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A syntactic characterization of weakly Mal'tsev varieties



1. Internal structures
A reflexive graph is given by:
m a set Cy of objects,
m a set C; of morphisms,
m a domain function d : ¢; — (,
m a codomain function ¢ : GG — G,
m an identities function e : G — ¢
such that
de(x) = x = ce(x). (incidence axioms)
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1. Internal structures
A reflexive graph is given by:
m a set Cy of objects,
m a set C; of morphisms,
m a domain function d : ¢; — (,
m a codomain function ¢ : GG — G,
m an identities function e : G — ¢
such that
de(x) = x = ce(x). (incidence axioms)

Definition
An internal reflexive graph in a category ¥ is given by a diagram

d
—
—e—

G G G

in € such that
de =1¢, = ce. (incidence axioms)
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A (small) category is given by:
m a reflexive graph (Co, Gy, d, ¢, e),

m a multiplication function m: C,_, :={(f,g) € GG x G | c(f) =d(g)} = G
such that
dm(f,g) = d(f), cm(f,g) = c(g), (incidence axioms)
m(f,ec(f)) = f = m(de(f), f),

(unitality axioms)
m(m(f,g), h) = m(f, m(g, h)). (associativity axioms)
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Definition
An internal category in a category ¥ with pullbacks is given by a diagram

d

—
C L> C +e— Co
. < s

in €, where C__, is given by the pullback
C.. L> C1

A e

(:1 ““E“‘> C()7

such that:
m (Go, Gy, d,c,€) is an internal reflexive graph in &,

m the usual incidence, unitality and associativity axioms for m hold.

3/23



Definition
An internal category in a category ¥ with pullbacks is given by a diagram

d

—
C L> C +e— Co
. < s

in €, where C__, is given by the pullback
C.. L> C1

P1l ld
(:1 ““E“‘> C()7
such that:
m (Go, Gy, d,c,€) is an internal reflexive graph in &,
m the usual incidence, unitality and associativity axioms for m hold.
m(le,ec) =1¢ = m(ed, 1) (unitality axioms)
Cl ec
(1, »ec)

[GRNIN L> C1

1o Pll ld

Cl *c> Co
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A (small) category (Cy, Cy,d, ¢, e, m) is a (small) groupoid if there exists an inverses function
I Cl — Cl
such that

di(f) = c(f), ci(f) = d(f), (incidence axioms)
m(f,i(f)) = ed(f), m(i(f), f) = ec(f). (inverse axioms)

4/923



A (small) category (Cy, Cy,d, ¢, e, m) is a (small) groupoid if there exists an inverses function

I Cl — Cl
such that
di(f) = c(f), ci(f) = d(f), (incidence axioms)
m(f,i(f)) = ed(f), m(i(f), f) = ec(f). (inverse axioms)
Definition

An internal category (Co, G, d, c, e, m) in a category € with pullbacks is an internal groupoid
if there exists a morphism
i C1 — Cl

such that the usual incidence and inverse axioms for i hold.
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2. From Mal'tsev to weakly Mal'tsev categories

Proposition (Mal'tsev; 1954)
Let V be a variety of universal algebras. TFAE:
V is congruence permutable, i.e., for any algebra A € V and R, S € Cong(A), it holds that

RoS=SoR.
There exists a ternary term p € F(x, y, z) in the algebraic theory of V that satisfies the

identities
p(x,x,y)=y and  p(x,y,y)=x.
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identities
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Any reflexive relation in V is symmetric.

Examples of congruence permutable varieties

L Grp (p(X,y,Z):X-y_l'Z),
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2. From Mal'tsev to weakly Mal'tsev categories
Proposition
Let V be a variety of universal algebras. TFAE:
V is congruence permutable, i.e., for any algebra A € V and R, S € Cong(A), it holds that

RoS=S0oR.
There exists a ternary term p € F(x, y, z) in the algebraic theory of V that satisfies the
identities
p(x,x,y)=y and  p(x,y,y)=x.
Any reflexive relation in V is a congruence.

Any reflexive relation in V is transitive.

Any reflexive relation in V is symmetric.

Examples of congruence permutable varieties
m Grp (p(x,y,z) = x-y~1-z), Ab, Ring, R-Mod, Assg, Lieg
m Heyt (p(x,y,2) = (x = y) = 2) A((z = y) = X)),
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2. From Mal'tsev to weakly Mal'tsev categories

Proposition
Let V be a variety of universal algebras. TFAE:
V is congruence permutable, i.e., for any algebra A € V and R, S € Cong(A), it holds that

RoS=S0oR.

