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1. Internal structures
A reflexive graph is given by:

a set C0 of objects,

a set C1 of morphisms,

a domain function d : C1 → C0,

a codomain function c : C1 → C0,

an identities function e : C0 → C1

such that
de(x) = x = ce(x). (incidence axioms)

Definition
An internal reflexive graph in a category C is given by a diagram

C1 C0

d

c

e

in C such that
de = 1C1 = ce. (incidence axioms)
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A (small) category is given by:

a reflexive graph (C0,C1, d , c , e),

a multiplication function m : C�� := {(f , g) ∈ C1 × C1 | c(f ) = d(g)} → C1

such that

dm(f , g) = d(f ), cm(f , g) = c(g), (incidence axioms)

m(f , ec(f )) = f = m(de(f ), f ), (unitality axioms)

m(m(f , g), h) = m(f ,m(g , h)). (associativity axioms)
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Definition
An internal category in a category C with pullbacks is given by a diagram

C�� C1 C0,
m

d

c
e

in C , where C�� is given by the pullback

C�� C1

C1 C0,

p1

p2

d

c

such that:

(C0,C1, d , c , e) is an internal reflexive graph in C ,

the usual incidence, unitality and associativity axioms for m hold.

m(1C1 , ec) = 1C1 = m(ed , 1C1) (unitality axioms)

C1 C1

C�� C1 C�� C1

C1 C0 C1 C0

(1C1 ,ec)

1C1

ec

(ed,1C1 )

ed

1C1

p1

p2

d p1

p2

d

c c
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A (small) category (C0,C1, d , c , e,m) is a (small) groupoid if there exists an inverses function

i : C1 → C1

such that

di(f ) = c(f ), ci(f ) = d(f ), (incidence axioms)

m(f , i(f )) = ed(f ), m(i(f ), f ) = ec(f ). (inverse axioms)

Definition
An internal category (C0,C1, d , c , e,m) in a category C with pullbacks is an internal groupoid
if there exists a morphism

i : C1 → C1

such that the usual incidence and inverse axioms for i hold.

C�� C1 C0
m

i

d

c

e
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2. From Mal’tsev to weakly Mal’tsev categories

Proposition (Mal’tsev; 1954)

Let V be a variety of universal algebras. TFAE:

1 V is congruence permutable, i.e., for any algebra A ∈ V and R,S ∈ Cong(A), it holds that

R ◦ S = S ◦ R.

2 There exists a ternary term p ∈ F(x , y , z) in the algebraic theory of V that satisfies the
identities

p(x , x , y) = y and p(x , y , y) = x .

3 Any reflexive relation in V is a congruence.

4 Any reflexive relation in V is transitive.

5 Any reflexive relation in V is symmetric.

Examples of congruence permutable varieties

Grp (p(x , y , z) = x · y−1 · z), Ab, Ring, R-Mod, AssR , LieR

Heyt (p(x , y , z) = ((x ⇒ y) ⇒ z) ∧ ((z ⇒ y) ⇒ x)), Bool
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Definition (Carboni, Pedicchio, Pirovano; 1992)

A Mal’tsev category is a finitely complete category C in which any of the following
equivalent conditions hold:

1 Any reflexive relation in C is a congruence.

2 Any reflexive relation in C is transitive.

3 Any reflexive relation in C is symmetric.

Examples of Mal’tsev categories

Any congruence permutable variety: Grp, Ab, Heyt, Bool

Any category of topological models of a congruence permutable theory: Grp(Top)

Any abelian category: Sh(Ab)

The dual of any elementary topos: Setop
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Proposition (Bourn; 1996)

Let C be a finitely complete category. TFAE:

1 C is a Mal’tsev category.

2 Given split epimorphisms f , g in C with respective splittings r , s, i.e., fr = 1C = gs, then,
in the pullback of f and g , the induced pullback injections e1, e2 are jointly extremally
epimorphic, i.e., if me1 = f1, me2 = f2 and m is a monomorphism, then m is an
isomorphism.

