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Motivation

▶ Goal: Introduce an f -product for hoops with strong
associativity behaviour.

▶ Main representation (finite case): A ∼= F⋉ A/F for any filter
F ∈ Fil (A).

▶ Consequence: every finite hoop is, in this sense, a product of
finite MV-chains.

▶ Inspiration: wreath / semidirect products and the
Krohn–Rhodes paradigm.
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Figure 1: Idea of the f -product.

If A and B = are hoops and let (Tb)b∈|B| is system of some
transformations then

|A⋉ B| =
∑
x∈|B|

Tb(A)
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A wreat product

▶ The idea of associativity is based on the fact that the relevant
transformations are rightly composed (as a mapping).

▶ An important example of a ”right definition” is the wreath
product, and the Krohn-Rhode theorem is the model I based
my work on.

A ≀ B C A ≀ B ≀ C A B ≀ C

∼= ∼=

Figure 2: Associativity of a wreath product.



Hoops

Definition
A hoop is the algebra A = (A; ·,→, 1) of the type ⟨2, 2, 0⟩, where
(A; ·, 1) is a commutative monoid and satisfying the identities

(H1) x → x = 1,

(H2) (x · y) → z = x → (y → z),

(H3) x · (x → y) = y · (y → x).

The induced order is given by

x ≤ y if and only if 1 = x → y

and moreover
x ∧ y = x · (x → y).

Alternativelly it can be defined as naturally ordered commutative
semigroup satisfying an adjointness property

x · y ≤ z ⇐⇒ x ≤ y → z .



Hoops

Definition
A hoop is the algebra A = (A; ·,→, 1) of the type ⟨2, 2, 0⟩, where
(A; ·, 1) is a commutative monoid and satisfying the identities

(H1) x → x = 1,

(H2) (x · y) → z = x → (y → z),

(H3) x · (x → y) = y · (y → x).

The induced order is given by

x ≤ y if and only if 1 = x → y

and moreover
x ∧ y = x · (x → y).

Alternativelly it can be defined as naturally ordered commutative
semigroup satisfying an adjointness property

x · y ≤ z ⇐⇒ x ≤ y → z .



Frame Title

If A = (A; ·,→, 1) is a hoop then a filter is nonempty set F ⊆ A

(F1) if x ∈ F and x ≤ y then y ∈ F ,

(F2) if x , y ∈ F then x · y ∈ F .

The set of all filters of the hoop A is denoted by Fil A. It is well
known that any filter F induce the congruence

θF = {⟨x , y⟩ ∈ A2 | (x → y) · (y → x) ∈ F}
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The main idea

F

X := x/F

tX

lX

l

1

l ∨ tX



There exists the nucleus γX : F −→ F (closure operator satisying
γX (a) · γX (b) ≤ γX (a · b)) defined by γX (a) = tX → (tX · a). Then
there is bijection tX · : γXF −→ X . Then

A ∼=
∑

X∈A/F

γXF .

But also it satisfies that

γXF ∼= (l ∨ tX ] := {a ∈ F : a ≤ l ∨ tt}.

Hence,
A ∼=

∑
X∈A/F

γXF ∼=
∑

X∈A/F

(l ∨ tX ].
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A new product of hoops

Definition
If A = (A; ·,→, 1) and B = (B; ·,→, 1) are hoops. Then the
mapping f : A −→ B we call a product morphism from the hoop A
to the hoop B if it satisfies

(pM1) f (1) = 1,

(pM2) f (x) · f (y) = f (x · y) = f (x) ∧ f (y) = f (x ∧ y).

for any x , y ∈ A.



A new product of hoops

Theorem
If A = (A; ·,→), 1 and B = (B; · →, 1) are hoops and f : B −→ A
is a product morphism, then the algebra

A⋉f B = (
∑

x∈B(f (x)], ·,→, (1, 1))

such that

(·) (a, x) · (b, y) := (a · b, x · y),
(→) (a, x) → (b, y) := (f (x → y) ∧ (a → b), x → y)

for any (a, x), (b, y) ∈
∑

x∈B(f (x)] is a hoop. We say that A⋉f B
is a f -product of the hoops A and B



Examples

Example

If A and B are arbitrary hoops and ε : B −→ A is the constant
mapping ε(x) = 1 then clearly ε is a product morphism and it is
the greatest morphism with respect to the natural order. It is easy
to check that

A⋉ε B = A× B.