There exists a ternary term p € F(x, y, z) in the algebraic theory of V that satisfies the
identities
p(x,x,y)=y and  p(x,y,y)=x.
Any reflexive relation in V is a congruence.
Any reflexive relation in V is transitive.

Any reflexive relation in V is symmetric.

Examples of congruence permutable varieties
m Grp (p(x,y,z) = x-y~1-z), Ab, Ring, R-Mod, Assg, Lieg
m Heyt (p(x,y,2z) = ((x=y) = 2) A ((z= y) = x)), Bool
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Definition (Carboni, Pedicchio, Pirovano; 1992)

A Mal’tsev category is a finitely complete category % in which any of the following
equivalent conditions hold:

Any reflexive relation in € is a congruence.
Any reflexive relation in € is transitive.

Any reflexive relation in € is symmetric.
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Definition (Carboni, Pedicchio, Pirovano; 1992)

A Mal’tsev category is a finitely complete category % in which any of the following
equivalent conditions hold:

Any reflexive relation in € is a congruence.
Any reflexive relation in € is transitive.

Any reflexive relation in € is symmetric.

Examples of Mal'tsev categories
m Any congruence permutable variety: Grp, Ab, Heyt, Bool
m Any category of topological models of a congruence permutable theory: Grp(Top)
m Any abelian category: Sh(Ab)
m The dual of any elementary topos: Set°?
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Proposition (Bourn; 1996)
Let € be a finitely complete category. TFAE:
% is a Mal'tsev category.

Given split epimorphisms f, g in € with respective splittings r, s, i.e., fr = 1¢ = gs, then,
in the pullback of f and g, the induced pullback injections e, e; are jointly extremally
epimorphic,
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Given split epimorphisms f, g in € with respective splittings r, s, i.e., fr = 1¢ = gs, then,
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epimorphic,
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Proposition (Bourn; 1996)
Let € be a finitely complete category. TFAE:
% is a Mal'tsev category.
Given split epimorphisms f, g in € with respective splittings r, s, i.e., fr = 1¢ = gs, then,
in the pullback of f and g, the induced pullback injections e, e; are jointly extremally
epimorphic, i.e., if me; = f;, me; = f, and m is a monomorphism, then m is an

isomorphism. P
NN

m
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Proposition
Any reflexive graph in a Mal'tsev category ¢ allows at most one internal category structure.
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Proposition
Any reflexive graph in a Mal'tsev category ¢ allows at most one internal category structure.

Proof
Let
d
Cl %i* Co

be a reflexive graph in &, i.e. d, c are split epimorphisms with common splitting e.
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Proposition
Any reflexive graph in a Mal'tsev category ¢ allows at most one internal category structure.

Proof
Let
d
Cl %i* Co

be a reflexive graph in &, i.e. d, c are split epimorphisms with common splitting e.
Hence the pullback injections ej, e in

P2
G

(GIN
S
G —F G

c
are jointly extremally epimorphic.
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Proposition
Any reflexive graph in a Mal'tsev category ¢ allows at most one internal category structure.

Proof
Let
d
Cl %i* Co

be a reflexive graph in &, i.e. d, c are split epimorphisms with common splitting e.
Hence the pullback injections ej, e in

G '
N

m
~ P2
G

C‘)*}
€2
N\l 7
C1 i Co
c
are jointly extremally epimorphic.

The unitality axioms are exactly me; = 1¢, and me; = 1¢,.
8/23



Remark

m In a Mal'tsev category, a reflexive graph as above is an internal category if and only the
kernel congruences of d, ¢ centralize each other.
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Remark

m In a Mal'tsev category, a reflexive graph as above is an internal category if and only the
kernel congruences of d, ¢ centralize each other.

m If € is a congruence permutable variety with Mal'tsev term p(x,y, z), and
[Eq(d),Eq(c)] = Ag,, then, for any f, g € C; with ¢(f) = d(g),

m(f,g) = p(f, ec(f), g).

Q/23



Proposition
Any internal category in a Mal'tsev category is an internal groupoid.
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Proposition
Any internal category in a Mal'tsev category is an internal groupoid.

Remark
If € is congruence permutable variety with Mal'tsev term p(x, y, z), then the inverse morphism
i : C; — ( for an internal category is given by

i(f) = p(ed(f), f, ec(f)).
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There are categories such as DistrLatt, CancCommMon, Top®°? in which:
m Any reflexive graph admits at most one internal category structure.

m There are internal categories that are not internal groupoids.
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as above are jointly epimorphic,

11/23



There are categories such as DistrLatt, CancCommMon, Top®°? in which:
m Any reflexive graph admits at most one internal category structure.

m There are internal categories that are not internal groupoids.

