

A syntactic characterization of weakly Mal'tsev varieties

Nadja Egner (UCLouvain)

joint work with Pierre-Alain Jacqmin (RMA) and Nelson Martins-Ferreira (IPL)

108. AAA, Vienna

Structure of the talk

- 1 Internal structures
- 2 From Mal'tsev to weakly Mal'tsev categories
- 3 A syntactic characterization of weakly Mal'tsev varieties

1. Internal structures

A **reflexive graph** is given by:

- a set C_0 of objects,
- a set C_1 of morphisms,
- a domain function $d : C_1 \rightarrow C_0$,
- a codomain function $c : C_1 \rightarrow C_0$,
- an identities function $e : C_0 \rightarrow C_1$

such that

$$de(x) = x = ce(x). \quad (\text{incidence axioms})$$

1. Internal structures

A **reflexive graph** is given by:

- a set C_0 of objects,
- a set C_1 of morphisms,
- a domain function $d : C_1 \rightarrow C_0$,
- a codomain function $c : C_1 \rightarrow C_0$,
- an identities function $e : C_0 \rightarrow C_1$

such that

$$de(x) = x = ce(x). \quad (\text{incidence axioms})$$

Definition

An **internal reflexive graph** in a category \mathcal{C} is given by a diagram

$$C_1 \begin{array}{c} \xrightarrow{d} \\ \xleftarrow{e} \\ \xrightarrow{c} \end{array} C_0$$

in \mathcal{C} such that

$$de = 1_{C_1} = ce. \quad (\text{incidence axioms})$$

A **(small) category** is given by:

- a reflexive graph (C_0, C_1, d, c, e) ,
- a multiplication function $m : C_{\rightarrow\rightarrow} := \{(f, g) \in C_1 \times C_1 \mid c(f) = d(g)\} \rightarrow C_1$

such that

$$dm(f, g) = d(f), \quad cm(f, g) = c(g), \quad (\text{incidence axioms})$$

$$m(f, ec(f)) = f = m(de(f), f), \quad (\text{unitality axioms})$$

$$m(m(f, g), h) = m(f, m(g, h)). \quad (\text{associativity axioms})$$

Definition

An **internal category** in a category \mathcal{C} with pullbacks is given by a diagram

$$C_{\rightarrow\rightarrow} \xrightarrow{m} C_1 \begin{array}{c} \xrightarrow{d} \\ \xleftarrow{e} \\ \xrightarrow{c} \end{array} C_0,$$

in \mathcal{C} , where $C_{\rightarrow\rightarrow}$ is given by the pullback

$$\begin{array}{ccc} C_{\rightarrow\rightarrow} & \xrightarrow{p_2} & C_1 \\ p_1 \downarrow & & \downarrow d \\ C_1 & \xrightarrow{c} & C_0, \end{array}$$

such that:

- (C_0, C_1, d, c, e) is an internal reflexive graph in \mathcal{C} ,
- the usual incidence, unitality and associativity axioms for m hold.

Definition

An **internal category** in a category \mathcal{C} with pullbacks is given by a diagram

$$C_{\rightarrow\rightarrow} \xrightarrow{m} C_1 \xrightleftharpoons[\substack{c \\ e}]{} C_0,$$

in \mathcal{C} , where $C_{\rightarrow\rightarrow}$ is given by the pullback

$$\begin{array}{ccc} C_{\rightarrow\rightarrow} & \xrightarrow{p_2} & C_1 \\ p_1 \downarrow & & \downarrow d \\ C_1 & \xrightarrow{c} & C_0, \end{array}$$

such that:

- (C_0, C_1, d, c, e) is an internal reflexive graph in \mathcal{C} ,
- the usual incidence, unitality and associativity axioms for m hold.

$$m(1_{C_1}, ec) = 1_{C_1} = m(ed, 1_{C_1}) \quad (\text{unitality axioms})$$

$$\begin{array}{ccc} C_1 & \xrightarrow{\quad ec \quad} & C_1 \\ \nearrow (1_{C_1}, ec) & \searrow & \downarrow p_2 \\ C_{\rightarrow\rightarrow} & \xrightarrow{p_2} & C_1 \\ \downarrow p_1 & & \downarrow d \\ C_1 & \xrightarrow{c} & C_0 \end{array}$$

$$\begin{array}{ccc} C_1 & \xrightarrow{\quad 1_{C_1} \quad} & C_1 \\ \nearrow (ed, 1_{C_1}) & \searrow & \downarrow p_2 \\ C_{\rightarrow\rightarrow} & \xrightarrow{p_2} & C_1 \\ \downarrow p_1 & & \downarrow d \\ C_1 & \xrightarrow{c} & C_0 \end{array}$$

A (small) category (C_0, C_1, d, c, e, m) is a **(small) groupoid** if there exists an inverses function

$$i : C_1 \rightarrow C_1$$

such that

$$\begin{array}{lll} di(f) = c(f), & ci(f) = d(f), & \text{(incidence axioms)} \\ m(f, i(f)) = ed(f), & m(i(f), f) = ec(f). & \text{(inverse axioms)} \end{array}$$

A (small) category (C_0, C_1, d, c, e, m) is a **(small) groupoid** if there exists an inverses function

$$i : C_1 \rightarrow C_1$$

such that

$$\begin{array}{lll} di(f) = c(f), & ci(f) = d(f), & \text{(incidence axioms)} \\ m(f, i(f)) = ed(f), & m(i(f), f) = ec(f). & \text{(inverse axioms)} \end{array}$$

Definition

An internal category (C_0, C_1, d, c, e, m) in a category \mathcal{C} with pullbacks is an **internal groupoid** if there exists a morphism

$$i : C_1 \rightarrow C_1$$

such that the usual incidence and inverse axioms for i hold.

$$\begin{array}{ccccc} & & i & & \\ & \searrow & \downarrow & \nearrow & \\ C_{\rightarrow\rightarrow} & \xrightarrow{m} & C_1 & \xrightleftharpoons[d]{e} & C_0 \\ & & \downarrow c & & \end{array}$$

2. From Mal'tsev to weakly Mal'tsev categories

Proposition (Mal'tsev; 1954)

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

2. From Mal'tsev to weakly Mal'tsev categories

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

- 3 Any reflexive relation in \mathbb{V} is a congruence.
- 4 Any reflexive relation in \mathbb{V} is transitive.
- 5 Any reflexive relation in \mathbb{V} is symmetric.

