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Motivation

» Goal: Introduce an f-product for hoops with strong
associativity behaviour.

» Main representation (finite case): A = F x A/F for any filter
F € Fil (A).

» Consequence: every finite hoop is, in this sense, a product of
finite MV-chains.

» Inspiration: wreath / semidirect products and the
Krohn—Rhodes paradigm.
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Figure 1: Idea of the f-product.



Figure 1: Idea of the f-product.

If A and B = are hoops and let (T5)ucg is system of some
transformations then

A Bl = Ty(A)

x€|B|



A wreat product

» The idea of associativity is based on the fact that the relevant
transformations are rightly composed (as a mapping).

» An important example of a "right definition” is the wreath
product, and the Krohn-Rhode theorem is the model | based
my work on.
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Figure 2: Associativity of a wreath product.



Hoops

Definition
A hoop is the algebra A = (A; -, —, 1) of the type (2,2,0), where
(A; -, 1) is a commutative monoid and satisfying the identities
(H1) x - x =1,
(H2) (x-y) = z=x—= (y — 2),

(H3) x-(x = y)=y (y = x).



Hoops

Definition

A hoop is the algebra A = (A; -, —, 1) of the type (2,2,0), where
(A; -, 1) is a commutative monoid and satisfying the identities
(H1) x > x =1,
(H2) (x-y) = z=x—=(y = 2),
(H3) x- (x = y)=y-(y = x).

The induced order is given by

x<yifandonlyifl=x—y
and moreover
xANy=x-(x—=y).
Alternativelly it can be defined as naturally ordered commutative

semigroup satisfying an adjointness property

X y<z<=x<y—z



Frame Title

If A= (A;-,—,1) is a hoop then a filter is nonempty set F C A
(F1) if x€ Fand x <y theny € F,
(F2) if x,y € F then x-y € F.



Frame Title

If A= (A;-,—,1) is a hoop then a filter is nonempty set F C A
(F1) if x€ Fand x <y theny € F,
(F2) if x,y € F then x-y € F.

The set of all filters of the hoop A is denoted by Fil A. It is well
known that any filter F induce the congruence

O = {{(x.y) € A | (x = y)- (y = x) € F}



The main idea

Ix



There exists the nucleus yx: F — F (closure operator satisying
vx(a) - vx(b) < yx(a- b)) defined by vx(a) = tx — (tx - a). Then
there is bijection tx - _: yxF — X. Then

Az )" yxF.

XeA/F



There exists the nucleus yx: F — F (closure operator satisying
vx(a) - vx(b) < yx(a- b)) defined by vx(a) = tx — (tx - a). Then
there is bijection tx - _: yxF — X. Then

Az )" yxF.

XeA/F
But also it satisfies that
wxF=(IVtx] ={aeF:a<IVt}

Hence,

Az N gxFe > (Ivix]

XeA/F XeA/F



A new product of hoops

Definition
If A= (A;-,—,1) and B=(B;-,—,1) are hoops. Then the
mapping f: A — B we call a product morphism from the hoop A
to the hoop B if it satisfies

(pPM1) (1) =1,

(PM2) F(x) - f(y) = f(x-y) = F(x) A f(y) = F(xAy).
for any x,y € A.



A new product of hoops

Theorem

IfFA=(A;-,—),1and B=(B;-—,1) are hoops and f: B — A
is a product morphism, then the algebra

AxsB= (2x€B(f(X)]7 T (17 1))
such that
(1) (@ax)-(b,y):=(a-bx-y),
(=) (a,x) = (b,y) = (f(x = y) A(a— b),x = y)

for any (a,x),(b,y) € > cg(f(x)] is a hoop. We say that A x¢ B
is a f-product of the hoops A and B



Examples

Example

If A and B are arbitrary hoops and €: B — A is the constant
mapping €(x) = 1 then clearly ¢ is a product morphism and it is
the greatest morphism with respect to the natural order. It is easy
to check that

Ax.B=AXxB.



Examples

Example

If A and B are arbitrary hoops and €: B — A is the constant
mapping €(x) = 1 then clearly ¢ is a product morphism and it is
the greatest morphism with respect to the natural order. It is easy
to check that

Ax.B=AXxB.

Example

If A and B are arbitrary hoops such that there exists the least
element 0 € A. Then there is the product morphism o: B — A

defined by
1 ff x=1
“(X)_{o iff x#1

then clearly o is the least morphism with respect to the natural
order and it is easy to check that

Ax,B=BaA.