X

P B

A C

m
p2

p1

f2

e2
gf1 e1

f

r

s

A B

P B P B

A C A C

e1

1A

sf

e2

rg

1B

p1

p2

g p1

p2

g

f f
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Proposition

Any reflexive graph in a Mal’tsev category C allows at most one internal category structure.

Proof
Let

C1 C0

d

c

e

be a reflexive graph in C , i.e. d , c are split epimorphisms with common splitting e.
Hence the pullback injections e1, e2 in

C1

C�� C1

C1 C0

m

p2

p1

1C1

e2

d
1C1 e1

c

e

e

are jointly extremally epimorphic.
The unitality axioms are exactly me1 = 1C1 and me2 = 1C1 .
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Remark

In a Mal’tsev category, a reflexive graph as above is an internal category if and only the
kernel congruences of d , c centralize each other.

If C is a congruence permutable variety with Mal’tsev term p(x , y , z), and
[Eq(d),Eq(c)] = ∆C1 , then, for any f , g ∈ C1 with c(f ) = d(g),

m(f , g) = p(f , ec(f ), g).
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Proposition

Any internal category in a Mal’tsev category is an internal groupoid.

Remark
If C is congruence permutable variety with Mal’tsev term p(x , y , z), then the inverse morphism
i : C1 → C1 for an internal category is given by

i(f ) = p(ed(f ), f , ec(f )).
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There are categories such as DistrLatt, CancCommMon, Topop in which:

Any reflexive graph admits at most one internal category structure.

There are internal categories that are not internal groupoids.

Definition (Martins-Ferreira; 2008)

A weakly Mal’tsev category is a category that has all pullbacks of split epimorphisms along
split epimorphisms and in which the pullback injections e1, e2 in a pullback

X

P B

A C

u

v

p2

p1

e2
ge1

f

r

s

as above are jointly epimorphic, i.e., if ue1 = ve1 and ue2 = ve2, then u = v ,
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Proposition

Any reflexive graph in a weakly Mal’tsev category allows at most one internal category
structure.

Remark
In the weakly Mal’tsev category CancCommMon, the diagram

C1 := {(n,m) ∈ N0 × N0 | n ≤ m} N0 =: C0

d(n,m)=n

c(n,m)=m

e(n)=(n,n)

yields an internal category which is not an internal groupoid.

12/23



Proposition

Any reflexive graph in a weakly Mal’tsev category allows at most one internal category
structure.

Remark
In the weakly Mal’tsev category CancCommMon, the diagram

C1 := {(n,m) ∈ N0 × N0 | n ≤ m} N0 =: C0

d(n,m)=n

c(n,m)=m

e(n)=(n,n)

yields an internal category which is not an internal groupoid.

12/23



In a finitely complete category, a strong relation is given by a regular monomorphism, i.e. an
equalizer.

Proposition (Janelidze, Martins-Ferreira; 2012)

Let C be a finitely complete category. TFAE:

1 C is a weakly Mal’tsev category.

2 Any reflexive strong relation is a congruence.

3 Any reflexive strong relation is transitive.

4 Any reflexive strong relation is symmetric.
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as above in V, the pullback injections e1, e2 are jointly extremally epimorphic.
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Proof of ”3. ⇒ 2.”
For any pullback

P B

A C

p2

p1

e2
ge1

f

r

s

as above in V, the pullback injections e1, e2 are jointly extremally epimorphic.

⇔ The pullback injections e1, e2 in the pullback

P F(x , y)

F(x , y) F(x)

p2

p1

e2

fe1

f

r

s

are jointly extremally epimorphic, where f , r , s are the unique morphisms such that
f (x) = x = f (y), r(x) = x and s(x) = y , respectively.

⇔ The induced morphism [e1, e2] : F(x , y) + F(x , y) → P is a surjective homomorphism.

⇔ The element (y , x) ∈ P = {(t, t ′) ∈ F(x , y)× F(x , y) | t(x , x) = t ′(x , x)} lies in
Im([e1, e2]).
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Lemma
It holds that

Im([e1, e2]) = {(p(x , x , y), p(x , y , y)) | p ∈ F(x , y , z)}.