2. From Mal'tsev to weakly Mal'tsev categories

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

- 3 Any reflexive relation in \mathbb{V} is a congruence.
- 4 Any reflexive relation in \mathbb{V} is transitive.
- 5 Any reflexive relation in \mathbb{V} is symmetric.

Examples of congruence permutable varieties

- Grp ($p(x, y, z) = x \cdot y^{-1} \cdot z$),

2. From Mal'tsev to weakly Mal'tsev categories

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

- 3 Any reflexive relation in \mathbb{V} is a congruence.
- 4 Any reflexive relation in \mathbb{V} is transitive.
- 5 Any reflexive relation in \mathbb{V} is symmetric.

Examples of congruence permutable varieties

- Grp ($p(x, y, z) = x \cdot y^{-1} \cdot z$), Ab, Ring, R -Mod, Ass_R , Lie_R

2. From Mal'tsev to weakly Mal'tsev categories

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

- 3 Any reflexive relation in \mathbb{V} is a congruence.
- 4 Any reflexive relation in \mathbb{V} is transitive.
- 5 Any reflexive relation in \mathbb{V} is symmetric.

Examples of congruence permutable varieties

- Grp ($p(x, y, z) = x \cdot y^{-1} \cdot z$), Ab, Ring, R -Mod, Ass_R , Lie_R
- Heyt ($p(x, y, z) = ((x \Rightarrow y) \Rightarrow z) \wedge ((z \Rightarrow y) \Rightarrow x)$),

2. From Mal'tsev to weakly Mal'tsev categories

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable, i.e., for any algebra $A \in \mathbb{V}$ and $R, S \in \text{Cong}(A)$, it holds that

$$R \circ S = S \circ R.$$

- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = x.$$

- 3 Any reflexive relation in \mathbb{V} is a congruence.
- 4 Any reflexive relation in \mathbb{V} is transitive.
- 5 Any reflexive relation in \mathbb{V} is symmetric.

Examples of congruence permutable varieties

- Grp ($p(x, y, z) = x \cdot y^{-1} \cdot z$), Ab, Ring, R -Mod, Ass_R , Lie_R
- Heyt ($p(x, y, z) = ((x \Rightarrow y) \Rightarrow z) \wedge ((z \Rightarrow y) \Rightarrow x)$), Bool

Definition (Carboni, Pedicchio, Pirovano; 1992)

A **Mal'tsev category** is a finitely complete category \mathcal{C} in which any of the following equivalent conditions hold:

- 1 Any reflexive relation in \mathcal{C} is a congruence.
- 2 Any reflexive relation in \mathcal{C} is transitive.
- 3 Any reflexive relation in \mathcal{C} is symmetric.

Definition (Carboni, Pedicchio, Pirovano; 1992)

A **Mal'tsev category** is a finitely complete category \mathcal{C} in which any of the following equivalent conditions hold:

- 1 Any reflexive relation in \mathcal{C} is a congruence.
- 2 Any reflexive relation in \mathcal{C} is transitive.
- 3 Any reflexive relation in \mathcal{C} is symmetric.

Examples of Mal'tsev categories

- Any congruence permutable variety: Grp, Ab, Heyt, Bool

Definition (Carboni, Pedicchio, Pirovano; 1992)

A **Mal'tsev category** is a finitely complete category \mathcal{C} in which any of the following equivalent conditions hold:

- 1 Any reflexive relation in \mathcal{C} is a congruence.
- 2 Any reflexive relation in \mathcal{C} is transitive.
- 3 Any reflexive relation in \mathcal{C} is symmetric.

Examples of Mal'tsev categories

- Any congruence permutable variety: Grp, Ab, Heyt, Bool
- Any category of topological models of a congruence permutable theory: Grp(Top)

Definition (Carboni, Pedicchio, Pirovano; 1992)

A **Mal'tsev category** is a finitely complete category \mathcal{C} in which any of the following equivalent conditions hold:

- 1 Any reflexive relation in \mathcal{C} is a congruence.
- 2 Any reflexive relation in \mathcal{C} is transitive.
- 3 Any reflexive relation in \mathcal{C} is symmetric.

Examples of Mal'tsev categories

- Any congruence permutable variety: Grp, Ab, Heyt, Bool
- Any category of topological models of a congruence permutable theory: Grp(Top)
- Any abelian category: Sh(Ab)

Definition (Carboni, Pedicchio, Pirovano; 1992)

A **Mal'tsev category** is a finitely complete category \mathcal{C} in which any of the following equivalent conditions hold:

- 1 Any reflexive relation in \mathcal{C} is a congruence.
- 2 Any reflexive relation in \mathcal{C} is transitive.
- 3 Any reflexive relation in \mathcal{C} is symmetric.

