal* if there is a collection of sets $\{X_n\}_{n \in \mathbb{N}}$, $X_n \subseteq G_n$ such that

$$X = \frac{X_0 \times X_1 \times X_2 \times \dots}{N_{\mathcal{U}}},$$

where $N_{\mathcal{U}}$ is the infinitesimal subgroup.

Theorem (J. G., K. Majcher, M. Ziegler)

$(X_m)_{m \in \mathbb{N}}$ – a sequence of metrically internal subsets of $\mathcal{G}_{\text{met}}^*$, where

$X_m = (X_{m,0} \times X_{m,1} \times X_{m,2} \times \dots) / N_{\mathcal{U}}$, $X_{m,n} \subseteq G_n$, the following conditions are equivalent:

- ① $\mathcal{G}_{\text{met}}^* = \bigcup_{m \in \mathbb{N}} X_m$
- ② for any sequence $(\varepsilon_0, \varepsilon_1, \dots) \subset \mathbb{R}_{>0}$ there is $N \in \mathbb{N}$ such that

$$\mathcal{G}_{\text{met}}^* = X_0 \mathcal{B}(\varepsilon_0) \cup \dots \cup X_N \mathcal{B}(\varepsilon_N),$$

where $\mathcal{B}(\varepsilon) = \{g : \|g\| < \varepsilon\}$.

Corollary

$(X_n)_{n \in \mathbb{N}}$ – an increasing sequence of internal subsets of $\mathcal{G}_{\text{met}}^*$, If $\mathcal{G}_{\text{met}}^* = \bigcup_{m \in \mathbb{N}} X_m$, then there is $N \in \mathbb{N}$ such that

$$\mathcal{G}_{\text{met}}^* = X_N \cdot X_N.$$

Application: metric ultraproducts as simple groups

A group G is *simple* if G has no nontrivial proper normal subgroups.

Question

When a (discrete) ultraproduct of groups is simple?

In case of discrete norm, we have the following easy criterion

Fact

$\prod_{m \in \mathbb{N}} G_m / \mathcal{U}$ is simple \Leftrightarrow there is $N \in \mathbb{N}$, such that for \mathcal{U} -almost $m \in \mathbb{N}$ group G_m is N -uniformly simple, that is

$$G_m = \left(g^{G_m} \cup g^{-1}g^{G_m} \right)^{\leq N}$$

for all $g \in G_m, g \neq e$, where $g^G = \{h^{-1}gh : h \in G\}$.

Examples of simple metric ultraproducts of groups

Question

When a metric ultraproduct of groups is simple?

Some results:

Theorem (G. Elek - E. Szabó, '05)

$\mathcal{S} = \prod_{m \in \mathbb{N}} {}^{met}(S_m, \frac{1}{m} \|\cdot\|_H)$ is a simple group

Let $\{(G_m, \ell_c)\}_{m \in \mathbb{N}}$ be a family of finite simple groups, where $\ell_c(g) = \frac{\log|g^G|}{\log|G|}$.

Theorem (N. Nikolov '09, Stolz - Thom, '14, Ivanov, '14)

- ① $\prod_{m \in \mathbb{N}} {}^{met}(G_m, \ell_c)$ is a simple group
- ② Metric ultraproduct of centerless projective classical groups (e.g. PGL) over finite fields is a simple group

When a metric ultrapower of a group is simple?

$(G, \|\cdot\|)$ - metric group

Theorem (JG, K. Majcher, M. Ziegler)

Metric ultrapower G_{met}^* of G is simple \Leftrightarrow for all $r > 0$ and $t > 0$, for every infinite sequence $(\varepsilon_0, \dots, \varepsilon_n, \dots) \subset \mathbb{R}_{>0}$, there is $N \in \mathbb{N}$ such that for all $g \in G$, $r < \|g\| < t$

$$B_t(e) \subseteq C_0(g)B_{\varepsilon_0}(e) \cup \dots \cup C_N(g)B_{\varepsilon_N}(e).$$

Corollary

$\prod_{m \in \mathbb{N}} {}^{\text{met}}(S_\infty, \frac{1}{m} \|\cdot\|_H)$ is simple

Metric ultrapower of matrix groups with ranks norm

K_m - field, $G_m = \mathrm{PSL}_m(K_m)$ (more generally $G_m(K_m)$ – simple centerless Chevalley group ($Z(G_m(K_m)) = \{e\}$))

When each K_m is simple,

$$\prod_{m \in \mathbb{N}}^{\mathrm{met}} (G_m, \ell_c)$$

is simple, where $\ell_c(g) := \frac{\log |g^G|}{\log |G|}$ (Stolz - Thom, '14, Nikolov '09).

How about infinite fields? Consider another norm, e.g. rank norm

$$\|g\|_r := \frac{1}{m} \mathrm{rank}(g - I).$$

We conjecture, that for all fields K_m , metric ultrapower $\prod_{m \in \mathbb{N}}^{\mathrm{met}} (G_m(K_m), \|\cdot\|_r)$ is simple.

Corollary

If each field K_m is algebraically closed, then $\prod_{m \in \mathbb{N}}^{\mathrm{met}} (G_m(K_m), \|\cdot\|_r)$ is simple.

Idea of the proof: ℓ_c and $\|\cdot\|_r$ are asymptotically equivalent, use Liebeck-Shalev result for the rank norm, which is first order expressible.

An open problem

In every ultraproduct of groups $G^* = \prod_{m \in \mathbb{N}} G_m / \sim$, it is true that if we have an element of arbitrarily large finite order, then there is an element of infinite order:

$$\forall n \in \mathbb{N} \quad \exists g_n \in G^* \quad n < o(g_n) < \infty \implies \exists g_\infty \in G^* \quad o(g_\infty) = \infty.$$

How about metric ultraproduct $\mathcal{G}_{\text{met}}^*$? We can prove, that the same is true, if $\mathcal{G}_{\text{met}}^*$ is nilpotent.

However, this does not seem to be true in general, in the metric ultraproduct $\mathcal{G}_{\text{met}}^*$, but we cannot find a counterexample.

Thank you for your attention!