Proof

”⊆”: The elements (x , x) = e2(x), (x , y) = e1(x) = e2(y) and (y , y) = e1(y) lie in Im([e1, e2]).
Hence, for p ∈ F(x , y , z),

p((x , x), (x , y), (y , y)) = (p(x , x , y), p(x , y , y))

also lies in Im([e1, e2]).

”⊇”: Use that F(x , y) + F(x , y) can be described as a quotient of T(F(x , y)∪̇F(x , y)) . . .

16/23



Lemma
It holds that

Im([e1, e2]) = {(p(x , x , y), p(x , y , y)) | p ∈ F(x , y , z)}.

Proof

”⊆”: The elements (x , x) = e2(x), (x , y) = e1(x) = e2(y) and (y , y) = e1(y) lie in Im([e1, e2]).

Hence, for p ∈ F(x , y , z),

p((x , x), (x , y), (y , y)) = (p(x , x , y), p(x , y , y))

also lies in Im([e1, e2]).

”⊇”: Use that F(x , y) + F(x , y) can be described as a quotient of T(F(x , y)∪̇F(x , y)) . . .

16/23



Lemma
It holds that

Im([e1, e2]) = {(p(x , x , y), p(x , y , y)) | p ∈ F(x , y , z)}.

Proof

”⊆”: The elements (x , x) = e2(x), (x , y) = e1(x) = e2(y) and (y , y) = e1(y) lie in Im([e1, e2]).
Hence, for p ∈ F(x , y , z),

p((x , x), (x , y), (y , y)) = (p(x , x , y), p(x , y , y))

also lies in Im([e1, e2]).

”⊇”: Use that F(x , y) + F(x , y) can be described as a quotient of T(F(x , y)∪̇F(x , y)) . . .

16/23



Lemma
It holds that

Im([e1, e2]) = {(p(x , x , y), p(x , y , y)) | p ∈ F(x , y , z)}.

Proof

”⊆”: The elements (x , x) = e2(x), (x , y) = e1(x) = e2(y) and (y , y) = e1(y) lie in Im([e1, e2]).
Hence, for p ∈ F(x , y , z),

p((x , x), (x , y), (y , y)) = (p(x , x , y), p(x , y , y))

also lies in Im([e1, e2]).

”⊇”: Use that F(x , y) + F(x , y) can be described as a quotient of T(F(x , y)∪̇F(x , y)) . . .

16/23



Strategy for weakly Mal’tsev varieties
V is a weakly Mal’tsev category.

⇔ For any pullback
P B

A C

p2

p1

e2
ge1

f

r

s

as above in V, the pullback injections e1, e2 are jointly epimorphic.

⇔ The pullback injections e1, e2 in the pullback

P F(x , y)

F(x , y) F(x)

p2

p1

e2

fe1

f

r

s

are jointly epimorphic.

⇔ The morphism [e1, e2] : F(x , y) → F(x , y) → P is an epimorphism. Equivalently, its
cokernel projections q1, q2 : P → Q are equal.

F(x , y) + F(x , y) P Q
[e1,e2] q1

q2

⇔ It holds that q1(y , x) = q2(y , x).
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We construct q1, q2 by means of the commutative diagram

F(x , y) + F(x , y) P

P P + P

Q,

[e1,e2]

[e1,e2]

q2
ι2

q1

ι1

q

where q : P + P → Q is the coequalizer of ι1[e1, e2], ι2[e1, e2].

This means that we describe Q as the quotient of P + P by the congruence C which is
generated by the subset

{(ι1[e1, e2](X ), ι2[e1, e2](X )) | X ∈ F(x , y) + F(x , y)}

It holds that q1(y , x) = q2(y , x) if and only if (ι1(y , x), ι2(y , x)) ∈ C .
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Thanks to the above lemma, the congruence C is generated by the subset

S := {(ι1(p(x , x , y), p(x , y , y)), ι2(p(x , x , y), p(x , y , y))) | p ∈ F(x , y , z)}.

