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Clones

operations f : An −→ A, n ∈ N
OA = { f : An −→ A | n ∈ N+}
composition f ◦ (g1, . . . , gn)(x) = f (g1(x), . . . , gn(x))

for each x = (x1, . . . , xm) ∈ Am

projections e(n)
i : An −→ A (x1, . . . , xn) 7→ xi for 1 ≤ i ≤ n

set of projections JA =
{

e(n)
i

∣∣∣ 1 ≤ i ≤ n < ω
}

.

Clone: a set F ⊆ OA

with JA ⊆ F and F closed under composition

LA = {F ⊆ OA | F a clone}
a complete algebraic lattice
atomic if A is finite
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The clone lattice LA for finite A
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Minimal clones: singly generated
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Minimal clones: characterisation
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Minimal clones: basic criterion

F ⊆ OA is minimal iff
a F ⊋ JA

b ∀g ∈ F \ JA : F = ⟨{g}⟩OA

For f ∈ OA \ JA

⟨{f }⟩OA
is a minimal clone ⇐⇒ ∀g ∈ ⟨{f }⟩OA

\ JA : f ∈ ⟨{g}⟩OA
.

f ∈ OA is a minimal function ⇐⇒
⟨{f }⟩OA

is minimal ( =⇒ f /∈ JA)

f has minimum arity among generators of ⟨{f }⟩OA
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Rosenberg’s Classification Theorem

Necessary condition:

Theorem (Ivo Rosenberg, 1986)

Let 2 ≤ |A| < ℵ0, n ∈ N.
If f : An −→ A minimal, then one of the following cases holds:

n = 1 and f ◦ f = f or ∃p prime : f p = idA

n = 3 and f (x , y , z) ≈ x − y + z w.r.t. a Boolean group ⟨A; +⟩
|A| ≥ n ≥ 2 and f is a semiprojection

n = 3 and f is a majority operation

f : A3 −→ A is a majority operation ⇐⇒ f ∈ MajA ⇐⇒
f (x , x , y) ≈ f (x , y , x) ≈ f (y , x , x) ≈ x .
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S-valued majority operations

Let S ⊆ A.

f : A3 −→ A is an S-valued majority operation ⇐⇒ f ∈ MajSA ⇐⇒
f ∈ MajA
∀x , y , z ∈ A : |{x , y , z}| = 3 =⇒ f (x , y , z) ∈ S

Subsequently: S = {0, 1}

Facts about f ∈ MajA:

⟨{f }⟩OA
\ JA contains only near-unanimity operations

⟨{f }⟩(3)OA
\ JA ⊆ MajA

f ∈ MajSA =⇒ ⟨{f }⟩(3)OA
\ JA ⊆ MajSA
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Machida’s Lemma

Lemma (Machida, 2024)

Let A ⊇ {0, 1}. If f ∈ Maj
{0,1}
A , then

g(x , y , z) :≈ f (f (x , y , z), f (y , z , x), f (z , x , y))

is cyclically symmetric, in fact, g ∈ cMaj
{0,1}
A .

cMaj
{0,1}
A

set of cyclically symmetric {0, 1}-valued majority operations

f : An −→ A for n ≥ 1 is cyclically symmetric ⇐⇒
f (x1, . . . , xn) ≈ f (x2, . . . , xn, x1)
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Consequence of Machida’s Lemma

Corollary

Let f ∈ Maj
{0,1}
A .

⟨{f }⟩OA
minimal =⇒ ∃g ∈ ⟨{f }⟩OA

∩ cMaj
{0,1}
A : ⟨{f }⟩OA

= ⟨{g}⟩OA

Search for minimal {0, 1}-valued majority clones
can focus on cyclically symmetric ones!
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Minimality criterion for majority clones

General:

Basic criterion: for f ∈ OA \ JA

⟨{f }⟩OA
is a minimal clone ⇐⇒ ∀g ∈ ⟨{f }⟩OA

\ JA : f ∈ ⟨{g}⟩OA
.