Examples of Mal'tsev categories

- Any congruence permutable variety: Grp, Ab, Heyt, Bool
- Any category of topological models of a congruence permutable theory: Grp(Top)
- Any abelian category: Sh(Ab)
- The dual of any elementary topos: Set^{op}

Proposition (Bourn; 1996)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a Mal'tsev category.
- 2 Given split epimorphisms f, g in \mathcal{C} with respective splittings r, s , i.e., $fr = 1_C = gs$, then, in the pullback of f and g , the induced pullback injections e_1, e_2 are jointly extremely epimorphic,

$$\begin{array}{ccc} B & & \\ \downarrow g & & \\ A & \xrightarrow{f} & C \end{array}$$

Proposition (Bourn; 1996)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a Mal'tsev category.
- 2 Given split epimorphisms f, g in \mathcal{C} with respective splittings r, s , i.e., $fr = 1_C = gs$, then, in the pullback of f and g , the induced pullback injections e_1, e_2 are jointly extremely epimorphic,

$$\begin{array}{ccc} & B & \\ & \uparrow s & \downarrow g \\ A & \xrightleftharpoons[r]{f} & C \end{array}$$

Proposition (Bourn; 1996)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a Mal'tsev category.
- 2 Given split epimorphisms f, g in \mathcal{C} with respective splittings r, s , i.e., $fr = 1_C = gs$, then, in the pullback of f and g , the induced pullback injections e_1, e_2 are jointly extremely epimorphic,

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ p_1 \downarrow & & \uparrow s \\ A & \xrightleftharpoons[r]{f} & C \end{array}$$

Proposition (Bourn; 1996)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a Mal'tsev category.
- 2 Given split epimorphisms f, g in \mathcal{C} with respective splittings r, s , i.e., $fr = 1_C = gs$, then, in the pullback of f and g , the induced pullback injections e_1, e_2 are jointly extremely epimorphic,

$$\begin{array}{ccc}
 P & \xrightarrow{p_2} & B \\
 \uparrow e_1 & \swarrow e_2 & \uparrow s \quad \downarrow g \\
 A & \xrightleftharpoons[r]{f} & C
 \end{array}$$

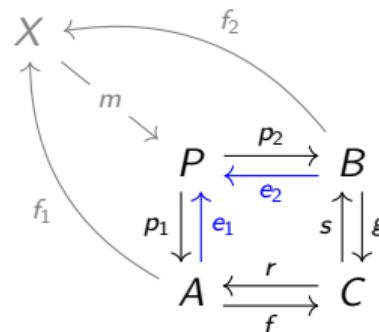
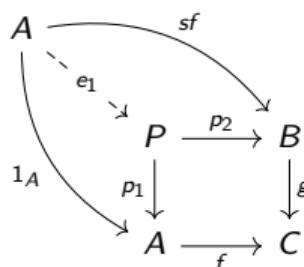
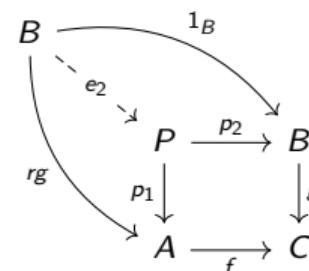
$$\begin{array}{ccccc}
 A & \xrightarrow{sf} & P & \xrightarrow{p_2} & B \\
 \dashrightarrow e_1 \curvearrowleft & \nwarrow & p_1 \downarrow & & \downarrow g \\
 1_A \curvearrowright & & A & \xrightarrow{f} & C
 \end{array}$$

$$\begin{array}{ccccc}
 B & \xrightarrow{1_B} & P & \xrightarrow{p_2} & B \\
 \dashrightarrow e_2 \curvearrowleft & \nwarrow & p_1 \downarrow & & \downarrow g \\
 rg \curvearrowright & & A & \xrightarrow{f} & C
 \end{array}$$

Proposition (Bourn; 1996)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a Mal'tsev category.
- 2 Given split epimorphisms f, g in \mathcal{C} with respective splittings r, s , i.e., $fr = 1_C = gs$, then, in the pullback of f and g , the induced pullback injections e_1, e_2 are jointly extremely epimorphic, i.e., if $me_1 = f_1$, $me_2 = f_2$ and m is a monomorphism, then m is an isomorphism.



Proposition

Any reflexive graph in a Mal'tsev category \mathcal{C} allows at most one internal category structure.

Proposition

Any reflexive graph in a Mal'tsev category \mathcal{C} allows at most one internal category structure.

Proof

Let

$$C_1 \begin{array}{c} \xrightarrow{d} \\ \xleftarrow{e} \\ \xrightarrow{c} \end{array} C_0$$

be a reflexive graph in \mathcal{C} , i.e. d, c are split epimorphisms with common splitting e .

Proposition

Any reflexive graph in a Mal'tsev category \mathcal{C} allows at most one internal category structure.

Proof

Let

$$C_1 \begin{array}{c} \xrightarrow{d} \\ \xleftarrow{e} \\ \xrightarrow{c} \end{array} C_0$$

be a reflexive graph in \mathcal{C} , i.e. d, c are split epimorphisms with common splitting e .
Hence the pullback injections e_1, e_2 in

$$\begin{array}{ccccc} C_{\rightarrow\rightarrow} & \xrightarrow{p_2} & C_1 & & \\ \uparrow e_1 & \swarrow e_2 & & & \\ p_1 \downarrow & & e \uparrow & \downarrow d & \\ C_1 & \xleftarrow{e} & C_0 & & \end{array}$$

are jointly extremally epimorphic.