Example

If A and B are arbitrary hoops such that there exists the least
element 0 ∈ A. Then there is the product morphism σ : B −→ A
defined by

σ(x) =

{
1 iff x = 1
0 iff x ̸= 1

then clearly σ is the least morphism with respect to the natural
order and it is easy to check that

A⋉σ B = B⊕ A.
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An associativity of product

Definition
If A,B and C are hoops then we say that (f , g) is a left associated
pair of product morphims with respect to (A,B,C) if f : B → A
and

g : C −→ A⋉f B

are product morphisms. (We therefore have the product
(A⋉f B)⋉g C.)

Similarly, (f , g) is a right associated pair of product morphims with
respect to (A,B,C) if g : C → B and

f : B⋉g C −→ A

are product morphisms. (We therefore have the product
A⋉f (B ⋉g C).)
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Associativity

If (f , g) is left associated pair of product morphisms with respect
to (A,B,C) and if we denote the mapping g : C −→ A⋉f B by
g(c) = (g1(c), g2(c)) then we can define the mappings:

▶ g : C −→ B by g(c) = g2(c) for all c ∈ C ,

▶ f : B⋉g C −→ A by f (b, c) = f (b) ∧ g1(c) for any
(b, c) ∈ |B⋉g C|

such that α(f , g) = (f , g) is a right associated pair of product
morphims with respect to (A,B,C).



Associativity

If (f , g) is right associated pair of product morphisms with respect
to the triple of hoops (A,B,C) then we can define the mappings:

▶ f : B −→ A by f (b) = f (b, 1) for any b ∈ B,

▶ g : C −→ A⋉f B by g(c) = (f (g(c), c), g(c)) for any c ∈ C ,

such that β(f , g) = (f , g) is left associated pair of product
morphisms with respect to (A,B,C).



Associtivity

The corespondences α and β between left and right associated
pairs of product morphisms with respect to (A,B,C) are mutually
inverse bijective mappings and if α(f , g) = (f , g) (or equivalently
(f , g) = β(f , g)) then

(A⋉f B)⋉g C ∼= A⋉f (B⋉g C).



Decomposition of finite hoops

Lemma
If A is a finite hoop and F ∈ Fil A. We denote tX the top element
and lX the least element of the class X for any X ∈ A/F . For the
simplicity we denote l (instead of lF ) the least element of the filter
F . Then it satisfies

(i) X ≤ Y if and only if tX ≤ tY ,

(ii) tX • tY ≤ tX•Y for any operation • belonging to the set
{∨,∧, ·,→},

(iii) tX ∧ tY = tX∧Y ,

(iv) tX → tY = tX→Y ,

(v) tX · tX→Y = tX∧Y ,

(vi) a → tX = tX and tX · a = tX ∧ a for any a ∈ F ,

(vii) tX · l = tX ∧ l = lX .

for any X ,Y ∈ A/F .



The decomposition theorem

Theorem
If A is a finite hoop and F ∈ Fil A then the mapping

ψ : A/F −→ F

defined by ψ(X ) = tX ∨ l is a product morphism and moreover it
satisfies

A ∼= F⋉ψ (A/F ).

Definition
The hoop A is irreducible if A ∼= B⋉f C implies that B or C is a
trivial hoop (for arbitrary product morphism f : C −→ B).

Theorem
The finite hoop is irreducible if and only if it is simple.
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The decomposition of finite hoops

Theorem (Blok, W. J. and Ferreirim, I. M. A.)

Simple finite hoops are just finite MV-chains.

Theorem
(i) For any finite hoop A there exists a (finite) sequences of finite
MV-chains (Mi1 ,Mi2 , . . . ,Min) and appropriate product morphisms
(f1, . . . , fn−1) such that

A ∼= Mi1 ⋉f1 (Mi2 ⋉f2 (Mi3 · · ·⋉fn−2 (Min−1 ⋉fn−1 Min) . . . )).

((i) For any finite hoop A there exists a (finite) sequences of finite
MV-chains (Mi1 ,Mi2 , . . . ,Min) and appropriate product morphisms
(g1, . . . , gn−1) such that

A ∼= (((Mi1 ⋉g1 Mi2)⋉g2 Mi3) · · ·⋉gn−2 Min−1)⋉gn−1 Min .



The decomposition of finite hoops

Theorem
If A is an arbitrary finite hoop then the set Id (A) is equivalent to
the set of all product morphisms from A to any finite MV-chain
and also to the set of all product morphisms from any finite
MV-chain to A.
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Figure 3: The visualisation of M⋉ψf
A.
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Figure 4: The visualisation of A⋉ψf
M.



Thank you for your attention!