For majority:

Simpler criterion (Csákány, Waldhauser): for f ∈ MajA

⟨{f }⟩OA
is a minimal clone ⇐⇒ ∀g ∈ ⟨{f }⟩(3)OA

\ JA : f ∈ ⟨{g}⟩(3)OA
.

Minimality of f ∈ MajA depends only
on (abstract) composition structure of ⟨{f }⟩(3)OA

(3-place Menger algebra)
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Our contributions

Goal

Description of all minimal ⟨{f }⟩OA
with f ∈ Maj

{0,1}
A

|A| = k =⇒
∣∣∣cMaj

{0,1}
A

∣∣∣ = 2
1
3k(k−1)(k−2) k = 5 : 220

k = 6 : 240

BVW 2025

k = 5 solved! Functions classified up to
∣∣∣⟨{f }⟩(3)OA

∣∣∣
BVW 2026

k = 6 solved! Functions classified up to
∣∣∣⟨{f }⟩(3)OA

∣∣∣
+ Connections with k = 5; classification up to

[
⟨{f }⟩(3)OA

]
∼=

(isomorphism)
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Equivalences on functions

Conjugacy: for f , g ∈ O
(n)
A

f ∼ g ⇐⇒ ⟨A; g⟩ ∼= ⟨A; f ⟩
⇐⇒ ∃φ ∈ SymA : f (x1, . . . , xn) ≈ φ−1(g(φ(x1), . . . , φ(xn)))

Note: f ∼ g =⇒ ⟨{f }⟩OA
∼ ⟨{g}⟩OA

(action isomorphic, conjugate)

Reversed function of f ∈ O
(n)
A

f̄ (x1, . . . , xn) :≈ f (xn, . . . , x1)

Note: ⟨{f }⟩OA
=

〈{
f̄
}〉

OA

Equivalence—conjugacy up to reversal: for f , g ∈ O
(n)
A

f ≡ g ⇐⇒ f ∼ g or f ∼ ḡ

Note: f ≡ g =⇒ ⟨{f }⟩OA
∼ ⟨{g}⟩OA

(⇝ preserving minimality)
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Results 2025

Theorem (BVW 2025) for A = {0, . . . , 4}

There are subsets H1,H8,H16,H64 ⊆ cMaj
{0,1}
A such that:

a |H1| = 8 |H8| = 15
|H16| = 1 |H64| = 2

b ∀f ∈ H := H1 ∪ H8 ∪ H16 ∪ H64 : f is minimal
c ∀j ∈ {1, 8, 16, 64} ∀f ∈ Hj :

∣∣∣⟨{f }⟩(3)OA

∣∣∣ = j + 3

d ∀minimal g ∈ cMaj
{0,1}
A ∃!f ∈ H : g ≡ f

e ∀minimal h ∈ Maj
{0,1}
A ∃f ∈ H : ⟨{h}⟩OA

∼ ⟨{f }⟩OA

Proof.
By computation! (a), (b), (c) also by pen & paper proofs.
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Results 2026

Theorem (BVW 2026) for A = {0, . . . , 5}

There are subsets F1,F8,F16,F64 ⊆ cMaj
{0,1}
A such that:

a |F1| = 43 |F8| = 139
|F16| = 20 |F64| = 56

b ∀f ∈ F := F1 ∪ F8 ∪ F16 ∪ F64 : f is minimal
c ∀j ∈ {1, 8, 16, 64} ∀f ∈ Fj :

∣∣∣⟨{f }⟩(3)OA

∣∣∣ = j + 3

d ∀minimal g ∈ cMaj
{0,1}
A ∃!f ∈ F : g ≡ f

e ∀minimal h ∈ Maj
{0,1}
A ∃f ∈ F : ⟨{h}⟩OA

∼ ⟨{f }⟩OA

Proof.
By computation! For (b) also reduction to |A| = 5.
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Clone homomorphisms

Restriction homomorphism
−|U : PolA{U} −→ OU ℏ 7→ ℏ|U clone hom.