Proposition

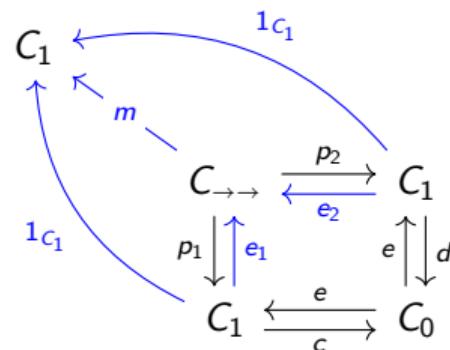
Any reflexive graph in a Mal'tsev category \mathcal{C} allows at most one internal category structure.

Proof

Let

$$C_1 \xrightleftharpoons[\substack{f \\ \leftarrow e \rightarrow}]{} C_0$$

be a reflexive graph in \mathcal{C} , i.e. d, c are split epimorphisms with common splitting e . Hence the pullback injections e_1, e_2 in



are jointly extremely epimorphic.

The unitality axioms are exactly $me_1 = 1_C$, and $me_2 = 1_C$.

Remark

- In a Mal'tsev category, a reflexive graph as above is an internal category if and only the kernel congruences of d, c centralize each other.

Remark

- In a Mal'tsev category, a reflexive graph as above is an internal category if and only the kernel congruences of d, c centralize each other.
- If \mathcal{C} is a congruence permutable variety with Mal'tsev term $p(x, y, z)$, and $[\text{Eq}(d), \text{Eq}(c)] = \Delta_{C_1}$, then, for any $f, g \in C_1$ with $c(f) = d(g)$,

$$m(f, g) = p(f, ec(f), g).$$

Proposition

Any internal category in a Mal'tsev category is an internal groupoid.

Proposition

Any internal category in a Mal'tsev category is an internal groupoid.

Remark

If \mathcal{C} is congruence permutable variety with Mal'tsev term $p(x, y, z)$, then the inverse morphism $i : C_1 \rightarrow C_1$ for an internal category is given by

$$i(f) = p(ed(f), f, ec(f)).$$

There are categories such as DistrLatt , CancCommMon , Top^{op} in which:

- Any reflexive graph admits at most one internal category structure.
- There are internal categories that are **not** internal groupoids.

There are categories such as DistrLatt , CancCommMon , Top^{op} in which:

- Any reflexive graph admits at most one internal category structure.
- There are internal categories that are **not** internal groupoids.

Definition (Martins-Ferreira; 2008)

A **weakly Mal'tsev category** is a category that has all pullbacks of split epimorphisms along split epimorphisms and in which the pullback injections e_1, e_2 in a pullback

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ e_1 \uparrow & \swarrow e_2 & \\ A & \xrightleftharpoons[r]{f} & C \end{array}$$

as above are jointly epimorphic,

There are categories such as DistrLatt , CancCommMon , Top^{op} in which:

- Any reflexive graph admits at most one internal category structure.
- There are internal categories that are **not** internal groupoids.

Definition (Martins-Ferreira; 2008)

A **weakly Mal'tsev category** is a category that has all pullbacks of split epimorphisms along split epimorphisms and in which the pullback injections e_1, e_2 in a pullback

$$\begin{array}{ccccc} & & X & & \\ & \swarrow & & \searrow & \\ & & u & & \\ & & \downarrow & & \\ P & \xrightarrow{p_2} & B & \xleftarrow{e_2} & \\ \uparrow p_1 & & & & \uparrow s \\ A & \xleftarrow{r} & C & \xrightarrow{f} & \end{array}$$

as above are jointly epimorphic, i.e., if $ue_1 = ve_1$ and $ue_2 = ve_2$, then $u = v$,

Proposition

Any reflexive graph in a weakly Mal'tsev category allows at most one internal category structure.

Proposition

Any reflexive graph in a weakly Mal'tsev category allows at most one internal category structure.

Remark

In the weakly Mal'tsev category CancCommMon , the diagram

$$C_1 := \{(n, m) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid n \leq m\} \xrightarrow{\begin{array}{c} d(n, m) = n \\ e(n) = (n, n) \\ c(n, m) = m \end{array}} \mathbb{N}_0 =: C_0$$

yields an internal category which is not an internal groupoid.

In a finitely complete category, a **strong relation** is given by a regular monomorphism, i.e. an equalizer.

In a finitely complete category, a **strong relation** is given by a regular monomorphism, i.e. an equalizer.

Proposition (Janelidze, Martins-Ferreira; 2012)

Let \mathcal{C} be a finitely complete category. TFAE:

- 1 \mathcal{C} is a weakly Mal'tsev category.
- 2 Any reflexive strong relation is a congruence.
- 3 Any reflexive strong relation is transitive.
- 4 Any reflexive strong relation is symmetric.

3. A syntactic characterization of weakly Mal'tsev varieties

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable.
- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = y.$$

3. A syntactic characterization of weakly Mal'tsev varieties

Proposition

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is congruence permutable.
- 2 There exists a ternary term $p \in F(x, y, z)$ in the algebraic theory of \mathbb{V} that satisfies the identities

$$p(x, x, y) = y \quad \text{and} \quad p(x, y, y) = y.$$

- 3 For any pullback

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ \downarrow p_1 \quad \uparrow e_1 & \swarrow e_2 & \uparrow s \quad \downarrow g \\ A & \xleftarrow{r} & C \\ & \downarrow f & \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly extremely epimorphic.

Proof of "3. \Rightarrow 2."

For any pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[\substack{e_2 \\ p_1}]{} & B \\ \uparrow e_1 & & \uparrow s \\ A & \xrightleftharpoons[\substack{r \\ f}]{} & C \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly extremely epimorphic.

Proof of "3. \Rightarrow 2."

