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Ultraproduct

Let
Q G = (Gm)men be a family of first order structures, groups;

@ U — a non-principal ultrafilter on N.

Definition
Ultraproduct of G is
G =]]6n/~
meN
where
(gm) ~ (hm) <= {meN:gn=hn} €U

Ultraproducts are very useful, one can prove compactness theorem, many applications in

mathematics (algebra, topology).
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Generalization: metric ultraproduct

A metric group (G, || - ||) is a group with a norm || - ||: G — [0, c0) such that

llghll < llgll + l1All. [l&~*|| = llgll. llgll =0« g =, and ||g|| = [[hgh™"]|
(bi-invariance), Norm gives a metric || - || ~ d(g,h) = th_IH and vice versa
d(-) ~ el =d(g,e)

Definition

G = (Gm, || - [Im)men — a family of metric groups, U — a non-principal ultrafilter on N.

Metric ultraproduct is

met
G:let = H Gm - Gfin/NM
meN

where

Giin = {(gm) e[l én: Stéglllgmllm < 00} oraz Ny = {(gm) 2 lim lgm|lm = 0}

meN

(the infinitesimal subgroup N is a normal subgroup of Gn)

Gret is a topological space, topology comes from a canonical norm (bi-invariant):

-1l Gree = R0 defined by [|(gm)/Neel| = lim |lgm|lm-

JG (AAA 108) On Metric Ultraproduct February 6, 2026 3/14



Examples of norms and metrics

Examples of bounded and unbounded norms

1 :g#e

0 :g=e

e Hamming norm S,: 0 € S, ||o||w == ||{i : o (i) # i}

@ Rank norm on GL,(F) (F: field) ||g||- := rank(g — 1) (= dim(Im(g — 1)))
@ Conjugacy length (pseudonorm) on a finite group G:

e Discrete norm: ||g|| := {

_log|g®|

it is a norm when Z(G) = {e}
e Invariant word norm of a group G: let S = S™! C G be a normal subset (that is
s€S s =x"tsx€8)

llglls = min{n: g is a product of n conjugates of elements from S}.
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Motivation: Gottschalk conjecture, ,,1-1" =, ,onto”"
A bit of mathematics: let A be a finite set and G be a group. G acts on

AC ={f: G — A}
by homeomorphisms
g-f(x)=f(g '), for g, x € G, f e A°.
This actions is called Bernoulli shift.
Definition

A cellular automaton is a function T: A® — A®, which is continuous and G-equivariant
T(g-f)=g-T(f)

Conjecture (W. Gottschalk,'72)

If a cellular automaton T: A — A® s ,,1-1" (injective), then T is ,onto” (surjective).
v

Theorem (Ax—Grothendieck theorem)
If P: C" — C" is polynomial mapping and P is ,,1-1", then P is ,,onto”.

Proof: Compactness thm. applied to an elementary statement about polynomials over
finite field.
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Metric ultraproduct and Gottschalk conjecture

Let
met 1
S= m, — || -

I1™ (S 21 1)

meN
be a metric ultraproduct of permutation groups S, with the normalised Hamming norm
Definition

@ A group G is sofic, if G is a subgroup of S.

o S is called an universal sofic group.

Theorem (M. Gromov '99)

Gottschalk conjecture is true for sofic groups: If a cellular automaton T: AS — AS s
,,1-1", then T is ,,onto”.

A major, unresolved problem in group theory: are all finitely generated groups sofic?
Aim

Our aim is to understand (first order metric) logic structure of metric ultraproducts in
general
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Compactness theorem for ultraproduct

X C G* is internal if there is a collection of sets {X,}nen, Xn C G, such that

_Xo><X1><X2><---

~

X

Theorem
(Xm)men — a sequence of internal subsets of G*, the following conditions are equivalent:
Q4G = UmEN Xim

@ there is N € N such that
Q*:XOU...UXN
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Compactness theorem for metric ultraproduct
X C Gret is metrically internal if there is a collection of sets { X, }nen, Xn C G, such that

XoXX1><X2><~--

X = N ,

where Ny is the infinitesimal subgroup.

Theorem (J. G., K. Majcher, M. Ziegler)

(Xm)men — a sequence of metrically internal subsets of Ge;, where
Xin = (Xm,0 X Xm,1 X Xm2 X ...)/ Ny, Xm,n C Gp, the following conditions are equivalent:

Q Gret = Upen Xm
@ for any sequence (eo, €1, ...) C Rso there is N € N such that

Gmet = XoB(g0) U ... U XnB(en),

where B(e) = {g : ||g|| < €}.

Corollary

(Xn)nen — an increasing sequence of internal subsets of Gre:, If Grmer = U
there is N € N such that

mEN Xm, then

gsvet = XN ° XN-

v
= = = — Ty
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Application: metric ultraproducts as simple groups

A group G is simple is G has no nontrivial proper normal subgroups.

Question

When a (discrete) ultraproduct of groups is simple? J

In case of discrete norm, we have the following easy criterion

Fact

[1,,cnGm/U is simple < there is N € N, such that for U-almost m € N group G, is
N-uniformly simple, that is
<N

Gm = (gG"’ Ug_IGm)

for all g € Gm, g # e, where g€ = {h™'gh: h € G}.

JG (AAA 108) On Metric Ultraproduct February 6, 2026 9/14



Examples of simple metric ultraproducts of groups

Question

When a metric ultraproduct of groups is simple?

Some results:

Theorem (G. Elek - E. Szabd, '05)

S =TTnen™(Sm, £ - l1) is a simple group

|og|g5 |

Let {(Gm, £c)}men be a family of finite simple groups, where (c(g) = 157 -

Theorem (N. Nikolov '09, Stolz - Thom, '14, lvanov, '14)

O [1.cn™ (Gm, Lc) is a simple group
@ Metric ultraproduct of centerless projective classical groups (e.g. PGL) over finite
fields is a simple group
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When a metric ultrapower of a group is simple?

(G, I) - metric group

Theorem (JG, K. Majcher, M. Ziegler)

Metric ultrapower G}, of G is simple < for all r > 0 and t > 0, for every infinite
sequence (€o,...,&n,...) C Rso, there is N € N such that for all g € G, r < ||g|| < t

Bi(e) C Co(g)Bzo(€) U - U Cn(g)Bey(e)-

Corollary

ITen™ (Socs 211 - ||1) is simple
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Metric ultrapower of matrix groups with ranks norm

Km - field, Gm = PSLm(Km) (more generally G(Km) — simple centerless Chevalley group
(Z(Gm(Km)) = {e}))
When each K, is simple,

1™ (G te)

meN

o) G
is simple, where {.(g) := llogg|fG|| (Stolz - Thom, '14, Nikolov '09).

How about infinite fields? Consider another norm, e.g. rank norm

1
lgll- = - rank(g — 1).

We conjecture, that for all fields K, metric ultrapower ], ™ (Gm(Kn), || - |I) is
simple.

Corollary

If each field Ky, is algebraically closed, then T],, o™ (Gm(Km), | - |I-) is simple. J

Idea of the proof: £ and || - ||, are asymptotically equivalent, use Liebeck-Shalev result
for the rank norm, which is first order expressible.
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An open problem

In every ultraproduct of groups G™ = [],,cyGm/ ~, it is true that if we have an element
of arbitrarily large finite order, then there is an element of infinite order:

VneN Jg, € G n<o(gy) <oo = dge € G" 0(geo) = 0.

How about metric ultraproduct G}..? We can prove, that the same is true, if Gy is
nilpotent.

However, this does not seem to be true in general, in the metric ultraproduct G, but
we cannot find a counterexample.
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Thank you for your attention!
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