

Generating higher commutators in algebras with a Mal'cev term

Erhard Aichinger

Institute for Algebra
Johannes Kepler University Linz
Linz, Austria

AAA108, Vienna, February 2026

Research supported by the Austrian Science Fund FWF:P33878

A definition of commutators for Mal'cev algebras

Two-term description of the commutator

Theorem. Let \mathbf{A} be an algebra with Mal'cev term, α_1, α_2 congruences. Then

$$[\alpha_1, \alpha_2] = \Theta_{\mathbf{A}} \left(\left\{ (s(b_1, b_2), t(b_1, b_2)) \mid (a_1, b_1) \in \alpha_1, (a_2, b_2) \in \alpha_2, \right. \right. \\ \left. \left. s, t \in \text{Pol}_2(\mathbf{A}), s = t \text{ on } \{(a_1, a_2), (a_1, b_2), (b_1, a_2)\} \right\} \right).$$

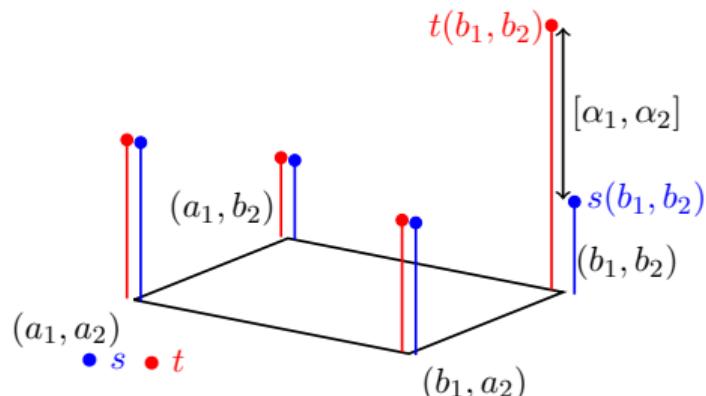


Figure: Commutators as forks.

Two-term description of the commutator

Theorem. Let \mathbf{A} be an algebra with Mal'cev term, α_1, α_2 congruences. Then

$$[\alpha_1, \alpha_2] = \Theta_{\mathbf{A}} \left(\left\{ (s(b_1, b_2), t(b_1, b_2)) \mid (a_1, b_1) \in \alpha_1, (a_2, b_2) \in \alpha_2, \right. \right. \\ \left. \left. s, t \in \text{Pol}_2(\mathbf{A}), s = t \text{ on } \{(a_1, a_2), (a_1, b_2), (b_1, a_2)\} \right\} \right).$$

- ▶ Two-term description of commutators (with $s \equiv_{[\alpha_1, \alpha_2]} t$ instead of $s = t$): E. W. KISS, Three remarks on the modular commutator, 1992 and A. MOORHEAD, Higher commutator theory for congruence modular varieties, 2018.
- ▶ Can be proved from Corollary 6.10 of E. AICHINGER, N. MUDRINSKI, Some applications of higher commutators in Mal'cev algebras, 2010.

Two-term description of the higher commutator

Theorem. Let \mathbf{A} be an algebra with Mal'cev term, $\alpha_1, \dots, \alpha_n$ congruences. Then

$$\begin{aligned} [\alpha_1, \dots, \alpha_n] = \Theta_{\mathbf{A}} \big(& \big\{ (s(b_1, \dots, b_n), t(b_1, \dots, b_n)) \mid (a_1, b_1) \in \alpha_1, \dots, (a_n, b_n) \in \alpha_n, \\ & s, t \in \text{Pol}_n(\mathbf{A}), s = t \text{ on } (\bigtimes_{i=1}^n \{a_i, b_i\}) \setminus \{(b_1, \dots, b_n)\}, \\ & a_1 \neq b_1, \dots, a_n \neq b_n \big\} \big). \end{aligned}$$

- ▶ Use Corollary 6.10 of E. AICHINGER, N. MUDRINSKI, Some applications of higher commutators in Mal'cev algebras, 2010.
- ▶ Or: Use Proposition 3.8 of J. OPRŠAL, A relational description of higher commutators in Mal'cev varieties, 2016.