For any pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & B \\ \uparrow p_1 \quad \uparrow e_1 & & \uparrow s \quad \downarrow g \\ A & \xrightleftharpoons[\substack{r \\ f}]{} & C \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly extremely epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & F(x, y) \\ \uparrow p_1 \quad \uparrow e_1 & & \uparrow s \quad \downarrow f \\ F(x, y) & \xrightleftharpoons[\substack{r \\ f}]{} & F(x) \end{array}$$

are jointly extremely epimorphic, where f, r, s are the unique morphisms such that $f(x) = x = f(y)$, $r(x) = x$ and $s(x) = y$, respectively.

Proof of "3. \Rightarrow 2."

For any pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & B \\ \uparrow p_1 \quad \uparrow e_1 & & \uparrow s \quad \downarrow g \\ A & \xrightleftharpoons[\substack{r \\ f}]{} & C \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly extremely epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & F(x, y) \\ \uparrow p_1 \quad \uparrow e_1 & & \uparrow s \quad \downarrow f \\ F(x, y) & \xrightleftharpoons[\substack{r \\ f}]{} & F(x) \end{array}$$

are jointly extremely epimorphic, where f, r, s are the unique morphisms such that $f(x) = x = f(y)$, $r(x) = x$ and $s(x) = y$, respectively.

\Leftrightarrow The induced morphism $[e_1, e_2] : F(x, y) \rightarrow P$ is a surjective homomorphism.

Proof of "3. \Rightarrow 2."

For any pullback

$$\begin{array}{ccc}
 P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & B \\
 \downarrow p_1 \quad \uparrow e_1 & & \downarrow s \quad \uparrow g \\
 A & \xrightleftharpoons[\substack{r \\ f}]{} & C
 \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly extremely epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc}
 P & \xrightleftharpoons[\substack{e_2 \\ p_2}]{} & F(x, y) \\
 \downarrow p_1 \quad \uparrow e_1 & & \downarrow s \quad \uparrow f \\
 F(x, y) & \xrightleftharpoons[\substack{r \\ f}]{} & F(x)
 \end{array}$$

are jointly extremely epimorphic, where f, r, s are the unique morphisms such that $f(x) = x = f(y)$, $r(x) = x$ and $s(x) = y$, respectively.

\Leftrightarrow The induced morphism $[e_1, e_2] : F(x, y) + F(x, y) \rightarrow P$ is a surjective homomorphism.

\Leftrightarrow The element $(y, x) \in P = \{(t, t') \in F(x, y) \times F(x, y) \mid t(x, x) = t'(x, x)\}$ lies in $\text{Im}([e_1, e_2])$.

Lemma

It holds that

$$\text{Im}([e_1, e_2]) = \{(p(x, x, y), p(x, y, y)) \mid p \in F(x, y, z)\}.$$

Lemma

It holds that

$$\text{Im}([e_1, e_2]) = \{(p(x, x, y), p(x, y, y)) \mid p \in F(x, y, z)\}.$$

Proof

" \subseteq ": The elements $(x, x) = e_2(x)$, $(x, y) = e_1(x) = e_2(y)$ and $(y, y) = e_1(y)$ lie in $\text{Im}([e_1, e_2])$.

Lemma

It holds that

$$\text{Im}([e_1, e_2]) = \{(p(x, x, y), p(x, y, y)) \mid p \in F(x, y, z)\}.$$

Proof

" \subseteq ": The elements $(x, x) = e_2(x)$, $(x, y) = e_1(x) = e_2(y)$ and $(y, y) = e_1(y)$ lie in $\text{Im}([e_1, e_2])$.
Hence, for $p \in F(x, y, z)$,

$$p((x, x), (x, y), (y, y)) = (p(x, x, y), p(x, y, y))$$

also lies in $\text{Im}([e_1, e_2])$.

Lemma

It holds that

$$\text{Im}([e_1, e_2]) = \{(p(x, x, y), p(x, y, y)) \mid p \in F(x, y, z)\}.$$

Proof

" \subseteq ": The elements $(x, x) = e_2(x)$, $(x, y) = e_1(x) = e_2(y)$ and $(y, y) = e_1(y)$ lie in $\text{Im}([e_1, e_2])$.
Hence, for $p \in F(x, y, z)$,

$$p((x, x), (x, y), (y, y)) = (p(x, x, y), p(x, y, y))$$

also lies in $\text{Im}([e_1, e_2])$.

" \supseteq ": Use that $F(x, y) + F(x, y)$ can be described as a quotient of $T(F(x, y) \dot{\cup} F(x, y)) \dots$

Strategy for weakly Mal'tsev varieties

\mathbb{V} is a weakly Mal'tsev category.

\Leftrightarrow For any pullback

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ \downarrow e_1 & \swarrow e_2 & \downarrow s \\ A & \xrightarrow{r} & C \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly epimorphic.

Strategy for weakly Mal'tsev varieties

\mathbb{V} is a weakly Mal'tsev category.

\Leftrightarrow For any pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[p_2]{e_2} & B \\ p_1 \downarrow & e_1 \uparrow & s \uparrow \downarrow g \\ A & \xrightleftharpoons[r]{f} & C \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[p_2]{e_2} & F(x, y) \\ p_1 \downarrow & e_1 \uparrow & s \uparrow \downarrow f \\ F(x, y) & \xrightleftharpoons[r]{f} & F(x) \end{array}$$

are jointly epimorphic.

Strategy for weakly Mal'tsev varieties

\mathbb{V} is a weakly Mal'tsev category.

\Leftrightarrow For any pullback

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ \downarrow e_1 & \swarrow e_2 & \downarrow s \\ A & \xleftarrow{r} & C \\ & \downarrow f & \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[e_2]{p_2} & F(x, y) \\ \downarrow e_1 & & \downarrow s \\ F(x, y) & \xleftarrow[f]{r} & F(x) \end{array}$$

are jointly epimorphic.