Definition (Martins-Ferreira; 2008)

A weakly Mal’tsev category is a category that has all pullbacks of split epimorphisms along
split epimorphisms and in which the pullback injections e;, e; in a pullback

u

as above are jointly epimorphic, i.e., if ue; = ve; and ue; = vey, then u =,
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Proposition
Any reflexive graph in a weakly Mal'tsev category allows at most one internal category
structure.
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Proposition

Any reflexive graph in a weakly Mal'tsev category allows at most one internal category

structure.

Remark
In the weakly Mal'tsev category CancCommMon, the diagram

d(n,m)=n
G = {(n,m) € No x No | n < m} <— e(n)=(n.n)

c(n,m)=m

yields an internal category which is not an internal groupoid.

No = Co

12/23



In a finitely complete category, a strong relation is given by a regular monomorphism, i.e. an
equalizer.
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In a finitely complete category, a strong relation is given by a regular monomorphism, i.e. an
equalizer.
Proposition (Janelidze, Martins-Ferreira; 2012)
Let € be a finitely complete category. TFAE:
% is a weakly Mal'tsev category.
Any reflexive strong relation is a congruence.
Any reflexive strong relation is transitive.

Any reflexive strong relation is symmetric.

13/23



3. A syntactic characterization of weakly Mal'tsev varieties

Proposition
Let V be a variety of universal algebras. TFAE:
V is congruence permutable.

There exists a ternary term p € F(x, y, z) in the algebraic theory of V that satisfies the
identities
px,x,y)=y and  p(x,y,y)=y.
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Proposition
Let V be a variety of universal algebras. TFAE:
V is congruence permutable.

There exists a ternary term p € F(x, y, z) in the algebraic theory of V that satisfies the
identities

p(x,x,y)=y and  p(x,y,y)=y.

For any pullback

as above in V, the pullback injections e;, e; are jointly extremally epimorphic.
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Proof of "3. = 2."
For any pullback

as above in V, the pullback injections e;, e; are jointly extremally epimorphic.
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as above in V, the pullback injections e;, e; are jointly extremally epimorphic.
< The pullback injections e, e; in the pullback

F(xy) == F(x)

are jointly extremally epimorphic, where f, r, s are the unique morphisms such that
f(x) = x=f(y), r(x) = x and s(x) =y, respectively.
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Proof of "3. = 2."
For any pullback

as above in V, the pullback injections e;, e; are jointly extremally epimorphic.
< The pullback injections e, e; in the pullback

F(x.y) = F(x)
are jointly extremally epimorphic, where f, r, s are the unique morphisms such that
f(x) = x=f(y), r(x) = x and s(x) =y, respectively.
< The induced morphism [ey, e2] : F(x,y) + F(x,y) — P is a surjective homomorphism.
< The element (y,x) € P = {(t,t') € F(x,y) x F(x,y) | t(x,x) = t'(x,x)} lies in
Im([e1, e2]).
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Lemma
It holds that

Im([el’ 62]) = {(p(x,x,y),p(x,y,y)) | pe F(X,y,Z)}.
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Lemma
It holds that

Im([el’ 62]) = {(p(x,x,y),p(x,y,y)) | pe F(X,y,Z)}.

Proof
"C": The elements (x, x) = ex(x), (x,¥) = e1(x) = ex(y) and (y,y) = e1(y) lie in Im([e1, e]).
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Lemma
It holds that

Im([el’ 62]) = {(p(X,X,y),p(X,y,y)) | pe F(X,y,Z)}.

Proof

"C": The elements (x, x) = ex(x), (x,¥) = e1(x) = ex(y) and (y,y) = er(y) lie in Im([ey, &]).
Hence, for p € F(x,y, z),

p((x,x), (x,¥), (v, ¥)) = (p(x, %, ¥), p(x, ¥, ¥))

also lies in Im([ey, ]).
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Lemma
It holds that

Im([el’ 62]) = {(p(X,X,y),p(X,y,y)) | pe F(X,y,Z)}.

Proof

"C": The elements (x, x) = ex(x), (x,¥) = e1(x) = ex(y) and (y,y) = er(y) lie in Im([ey, &]).
Hence, for p € F(x,y, z),

p((x,x), (x,¥), (v, ¥)) = (p(x, %, ¥), p(x, ¥, ¥))

also lies in Im([ey, ]).
": Use that F(x,y) + F(x, y) can be described as a quotient of T(F(x,y)UF(x,y)) ...

Y
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Strategy for weakly Mal'tsev varieties

V is a weakly Mal'tsev category.