Congruence generation in Mal'cev algebras

Congruence generation in Mal'cev algebras

Theorem. \mathbf{A} algebra with Mal'cev term. Then

$$\Theta_{\mathbf{A}}(a, b) = \{(u(a, \mathbf{e}), u(b, \mathbf{e})) \mid m \in \mathbb{N}, \mathbf{e} \in A^m, u \in \text{Clo}_{m+1}(\mathbf{A})\}.$$

Proof: Compute the diagonal subalgebra of $\mathbf{A} \times \mathbf{A}$ generated by (a, b) .

Two-term congruence generation in Mal'cev algebras

Theorem. A algebra with Mal'cev term. Then

$$\begin{aligned}\Theta_{\mathbf{A}}(a, b) = \{ & (s(a, b, \mathbf{e}), t(a, b, \mathbf{e})) \mid m \in \mathbb{N}, \mathbf{e} \in A^m, s, t \in \text{Clo}_{m+2}(\mathbf{A}), \\ & s(x, x, \mathbf{z}) = t(x, x, \mathbf{z}) \text{ for all } x \in A, \mathbf{z} \in A^m \}.\end{aligned}$$

Proof: “ \subseteq ”:

- ▶ Let $(u^{\mathbf{A}}(a, \mathbf{e}), u^{\mathbf{A}}(b, \mathbf{e})) \in \Theta_{\mathbf{A}}(a, b)$.
- ▶ Let M be the Mal'cev term, and set

$$\begin{aligned}s(x, y, z_0, \mathbf{z}) &:= u(M(x, y, z_0), \mathbf{z}) \\ t(x, y, z_0, \mathbf{z}) &:= u(z_0, \mathbf{z}).\end{aligned}$$

- ▶ Then $s(x, x, z_0, \mathbf{z}) \approx t(x, x, z_0, \mathbf{z})$ and
 $s^{\mathbf{A}}(a, b, b, \mathbf{e}) = u^{\mathbf{A}}(M^{\mathbf{A}}(a, b, b), \mathbf{e}) = u^{\mathbf{A}}(a, \mathbf{e}), \quad t^{\mathbf{A}}(a, b, b, \mathbf{e}) = u^{\mathbf{A}}(b, \mathbf{e})$.

Congruence generation using consensus oriented terms

Theorem. Let V be a variety with a Mal'cev term M , let $\mathbf{A} \in V$, $a, b \in A$. Then

$$\Theta_{\mathbf{A}}(a, b) = \{(s(a, b, \mathbf{e}), t(a, b, \mathbf{e})) \mid m \in \mathbb{N}, \mathbf{e} \in A^m, s, t \text{ are terms,}$$

$$V \models s(x, x, \mathbf{z}) \approx t(x, x, \mathbf{z})\}$$

We call (s, t) a pair of **consensus oriented** terms.

Higher commutator generation on Mal'cev algebras

Consensus oriented terms

The pair (s, t) of terms is called **consensus oriented for V** if for all $i \in \underline{n}$, we have we have

$$V \models x_i \approx y_i \Rightarrow s(x_1, y_1, \dots, x_n, y_n, \mathbf{z}) \approx t(x_1, y_1, \dots, x_n, y_n, \mathbf{z}).$$

Examples:

- ▶ for rings, $s = \prod_{i=1}^n (x_i - y_i)$ and $t = 0$ are consensus oriented.
- ▶ $s = (x_1 - y_1) \star (x_2 - y_2) - 0 \star (x_2 - y_2) + 0 \star 0 - (x_1 - y_1) \star 0$ and $t = 0$ are consensus oriented for groups with a binary multiplication \star .