‘Conjugation’ isomorphism: given a bijection φ : U −→ V

φ : ⟨U; h⟩ −→ ⟨V ; g⟩ iso. ⇐⇒ g = h(φ) := φ ◦ h ◦ (φ−1 × · · ·×φ−1)

In this case −(φ) : ⟨{h}⟩OU
−→ ⟨{g}⟩OV

ℏ 7→ ℏ(φ) clone iso.

Given f ∈ PolA{U} + an iso φ : ⟨U; f |U⟩ −→ ⟨V ; g⟩ i.e., g = (f |U)(φ)

=⇒ r : ⟨{f }⟩OA
−→ ⟨{g}⟩OV

ℏ 7→ (ℏ|U)(φ) surj. clone hom.

Additionally given n ∈ N where
∣∣∣⟨{f }⟩(n)OA

∣∣∣ = ∣∣∣⟨{g}⟩(n)OV

∣∣∣ < ℵ0

=⇒ rn = r |... : ⟨{f }⟩(n)OA
−→ ⟨{g}⟩(n)OV

is a Menger algebra iso.
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Proof of minimality for |A| = 6

For e ≥ 2: Ue := {0, 1, . . . , 5}\{e}
φe : Ue −→ V := {0, . . . , 4} x 0 1 ... e−1 e e+1 ... 5

φe(x) 0 1 ... e−1 e ... 4

For each j ∈ {1, 8, 16, 64} and every f ∈ Fj on A = {0, . . . , 5}
∃e ≥ 2∃h ∈ Hj :

(f |Ue )
(φe) ≡ h (conjugate up to reversal)

(f |Ue )
(φe) ∼ g ∈

{
h, h̄

}
(conjugate)

∃π ∈ SymV : (f |Ue )
(π◦φe) = g ∈

{
h, h̄

}
=⇒ r : ⟨{f }⟩OA

−→ ⟨{g}⟩OV
ℏ 7→ (ℏ|Ue )

(π◦φe) clone hom.

⟨{h}⟩OV
=

〈
{h̄}

〉
OV

= ⟨{g}⟩OV∣∣∣⟨{f }⟩(3)OA

∣∣∣ = j + 3 =
∣∣∣⟨{h}⟩(3)OV

∣∣∣ = ∣∣∣⟨{g}⟩(3)OV

∣∣∣ (as f ∈ Fj , h ∈ Hj)

=⇒ r3 : ⟨{f }⟩(3)OA
−→ ⟨{g}⟩(3)OV

= ⟨{h}⟩(3)OV
Menger algebra iso.
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Menger algebra iso.
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Proof of minimality for |A| = 6
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Connection between 2025 and 2026

Theorem (BVW 2026)

For A = {0, . . . , 5} each j ∈ {1, 8, 16, 64} and f ∈ Fj there is h ∈ Hj

on V = {0, . . . , 4} such that

⟨{f }⟩(3)OA
∼= ⟨{h}⟩(3)OV

and both clones are minimal (by the theorem of 2025).
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Classification up to Menger algebra isomorphism

Theorem (BVW 2026)

For minimal f ∈ cMaj
{0,1}
A for 5 ≤ |A| ≤ 6,

the cardinality of ⟨{f }⟩(3)OA
determines its isomorphism class.

Proof
Check of A = {0, . . . , 4} is sufficient; |A| = 6 follows from prev. thm.

f ∈ H1: trivially isomorphic Menger algebras (to ⟨m0⟩(3)O{0,1,2}
)

f ∈ H8: ⟨{f }⟩(3)OA
∼= ⟨m255⟩(3)O{0,1,2}

(Csákány, 1986)

f ∈ H16: |H16| = 1

f , f̂ ∈ H64: ⟨{f }⟩(3)OA
∼=

〈
{f̂ }

〉(3)

OA

(non-trivial isomorphism)

For 2 ≤ |A| ≤ 4: only
[
⟨m0⟩(3)O{0,1,2}

]
∼=

and
[
⟨m255⟩(3)O{0,1,2}

]
∼=

appear.
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Final words

Thank you for your attention!
Enjoy the rest of the conference.
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