< For any pullback

as above in V, the pullback injections e;, e; are jointly epimorphic.
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V is a weakly Mal'tsev category.

< For any pullback P2

as above in V, the pullback injections e;, e; are jointly epimorphic.

< The pullback injections e, e; in the pullback
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F(x.y) == F(x)
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4 The morphism [er, es] : F(x, y) — F(x,y) — P is an epimorphism. Equivalently, its
cokernel projections g1, g, : P — @ are equal.
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Strategy for weakly Mal'tsev varieties
V is a weakly Mal'tsev category.

< For any pullback P2

as above in V, the pullback injections e;, e; are jointly epimorphic.

< The pullback injections e, e; in the pullback
P ——" F(x,y)

ol 7l

F(x.y) == F(x)
are jointly epimorphic.

4 The morphism [er, es] : F(x, y) — F(x,y) — P is an epimorphism. Equivalently, its
cokernel projections g1, g, : P — @ are equal.

q
F(x,y) +FX,y)HPqﬁ:Q

& It holds that q1(y, x) = q2(y, x).
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m We construct g;, g2 by means of the commutative diagram

F(x,y) + F(x,y) el p

[6‘1 ,€2 ]J J{LZ q2

P P+P

aq1

where g : P+ P — Q is the coequalizer of t1]ey, ], t2e1, €2].

18/23



m We construct g;, g2 by means of the commutative diagram

F(x,y) + F(x,y) el p

[e1,e2 ]J J{LZ q2

P P+P
.

q

Q,

aq1
where g : P+ P — Q is the coequalizer of t1]ey, ], t2e1, €2].
This means that we describe @ as the quotient of P + P by the congruence C which is
generated by the subset
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m We construct g;, g2 by means of the commutative diagram

[61 782]

F(x,y) +F(x,y) P

[6‘1 ,€2 ]J J{LZ q2

P P+P

™~
q

Q,

aq1
where g : P+ P — Q is the coequalizer of t1]ey, ], t2e1, €2].

This means that we describe @ as the quotient of P + P by the congruence C which is
generated by the subset

{(u[er; @](X), t2[er; ] (X)) [ X € F(x,y) + F(x,y)}

m It holds that ¢1(y, x) = g2(y, x) if and only if (¢1(y, x), t2(y,x)) € C.

18/23



m Thanks to the above lemma, the congruence C is generated by the subset

S:= {(Ll(p(xaxvy)7p(xa}/ay))vLQ(p(vaa)/)ap(X’)/a)/))) I pe F(vavz)}'
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m Thanks to the above lemma, the congruence C is generated by the subset

S:= {(Ll(p(x,x,y),p(x,y,y)),Lg(p(x,x,y),p(x,y,y))) I pe F(vavz)}'

m We construct C by taking
the reflexive closure,
the symmetric closure,
the closure under operations,
the transitive closure of S.
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m Thanks to the above lemma, the congruence C is generated by the subset

S:= {(Ll(p(x,x,y),p(x,y,y)),Lg(p(x,x,y),p(x,y,y))) I pe F(vavz)}'

m We construct C by taking
the reflexive closure,
the symmetric closure,
the closure under operations,
the transitive closure of S.
m Using the description of P + P as a quotient of F(PUP), the condition
(¢1(y, x), t2(y, x)) € C implies the existence of terms as in:

10/23



Theorem (E., Jacgmin, Martins-Ferreira; 2024)
Let V be a variety of universal algebras. TFAE:
V is a weakly Mal'tsev category.
In the algebraic theory of V, there exist

m k,m N € Ny,
m binary terms

f].7g17“'7fk7gk7
m ternary terms
P15 Pm,
m (14 k + m)-ary terms
n o1 (1) _¢ N+1) (N1
n£)7n£),85)75£)7"'7n§ )7 é )
m (2(1 + k + m) + 2)-ary terms
O1,...,0N+1,
m 2(1+ k 4+ 2m)-ary terms
S1 , SN

satisfying the identities

S(V+D)

EgN+1)

I
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P A Ay ) o o (I) PO (l) 1 o =/
S,(U,V,W,W,U,V, ,W)—O’,+1(U,V,W,U,V, 7771 (U, v, W)a772 (U, ))7
S o 7 o o (N41) R (N+1) (" VW)
O'N+1(U7V7W7ua ) y <1 (U7 ) )752 ’ ) =u,
where V= (v1,...,v) and w = (wy, ..., w,,) and analogously for V' and w’;
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Ne (y7 fl(va)v' ) fk(Xay)7p1(XaX7y)7' . 7pm(X7X7y))
:501)(}/7 fl(X7)/)7 R fk(XJ/)aPl(XaXJ/)’ H -7pm(XaXay))7

(1)

Ne (ngl(va)a"'7gk(X7y)7p1(X7yay)7~~'vpm(X7yv)/))
)

=€a (X gl(X .y) '"agk(Xay)7p1(X7y7y)a"'7pm(Xay?y))
foralla € {1,2} and i€ {1,...,N+ 1},
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forallie{1,...,

k}.