\Leftrightarrow The morphism $[e_1, e_2] : F(x, y) \rightarrow P$ is an epimorphism. Equivalently, its cokernel projections $q_1, q_2 : P \rightarrow Q$ are equal.

$$F(x, y) + F(x, y) \xrightarrow{[e_1, e_2]} P \xrightarrow[q_1]{q_2} Q$$

Strategy for weakly Mal'tsev varieties

\mathbb{V} is a weakly Mal'tsev category.

\Leftrightarrow For any pullback

$$\begin{array}{ccc} P & \xrightarrow{p_2} & B \\ \downarrow e_1 & \swarrow e_2 & \downarrow s \\ A & \xleftarrow{r} & C \\ & \downarrow f & \end{array}$$

as above in \mathbb{V} , the pullback injections e_1, e_2 are jointly epimorphic.

\Leftrightarrow The pullback injections e_1, e_2 in the pullback

$$\begin{array}{ccc} P & \xrightleftharpoons[e_2]{p_2} & F(x, y) \\ \downarrow e_1 & & \downarrow s \\ F(x, y) & \xleftarrow[f]{r} & F(x) \end{array}$$

are jointly epimorphic.

\Leftrightarrow The morphism $[e_1, e_2] : F(x, y) \rightarrow P$ is an epimorphism. Equivalently, its cokernel projections $q_1, q_2 : P \rightarrow Q$ are equal.

$$F(x, y) + F(x, y) \xrightarrow{[e_1, e_2]} P \xrightarrow[q_1]{q_2} Q$$

\Leftrightarrow It holds that

$$q_1(y, x) = q_2(y, x).$$

- We construct q_1, q_2 by means of the commutative diagram

$$\begin{array}{ccc}
 F(x, y) + F(x, y) & \xrightarrow{[e_1, e_2]} & P \\
 \downarrow [e_1, e_2] & & \downarrow \iota_2 \\
 P & \xrightarrow{\iota_1} & P + P \\
 & \searrow q_1 & \swarrow q \\
 & & Q,
 \end{array}$$

where $q : P + P \rightarrow Q$ is the coequalizer of $\iota_1[e_1, e_2], \iota_2[e_1, e_2]$.

- We construct q_1, q_2 by means of the commutative diagram

$$\begin{array}{ccccc}
 F(x, y) + F(x, y) & \xrightarrow{[e_1, e_2]} & P & & \\
 \downarrow [e_1, e_2] & & \downarrow \iota_2 & & \\
 P & \xrightarrow{\iota_1} & P + P & \xrightarrow{q} & Q, \\
 & \searrow q_1 & & \swarrow q_2 & \\
 & & & &
 \end{array}$$

where $q : P + P \rightarrow Q$ is the coequalizer of $\iota_1[e_1, e_2], \iota_2[e_1, e_2]$.

This means that we describe Q as the quotient of $P + P$ by the congruence C which is generated by the subset

$$\{(\iota_1[e_1, e_2](X), \iota_2[e_1, e_2](X)) \mid X \in F(x, y) + F(x, y)\}$$

- We construct q_1, q_2 by means of the commutative diagram

$$\begin{array}{ccccc}
 F(x, y) + F(x, y) & \xrightarrow{[e_1, e_2]} & P & & \\
 \downarrow [e_1, e_2] & & \downarrow \iota_2 & & \\
 P & \xrightarrow{\iota_1} & P + P & \xrightarrow{q} & Q,
 \end{array}$$

q_1 q_2

where $q : P + P \rightarrow Q$ is the coequalizer of $\iota_1[e_1, e_2], \iota_2[e_1, e_2]$.

This means that we describe Q as the quotient of $P + P$ by the congruence C which is generated by the subset

$$\{(\iota_1[e_1, e_2](X), \iota_2[e_1, e_2](X)) \mid X \in F(x, y) + F(x, y)\}$$

- It holds that $q_1(y, x) = q_2(y, x)$ if and only if $(\iota_1(y, x), \iota_2(y, x)) \in C$.

- Thanks to the above lemma, the congruence C is generated by the subset

$$S := \{(\iota_1(p(x, x, y), p(x, y, y)), \iota_2(p(x, x, y), p(x, y, y))) \mid p \in F(x, y, z)\}.$$

- Thanks to the above lemma, the congruence C is generated by the subset

$$S := \{(\iota_1(p(x, x, y), p(x, y, y)), \iota_2(p(x, x, y), p(x, y, y))) \mid p \in F(x, y, z)\}.$$

- We construct C by taking

- 1 the reflexive closure,
- 2 the symmetric closure,
- 3 the closure under operations,
- 4 the transitive closure of S .

- Thanks to the above lemma, the congruence C is generated by the subset

$$S := \{(\iota_1(p(x, x, y), p(x, y, y)), \iota_2(p(x, x, y), p(x, y, y))) \mid p \in F(x, y, z)\}.$$

- We construct C by taking

- 1 the reflexive closure,
- 2 the symmetric closure,
- 3 the closure under operations,
- 4 the transitive closure of S .