We construct C by taking

1 the reflexive closure,
2 the symmetric closure,
3 the closure under operations,
4 the transitive closure of S .

Using the description of P + P as a quotient of F(P∪̇P), the condition
(ι1(y , x), ι2(y , x)) ∈ C implies the existence of terms as in:
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Theorem (E., Jacqmin, Martins-Ferreira; 2024)

Let V be a variety of universal algebras. TFAE:

1 V is a weakly Mal’tsev category.

2 In the algebraic theory of V, there exist

k,m,N ∈ N0,
binary terms

f1, g1, . . . , fk , gk ,

ternary terms
p1, . . . , pm,

(1 + k +m)-ary terms

η
(1)
1 , η

(1)
2 , ε

(1)
1 , ε

(1)
2 , . . . , η

(N+1)
1 , η

(N+1)
2 , ε

(N+1)
1 , ε

(N+1)
2 ,

(2(1 + k +m) + 2)-ary terms
σ1, . . . , σN+1,

2(1 + k + 2m)-ary terms
s1 . . . , sN

satisfying the identities
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u = σ1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(1)
1 (u, v⃗ , w⃗), η

(1)
2 (u′, v⃗ ′, w⃗ ′)),

σi (u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(i)
1 (u, v⃗ , w⃗), ε

(i)
2 (u′, v⃗ ′ w⃗ ′)) = si (u, v⃗ , w⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, w⃗ ′),

si (u, v⃗ , w⃗ , w⃗ ′, u′, v⃗ ′, w⃗ ′, w⃗) = σi+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(i)
1 (u, v⃗ , w⃗), η

(i)
2 (u′, v⃗ ′ w⃗ ′)),

σN+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(N+1)
1 (u, v⃗ , w⃗), ε

(N+1)(u′.v⃗ ′,w⃗ ′)
2 ) = u′,

where v⃗ = (v1, . . . , vk) and w⃗ = (w1, . . . ,wm) and analogously for v⃗ ′ and w⃗ ′;

η(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y))

=ε(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y)),

η(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

=ε(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

for all α ∈ {1, 2} and i ∈ {1, . . . ,N + 1};

fi (x , x) = gi (x , x)

for all i ∈ {1, . . . , k}.

21/23



u = σ1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(1)
1 (u, v⃗ , w⃗), η

(1)
2 (u′, v⃗ ′, w⃗ ′)),

σi (u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(i)
1 (u, v⃗ , w⃗), ε

(i)
2 (u′, v⃗ ′ w⃗ ′)) = si (u, v⃗ , w⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, w⃗ ′),

si (u, v⃗ , w⃗ , w⃗ ′, u′, v⃗ ′, w⃗ ′, w⃗) = σi+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(i)
1 (u, v⃗ , w⃗), η

(i)
2 (u′, v⃗ ′ w⃗ ′)),

σN+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(N+1)
1 (u, v⃗ , w⃗), ε

(N+1)(u′.v⃗ ′,w⃗ ′)
2 ) = u′,

where v⃗ = (v1, . . . , vk) and w⃗ = (w1, . . . ,wm) and analogously for v⃗ ′ and w⃗ ′;

η(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y))

=ε(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y)),

η(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

=ε(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

for all α ∈ {1, 2} and i ∈ {1, . . . ,N + 1};

fi (x , x) = gi (x , x)

for all i ∈ {1, . . . , k}.

21/23



u = σ1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(1)
1 (u, v⃗ , w⃗), η

(1)
2 (u′, v⃗ ′, w⃗ ′)),

σi (u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(i)
1 (u, v⃗ , w⃗), ε

(i)
2 (u′, v⃗ ′ w⃗ ′)) = si (u, v⃗ , w⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, w⃗ ′),

si (u, v⃗ , w⃗ , w⃗ ′, u′, v⃗ ′, w⃗ ′, w⃗) = σi+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, η
(i)
1 (u, v⃗ , w⃗), η