An associativity of product

Definition
If A,B and C are hoops then we say that (f, g) is a left associated
pair of product morphims with respect to (A,B,C) if f: B — A

and
g:C—AxsB

are product morphisms. (We therefore have the product
(AxsB)x,C.)



An associativity of product

Definition
If A,B and C are hoops then we say that (f, g) is a left associated
pair of product morphims with respect to (A,B,C) if f: B — A
and

g:C—AxsB

are product morphisms. (We therefore have the product
(AxsB)x,C.)

Similarly, (f, g) is a right associated pair of product morphims with
respect to (A,B,C) ifg: C— B and

f:BxgC—s A

are product morphisms. (We therefore have the product
Ax¢(BxgC).)



Associativity

If (f,g) is left associated pair of product morphisms with respect
to (A, B, C) and if we denote the mapping g: C — A x¢ B by
g(c) = (gi(c), &(c)) then we can define the mappings:

» g: C— Bbyg(c) =g(c) forall c e C,

> f:BxzC — Aby f(b,c)=f(b)Agi(c) for any

(b,c) € |B xgC|

such that a(f, g) = (f,g) is a right associated pair of product
morphims with respect to (A, B, C).



Associativity

If (f,g) is right associated pair of product morphisms with respect
to the triple of hoops (A, B, C) then we can define the mappings:

» f: B — A by f(b) = f(b,1) for any b € B,

» g: C— AxzBbyg(c)=(f(g(c),c),g(c)) forany c € C,
such that B(f,g) = (f, &) is left associated pair of product
morphisms with respect to (A, B, C).



Associtivity

The corespondences « and (3 between left and right associated
pairs of product morphisms with respect to (A, B, C) are mutually
inverse bijective mappings and if a(f, g) = (f, &) (or equivalently
(f.g) = B(f,g)) then

(A xfB)xgC=Axz(BxgC).



Decomposition of finite hoops

Lemma

If A is a finite hoop and F € Fil A. We denote tx the top element
and Ix the least element of the class X for any X € A/F. For the
simplicity we denote | (instead of Ig) the least element of the filter
F. Then it satisfies

(i) X <Y ifand only if tx < ty,
(i) tx @ ty < txey for any operation e belonging to the set

{\/a/\7 '7_>}7
(iii tx Nty = txay,
(iv) tx = ty = txovy,

(vi
(Vii tx - I =tx NI = Ix.
for any X, Y € A/F.

)
)
(V) tx - txoy = txay,
) a—tx =tx andtx-a=tx Naforanya€cF,
)



The decomposition theorem

Theorem
If A is a finite hoop and F € Fil A then the mapping

v: AJF —F

defined by ¥(X) = tx V| is a product morphism and moreover it
satisfies
A =F xy (A/F).



The decomposition theorem

Theorem
If A is a finite hoop and F € Fil A then the mapping

b: AJF —F
defined by ¥(X) = tx V| is a product morphism and moreover it
satisfies
A =F xy (A/F).
Definition

The hoop A is irreducible if A = B x¢ C implies that B or C is a
trivial hoop (for arbitrary product morphism f: C — B).

Theorem
The finite hoop is irreducible if and only if it is simple.



The decomposition of finite hoops

Theorem (Blok, W. J. and Ferreirim, I. M. A.)

Simple finite hoops are just finite MV-chains.

Theorem

(i) For any finite hoop A there exists a (finite) sequences of finite
MV-chains (M, M;,, ... ,M; ) and appropriate product morphisms
(f,...,fn—1) such that

A =M xg (M xg (M- xr, (M), xp, MG).0).

((i) For any finite hoop A there exists a (finite) sequences of finite
MV-chains (M;;, M;,, ... ,M; ) and appropriate product morphisms
(g1,...,8n_1) such that

A= (((Mh Xgy Miz) X g Mi3) o Xgn o M ) Xgn_1 M;,.

’.nfl n



The decomposition of finite hoops

Theorem

If A is an arbitrary finite hoop then the set Id (A) is equivalent to
the set of all product morphisms from A to any finite MV-chain

and also to the set of all product morphisms from any finite
MV-chain to A.

(1,1)

(0.1)

(0,0)

Figure 3: The visualisation of M ., A.



The decomposition of finite hoops

(1.1)

(0,0)

Figure 4: The visualisation of A x, M.



Thank you for your attention!