- Using the description of $P + P$ as a quotient of $F(P \dot{\cup} P)$, the condition $(\iota_1(y, x), \iota_2(y, x)) \in C$ implies the existence of terms as in:

Theorem (E., Jacqmin, Martins-Ferreira; 2024)

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 \mathbb{V} is a weakly Mal'tsev category.
- 2 In the algebraic theory of \mathbb{V} , there exist

- $k, m, N \in \mathbb{N}_0$,
- binary terms

$$f_1, g_1, \dots, f_k, g_k,$$

- ternary terms

$$p_1, \dots, p_m,$$

- $(1 + k + m)$ -ary terms

$$\eta_1^{(1)}, \eta_2^{(1)}, \varepsilon_1^{(1)}, \varepsilon_2^{(1)}, \dots, \eta_1^{(N+1)}, \eta_2^{(N+1)}, \varepsilon_1^{(N+1)}, \varepsilon_2^{(N+1)},$$

- $(2(1 + k + m) + 2)$ -ary terms

$$\sigma_1, \dots, \sigma_{N+1},$$

- $2(1 + k + 2m)$ -ary terms

$$s_1 \dots, s_N$$

satisfying the identities

$$\begin{aligned}
u &= \sigma_1(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(1)}(u, \vec{v}, \vec{w}), \eta_2^{(1)}(u', \vec{v}', \vec{w}')), \\
\sigma_i(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(i)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(i)}(u', \vec{v}', \vec{w}')) &= s_i(u, \vec{v}, \vec{w}, \vec{w}, u', \vec{v}', \vec{w}', \vec{w}'), \\
s_i(u, \vec{v}, \vec{w}, \vec{w}', u', \vec{v}', \vec{w}', \vec{w}) &= \sigma_{i+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(i)}(u, \vec{v}, \vec{w}), \eta_2^{(i)}(u', \vec{v}', \vec{w}')), \\
\sigma_{N+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(N+1)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(N+1)(u', \vec{v}', \vec{w}'})) &= u',
\end{aligned}$$

where $\vec{v} = (v_1, \dots, v_k)$ and $\vec{w} = (w_1, \dots, w_m)$ and analogously for \vec{v}' and \vec{w}' ;

$$\begin{aligned}
u &= \sigma_1(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(1)}(u, \vec{v}, \vec{w}), \eta_2^{(1)}(u', \vec{v}', \vec{w}')), \\
\sigma_i(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(i)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(i)}(u', \vec{v}', \vec{w}')) &= s_i(u, \vec{v}, \vec{w}, \vec{w}, u', \vec{v}', \vec{w}', \vec{w}'), \\
s_i(u, \vec{v}, \vec{w}, \vec{w}', u', \vec{v}', \vec{w}', \vec{w}) &= \sigma_{i+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(i)}(u, \vec{v}, \vec{w}), \eta_2^{(i)}(u', \vec{v}', \vec{w}')), \\
\sigma_{N+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(N+1)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(N+1)(u', \vec{v}', \vec{w}')}) &= u',
\end{aligned}$$

where $\vec{v} = (v_1, \dots, v_k)$ and $\vec{w} = (w_1, \dots, w_m)$ and analogously for \vec{v}' and \vec{w}' ;

$$\begin{aligned}
&\eta_\alpha^{(i)}(y, f_1(x, y), \dots, f_k(x, y), p_1(x, x, y), \dots, p_m(x, x, y)) \\
&= \varepsilon_\alpha^{(i)}(y, f_1(x, y), \dots, f_k(x, y), p_1(x, x, y), \dots, p_m(x, x, y)),
\end{aligned}$$

$$\begin{aligned}
&\eta_\alpha^{(i)}(x, g_1(x, y), \dots, g_k(x, y), p_1(x, y, y), \dots, p_m(x, y, y)) \\
&= \varepsilon_\alpha^{(i)}(x, g_1(x, y), \dots, g_k(x, y), p_1(x, y, y), \dots, p_m(x, y, y))
\end{aligned}$$

for all $\alpha \in \{1, 2\}$ and $i \in \{1, \dots, N+1\}$;

$$\begin{aligned}
u &= \sigma_1(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(1)}(u, \vec{v}, \vec{w}), \eta_2^{(1)}(u', \vec{v}', \vec{w}')), \\
\sigma_i(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(i)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(i)}(u', \vec{v}', \vec{w}')) &= s_i(u, \vec{v}, \vec{w}, \vec{w}, u', \vec{v}', \vec{w}', \vec{w}'), \\
s_i(u, \vec{v}, \vec{w}, \vec{w}', u', \vec{v}', \vec{w}', \vec{w}) &= \sigma_{i+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \eta_1^{(i)}(u, \vec{v}, \vec{w}), \eta_2^{(i)}(u', \vec{v}', \vec{w}')), \\
\sigma_{N+1}(u, \vec{v}, \vec{w}, u', \vec{v}', \vec{w}', \varepsilon_1^{(N+1)}(u, \vec{v}, \vec{w}), \varepsilon_2^{(N+1)(u', \vec{v}', \vec{w}')}) &= u',
\end{aligned}$$

where $\vec{v} = (v_1, \dots, v_k)$ and $\vec{w} = (w_1, \dots, w_m)$ and analogously for \vec{v}' and \vec{w}' ;

$$\begin{aligned}
&\eta_\alpha^{(i)}(y, f_1(x, y), \dots, f_k(x, y), p_1(x, x, y), \dots, p_m(x, x, y)) \\
&= \varepsilon_\alpha^{(i)}(y, f_1(x, y), \dots, f_k(x, y), p_1(x, x, y), \dots, p_m(x, x, y)),
\end{aligned}$$

$$\begin{aligned}
&\eta_\alpha^{(i)}(x, g_1(x, y), \dots, g_k(x, y), p_1(x, y, y), \dots, p_m(x, y, y)) \\
&= \varepsilon_\alpha^{(i)}(x, g_1(x, y), \dots, g_k(x, y), p_1(x, y, y), \dots, p_m(x, y, y))
\end{aligned}$$

for all $\alpha \in \{1, 2\}$ and $i \in \{1, \dots, N+1\}$;

$$f_i(x, x) = g_i(x, x)$$

for all $i \in \{1, \dots, k\}$.