(i)
2 (u′, v⃗ ′ w⃗ ′)),

σN+1(u, v⃗ , w⃗ , u′, v⃗ ′, w⃗ ′, ε
(N+1)
1 (u, v⃗ , w⃗), ε

(N+1)(u′.v⃗ ′,w⃗ ′)
2 ) = u′,

where v⃗ = (v1, . . . , vk) and w⃗ = (w1, . . . ,wm) and analogously for v⃗ ′ and w⃗ ′;

η(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y))

=ε(i)α (y , f1(x , y), . . . , fk(x , y), p1(x , x , y), . . . , pm(x , x , y)),

η(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

=ε(i)α (x , g1(x , y), . . . , gk(x , y), p1(x , y , y), . . . , pm(x , y , y))

for all α ∈ {1, 2} and i ∈ {1, . . . ,N + 1};

fi (x , x) = gi (x , x)

for all i ∈ {1, . . . , k}.
21/23



Example of congruence permutable varieties

If V is a congruence permutable variety with Mal’tsev term p ∈ F(x , y , z) satisfying
p(x , x , y) = y and p(x , y , y) = y , then

k can be chosen to be 0: no binary terms necessary,

m can be chosen to be 1: p1(x , y , z) = p(x , y , z),

N can be chosen to be 1: all the terms η
(i)
α , ε

(i)
α , σi , sj can be chosen to be projections.

Example of varieties of distributive lattices

If V is a variety of distributive lattices, then

k can be chosen to be 0: no binary terms necessary,

m can be chosen to be 3: p1(x , y , z) = x , p2(x , y , z) = y , p3(x , y , z) = z ,

N can be chosen to be 5.
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Theorem (E., Jacqmin, Martins-Ferreira; 2024)

Let V be a variety of universal algebras. TFAE:

1 Any reflexive regular relation in V is symmetric.

2 There are terms as in the above theorem that satisfy the same identities except

fi (x , x) = gi (x , x)

for all i ∈ {1, . . . , k}.
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Remark (Martins-Ferreira, Van der Linden; 2014, Martins-Ferreira, Rodelo, Van der Linden;
2014)

In a finitely complete weakly Mal’tsev category, any internal category is an internal
groupoid if and only if any preorder is an equivalence relation.

The same is true for regular categories.

For a variety V of universal algebras, these conditions are further equivalent to V being
n-permutable for some n ∈ N.
There are categories that are weakly Mal’tsev and Goursat (=3-permutable) but not
Mal’tsev.



Given terms as in the above theorem, one can show that q1(y , x) = q2(y , x) by

inserting for

u : q1(y , x),

v⃗ : (q1(f1, g1), . . . , q1(fk , gk)),

w⃗ : (q1(p1(x , x , y), p1(x , y , y)), . . . , q1(pm(x , x , y), pm(x , y , y))),

u′ : q2(y , x),

v⃗ ′ : (q2(f1, g1), . . . , q2(fk , gk)),

w⃗ ′ : (q2(p1(x , x , y), p1(x , y , y)), . . . , q2(pm(x , x , y), pm(x , y , y))),

using that
q1(pi (x , x , y), pi (x , y , y)) = q2(pi (x , x , y), pi (x , y , y))

for all i ∈ {1, . . . ,m}.



Proof

The subset
{(p(x , x , y), p(x , y , y)) | p ∈ F(x, y, z)}

is not only Im([e1, e2]) but also the smallest reflexive relation

R ↣ F(x , y)× F(x , y)

on F(x , y , ) that contains (x , y).

V is a Mal’tsev category if and only if (y , x) ∈ R.

Any reflexive regular relation in V is symmetric if and only if the smallest reflexive regular
relation R ′ on F(x , y) that contains (x , y) also contains (y , x).

The relation R ′ can be described as the equalizer of the cokernel pair
q′1, q

′
2 : F(x , y)× F(x , y) → Q ′ of R ′ ↣ F(x , y)× F(x , y), whose elements are those

(t, t ′) ∈ F(x , y)× F(x , y) such that q′1(t) = q′2(t
′). This means that (y , x) ∈ R ′ if and

only if q′1(y , x) = q′2(y , x).

R′

R F(x , y)× F(x , y) Q′
q′1

q′2