Higher Commutator Generation

Theorem [EA AND Ž. SEMANIŠINOVÁ, 2022]. Let V be a variety with Mal'cev term. Then

$$[\Theta_{\mathbf{A}}(a_1, b_1), \dots, \Theta_{\mathbf{A}}(a_n, b_n)] = \{ (s^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e}), t^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e})) \mid m \in \mathbb{N}, \text{ } s, t \text{ are } (n+m)\text{-ary terms, } (s, t) \text{ is consensus oriented for } V, \mathbf{e} \in A^m \}.$$

Higher Commutator Generation

Theorem. Let V be a variety with Mal'cev term. Then

$$[\Theta_{\mathbf{A}}(a_1, b_1), \dots, \Theta_{\mathbf{A}}(a_n, b_n)] = \{(s^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e}), t^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e})) \mid m \in \mathbb{N}, s, t \text{ are } (n+m)\text{-ary terms, } (s, t) \text{ is consensus oriented for } V, \mathbf{e} \in A^m\}.$$

Corollary.

$$\begin{aligned} [\Theta_{\mathbf{A}}(a_1, b_1), \Theta_{\mathbf{A}}(a_2, b_2)] &= \{(s^{\mathbf{A}}(a_1, b_1, a_2, b_2, \mathbf{e}), t^{\mathbf{A}}(a_1, b_1, a_2, b_2, \mathbf{e})) \mid \\ &V \models s(x_1, x_1, y_1, y_2, \mathbf{z}) \approx (x_1, x_1, y_1, y_2, \mathbf{z}) \wedge \\ &t(x_1, x_2, y_1, y_1, \mathbf{z}) \approx s(x_1, x_2, y_1, y_1, \mathbf{z})\}. \end{aligned}$$

Higher Commutator Generation

Theorem. Let V be a variety with Mal'cev term. Then

$$[\Theta_{\mathbf{A}}(a_1, b_1), \dots, \Theta_{\mathbf{A}}(a_n, b_n)] = \{(s^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e}), t^{\mathbf{A}}(a_1, b_1, \dots, a_n, b_n, \mathbf{e})) \mid m \in \mathbb{N}, s, t \text{ are } (n+m)\text{-ary terms, } (s, t) \text{ is consensus oriented for } V, \mathbf{e} \in A^m\}.$$

- ▶ V can be any variety in which we have a Mal'cev term.
- ▶ If $(G, +, -, 0)$ is a group,

$$V := \text{Mod}(0 + x \approx x, x + (-x) \approx 0, (x + (-y)) + y \approx 0)$$

is a choice that forces $(x + (-y)) + z$ to be a Mal'cev term, but does not imply $x + 0 \approx x$.

Consensus oriented terms are universal

Consensus oriented terms are universal

Theorem. Let V be a variety with a Mal'cev term d . Every subvariety W of V can be defined using

$$d(x, x, y) \approx y \approx d(y, x, x),$$

and, in addition, only identities of the form

- ▶ $u(x_1) \approx v(x_1)$ (unary)
- ▶ $u(x_1, y_1, \dots, x_n, y_n) \approx v(x_1, y_1, \dots, x_n, y_n)$, where (u, v) is consensus oriented in V .

- ▶ Lemma 14.5 from [FREESE, MCKENZIE, Commutator Theory for Congruence Modular Varieties, 1987] does the same using **commutator terms** instead, but requires V to be nilpotent.
- ▶ Origins: H. NEUMANN, G. HIGMAN: expressing group identities using products of commutators.

An application of commutator generation

$[\Theta_{\mathbf{A}}(a, b), 1]$ can be parametrized:

Theorem. \mathbf{A} finite algebra with Mal'cev term¹. Then there exist $m \in \mathbb{N}$ and $t \in \text{Clo}_{m+1}(\mathbf{A})$ such that

- ▶ $\mathbf{A} \models \exists z \forall x, y : t(x, z) \approx t(y, z)$,
- ▶ for all $a, b \in A^k$: $[\Theta_{\mathbf{A}}(a, b), 1] = \{(t(a, w), t(b, w)) \mid w \in A^m\}$.

Main ingredient in proving

Theorem. For a **nonabelian** finite Mal'cev algebra \mathbf{A} of finite type, checking the validity of quasi-identities in \mathbf{A} is coNP-complete.

E. AICHINGER AND S. GRÜNBACHER. The Complexity of Checking Quasi-Identities over Finite Algebras with a Mal'cev Term, STACS 2023

¹ Assumptions added after presentation.