Example of congruence permutable varieties

If \mathbb{V} is a congruence permutable variety with Mal'tsev term $p \in F(x, y, z)$ satisfying $p(x, x, y) = y$ and $p(x, y, y) = y$, then

- k can be chosen to be 0: no binary terms necessary,
- m can be chosen to be 1: $p_1(x, y, z) = p(x, y, z)$,
- N can be chosen to be 1: all the terms $\eta_\alpha^{(i)}, \varepsilon_\alpha^{(i)}, \sigma_i, s_j$ can be chosen to be projections.

Example of congruence permutable varieties

If \mathbb{V} is a congruence permutable variety with Mal'tsev term $p \in F(x, y, z)$ satisfying $p(x, x, y) = y$ and $p(x, y, y) = y$, then

- k can be chosen to be 0: no binary terms necessary,
- m can be chosen to be 1: $p_1(x, y, z) = p(x, y, z)$,
- N can be chosen to be 1: all the terms $\eta_\alpha^{(i)}, \varepsilon_\alpha^{(i)}, \sigma_i, s_j$ can be chosen to be projections.

Example of varieties of distributive lattices

If \mathbb{V} is a variety of distributive lattices, then

- k can be chosen to be 0: no binary terms necessary,
- m can be chosen to be 3: $p_1(x, y, z) = x$, $p_2(x, y, z) = y$, $p_3(x, y, z) = z$,
- N can be chosen to be 5.

Theorem (E., Jacqmin, Martins-Ferreira; 2024)

Let \mathbb{V} be a variety of universal algebras. TFAE:

- 1 Any reflexive regular relation in \mathbb{V} is symmetric.
- 2 There are terms as in the above theorem that satisfy the same identities except

$$f_i(x, x) = g_i(x, x)$$

for all $i \in \{1, \dots, k\}$.

References

- [1] D. BOURN, Mal'cev categories and fibration of pointed objects, *Appl. Categ. Structures* **4** (1996), 307–327.
- [2] A. CARBONI, M.C. PEDICCHIO AND N. PIROVANO, Internal graphs and internal groupoids in Mal'cev categories, *Canadian Math. Soc. Conf. Proc.* **13** (1992), 97–109.
- [3] N. EGNER, P.-A. JACQMIN AND N. MARTINS-FERREIRA, A syntactic characterization of weakly Mal'tsev varieties, *Theory Appl. Categ.* **42** 12 (2024), 314–353.
- [4] Z. JANELIDZE AND N. MARTINS-FERREIRA, Weakly Mal'tsev categories and strong relations, *Theory Appl. Categ.* **27** (2012), 65–79.
- [5] A.I. MAL'TSEV, On the general theory of algebraic systems, *Mat. Sb. N.S.* **35** (1954), 3–20.
- [6] N. MARTINS-FERREIRA, Weakly Mal'cev categories, *Theory Appl. Categ.* **21** (2008), 91–117.

Remark (Martins-Ferreira, Van der Linden; 2014, Martins-Ferreira, Rodelo, Van der Linden; 2014)

- In a finitely complete weakly Mal'tsev category, any internal category is an internal groupoid if and only if any preorder is an equivalence relation.
- The same is true for regular categories.
- For a variety \mathbb{V} of universal algebras, these conditions are further equivalent to \mathbb{V} being n -permutable for some $n \in \mathbb{N}$.
- There are categories that are weakly Mal'tsev and Goursat (=3-permutable) but not Mal'tsev.

Given terms as in the above theorem, one can show that $q_1(y, x) = q_2(y, x)$ by

- inserting for

$$u : q_1(y, x),$$

$$\vec{v} : (q_1(f_1, g_1), \dots, q_1(f_k, g_k)),$$

$$\vec{w} : (q_1(p_1(x, x, y), p_1(x, y, y)), \dots, q_1(p_m(x, x, y), p_m(x, y, y))),$$

$$u' : q_2(y, x),$$

$$\vec{v}' : (q_2(f_1, g_1), \dots, q_2(f_k, g_k)),$$

$$\vec{w}' : (q_2(p_1(x, x, y), p_1(x, y, y)), \dots, q_2(p_m(x, x, y), p_m(x, y, y))),$$

- using that

$$q_1(p_i(x, x, y), p_i(x, y, y)) = q_2(p_i(x, x, y), p_i(x, y, y))$$

for all $i \in \{1, \dots, m\}$.

Proof

- The subset

$$\{(p(x, x, y), p(x, y, y)) \mid p \in F(x, y, z)\}$$

is not only $\text{Im}([e_1, e_2])$ but also the smallest reflexive relation

$$R \rightarrowtail F(x, y) \times F(x, y)$$

on $F(x, y,)$ that contains (x, y) .

- \mathbb{V} is a Mal'tsev category if and only if $(y, x) \in R$.
- Any reflexive regular relation in \mathbb{V} is symmetric if and only if the smallest reflexive regular relation R' on $F(x, y)$ that contains (x, y) also contains (y, x) .
- The relation R' can be described as the equalizer of the cokernel pair $q'_1, q'_2 : F(x, y) \times F(x, y) \rightarrow Q'$ of $R' \rightarrowtail F(x, y) \times F(x, y)$, whose elements are those $(t, t') \in F(x, y) \times F(x, y)$ such that $q'_1(t) = q'_2(t')$. This means that $(y, x) \in R'$ if and only if $q'_1(y, x) = q'_2(y, x)$.

$$\begin{array}{ccccc} & R' & & & \\ & \nearrow & & & \\ R & \rightarrowtail & F(x, y) \times F(x, y) & \xrightarrow{q'_1} & Q' \\ & \downarrow & & \searrow & \\ & & & & \xrightarrow{q'_2} \end{array}$$