&)

=0 (x,

for all a € {1,2} andle{l,...

L) fk(XaY)7P1
* fk(X7Y)aP1

; ~'7gk(X7y)7p1(X
"agk(Xay)7p1(X
,N+1},

fi(x, x)

W D (u, v, w
(0,7, W), e (v, 7
) =oin(u, vV, w, ', V', W
8 (w7, W),

:g,'(X,X)

(x,x,¥), ...
(x,x,¥),...

254
7y7y)""

 Pm(X, %, ¥))
7pm(X?X’ y))7

s Pm(X, ¥, Y))

s Pm(X, Y5 ¥))
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Example of congruence permutable varieties
If V is a congruence permutable variety with Mal'tsev term p € F(x, y, z) satisfying
p(x,x,y) =y and p(x,y,y) =y, then

m k can be chosen to be 0: no binary terms necessary,

m m can be chosen to be 1: pi(x,y,z) = p(x, y, z),

m N can be chosen to be 1: all the terms ng),eg),o;,sj can be chosen to be projections.
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Example of congruence permutable varieties
If V is a congruence permutable variety with Mal'tsev term p € F(x, y, z) satisfying
p(x,x,y) =y and p(x,y,y) =y, then

m k can be chosen to be 0: no binary terms necessary,

m m can be chosen to be 1: pi(x,y,z) = p(x, y, z),

m N can be chosen to be 1: all the terms ng),eg),ai,sj can be chosen to be projections.

Example of varieties of distributive lattices

If Vis a variety of distributive lattices, then
m k can be chosen to be 0: no binary terms necessary,
m m can be chosen to be 3: pi(x,y,2) = x, pa(x,y,2) =y, ps(x,y,2) = z,
m N can be chosen to be 5.
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Theorem (E., Jacqgmin, Martins-Ferreira; 2024)
Let V be a variety of universal algebras. TFAE:
Any reflexive regular relation in V is symmetric.

There are terms as in the above theorem that satisfy the same identities except

fi(X7X) :g,-(X,X)
forall i e {1,..., k}.
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Remark (Martins-Ferreira, Van der Linden; 2014, Martins-Ferreira, Rodelo, Van der Linden;
2014)

m In a finitely complete weakly Mal'tsev category, any internal category is an internal
groupoid if and only if any preorder is an equivalence relation.
m The same is true for regular categories.

m For a variety V of universal algebras, these conditions are further equivalent to V being
n-permutable for some n € N.

m There are categories that are weakly Mal'tsev and Goursat (=3-permutable) but not
Mal'tsev.



Given terms as in the above theorem, one can show that gi(y, x) = g2(y, x) by
m inserting for

u:qiy,x),

V:(qi(f,g1),- -, qu(fx, 8x)),

W (qu(pL(x, %, ¥), 1%, ¥, ¥))s - - -, q1(Pm(X, X, ¥), Pm(X, ¥, ¥))),
u": qa(y, x),

V' (q2(fi 81), - 92(fe, 8K)),

V—.;/

: (qz(p1(X,X,y), pl(Xayvy))v ttt q2(pm(X7X,y)7pm(X7Y7y)))’
m using that

ql(Pi(vaaY)aPi(vav)/)) = q2(pi(XaX7y)api(Xayay))
forall i e {1,...,m}.



Proof
m The subset
{(p(x,x,y), p(x,¥,¥)) | p € F(x,y,2)}

is not only Im([e1, e2]) but also the smallest reflexive relation
R— F(x,y) x F(x,y)

on F(x,y,) that contains (x,y).
m Vis a Mal'tsev category if and only if (y,x) € R.

m Any reflexive regular relation in V is symmetric if and only if the smallest reflexive regular
relation R’ on F(x, y) that contains (x, y) also contains (y, x).

m The relation R’ can be described as the equalizer of the cokernel pair

a1, 95 - F(x,y) X F(x,¥) = Q" of R — F(x,y) x F(x,y), whose elements are those
(t,t") € F(x,y) x F(x,y) such that g;(t) = g5(t’). This means that (y, x) € R’ if and

only if g1(y,x) = g5(y,x).
\ q

— F(x,y) X F(x,y) =3 @
2

q

X

o -



