Strong subalgebras

and

how to use them

Dmitriy Zhuk

Charles University
Prague

The 108th Workshop on General Algebra
Vienna, Austria
February 6-8, 2026

Funded by the European Union (ERC, POCOCOP, 101071674).
Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

European Research Council
o=




Introduction



Introduction

A is a finite idempotent Taylor algebra.



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <.y A? is linked




Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <.y A? is linked

<sd: Vi pr;(R) = A, linked: bipartite graph is connected



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected

Theorem [Maréti, McKenzie, 2008]

@ # R < AP, R is symmetric,
p > |Al is a prime




Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.




Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A > B;



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A>B;>B;



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A>B; >B>>B;j



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]
@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A>B;>By>B3>--->{a}



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]

@ # R < AP, R is symmetric,
p > |Al is a prime
=dacA:(a,a,...,3) € R.

Proof: Induction on |A|.
A>B;>By>B3>--->{a}

We need (strong) subalgebras with additional
properties:

Al



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]

@ # R < AP, R is symmetric,
p > |A| is a prime
=dacA:(a,a,...,3) € R. Y. symmetric .Y

Proof: Induction on |A|.
A>B;>By>B3>--->{a}
We need (strong) subalgebras with additional

properties:
» It preserves linkedness. ﬁ
A



Introduction

A is a finite idempotent Taylor algebra.
Loop Lemmal[Barto, Kozik, Niven, 2008] J

R <y A% is linked = 3Jac A: (a,a) € R.

<sd: Vi pr;(R) = A, linked: bipartite graph is connected
Theorem [Maréti, McKenzie, 2008]

@ # R < AP, R is symmetric,
p > |A| is a prime
=dacA:(a,a,...,3) € R. Y. symmetric .Y

Proof: Induction on |A|.
A>B;>By>B3>--->{a}
We need (strong) subalgebras with additional

properties:
> It preserves linkedness. ﬁ
> RNBY #£ . @,



Absorbing Subalgebras Barto, Kozik



Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
%./_/

]



Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
———

i
Write B <y A if t is of arity k.



Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
———

Write B <y A if t is of arity k.

Examples




Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

vi: t(B,...,B,AB,...,B) C B.
%.,_/
Write B <y A if t is of arity k.

Examples
1. {1} <5 ({0,1}; V).




Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
———

i
Write B <y A if t is of arity k.

Examples
1. {1} <5 ({0,1}; V).
2. {2,3} <, ({0,1,2,3}; max).




Absorbing Subalgebras Barto, Kozik
B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
———

Write B <1, A if t is of arity k.
Examples
1. {1} < ({0,1}; V).
2. {2,3} <5 ({0,1,2,3}; max).
3. {a} <3 (A; majority).
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Bridges

o1 € Con(Ay), o2 € Con(Ay).
0 < A% X A% is a bridge from oy to oy if

L (321’322’323@24) Gi A; x A, x A,
(b1, bo, b3, by) €0 SRS
2. pr1,2(5) 2 01,
pr34(9) 2 o2
3. (a1,a2,33,a1) €0
)

(31782) € o= (33, 34) € o).

Example

Ay = Ay = (Z4,x — y + 2)
§ = {(x1,x0,x3,x2) € Z§ | x1 — x2 = 2x3 — 2x4},
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o1 € Con(Ay), o2 € Con(Ay).
§ < A2 x A3 is a bridge from oy to oy if

L (921’322’323@;) Gi A; x A; A, x A,
(b1, ba, b3, by) € 0 [ L0
2. pr1,2(5) 2 01,
Prs4(d) 2 o2
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I

(al,az) €01 & (33, 34) € o0o.

Example

Ay = Ay = (Z4,x — y + 2)
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- 0 is a bridge between equality (0a,) and (mod 2)-congruence.




Bridges

o1 € Con(Ay), o2 € Con(Ay).
§ < A2 x A3 is a bridge from oy to oy if

L (921’322’323@;) Ei A; x A; A, x A,
(b1, ba, b3, by) € 0 [ L0
2. pr1,2(5) 2 01,
Prs4(d) 2 o2
3. (a1,a2,33,a1) €0
I

(81,82) €01 & (33, 34) € o0o.

Example

Ay = Ay = (Z4,x — y + 2)
§ = {(x1,x0,x3,x2) € Z§ | x1 — x2 = 2x3 — 2x4},

- 0 is a bridge between equality (0a,) and (mod 2)-congruence.

- Algebras Z4 and Z; are similar.
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- 01 is a bridge from o1 to o2

- Jy is a bridge from o3 to o3

- §:= 01002 is a bridge from o7 to o3 (if o2 is irreducible)
3(x1, X2, 21, 22) := Fy13y2 81(x1, X2, y1, ¥2) A 62(y1, ¥2, 21, 22)
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For a bridge 6 from o1 on A; to o2 on Ay
the trace of a bridge d, denoted tr(d), is a subuniverse A; x A defined by
tr(0)(x,y) = 6(x,x,y,y). Then

> § =081 00 = tr(6) = tr(d1) o tr(d2)
» for every irreducible congruence o there exists a bridge ¢ from o to o with
the largest reflexive trace,



Composition of bridges

- 01 is a bridge from o1 to o2

- Jy is a bridge from o3 to o3

- §:= 01002 is a bridge from o7 to o3 (if o2 is irreducible)
3(x1, X2, 21, 22) := Fy13y2 81(x1, X2, y1, ¥2) A 62(y1, ¥2, 21, 22)

For a bridge 6 from o1 on A; to o2 on Ay
the trace of a bridge d, denoted tr(d), is a subuniverse A; x A defined by
tr(0)(x,y) = 6(x,x,y,y). Then

> § =081 00 = tr(6) = tr(d1) o tr(d2)
» for every irreducible congruence o there exists a bridge ¢ from o to o with
the largest reflexive trace, moreover, tr(d) is the centralizer of o* modulo o.
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Helly property
R <. A x By x Co, A <™ Ag, B, <«<B0 By, C,, << Cy.

o” € Con(Ay) o€ € Con(Cyp)

Then A, <g0 A3 B3 <7830 B, C4 <7C>0 C3

There exists a bridge 6 from ¢ to o8 such that
tr(6) = pri2(R)
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Example: Group S3
S3={e, (12), (13), (23), (123), (132)}.
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lattice o (As)
Os,

Subuniverses of S (idempotent reduct):
> (e}, {(12)}, {(13)}, {(23)}, {(123)}, {(132)};
> {e,(123),(132)} = Zs and {(12), (13), (23)} = Zs;
> {e,(12)} 2 75, {e,(13)} 2 Z>, and {e,(23)} 2 Z,
Strong subuniverses of S¥:
> {(13)} <Boq,) {(12),(13). (23)} <3 S5
> Vae S3: {a} « Ss3
Bridges:
» No bridges between Os,, 0z, and o(~ 0z,)
» tr(4) C o for any reflexive bridge § from 0Os, to Os,
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Example: Group S3

- Does S have symmetric term operations of arity 57 No!
3 Yy Yy

f(e, e, (12), (23), (13)) = f(e, e, (23), (13), (12)) = d € {(12), (23), (13)} contradicts the automorphism (123).

XY-symmetric operation
f: A" — Ais XY-symmetric if
flap: {a, b}" — Ais symmetric for all a,b € A

- Does S have XY-symmetric term operations of arity 57 Yes!

Claim
There exists a term operation f in Sgd s.t. forall a,b € S3
» f|ap is symmetric;
» flab(b,a,a,a,a) = fl,p(b,b,b,a, a) = b whenever (a, b) ¢ o;

> flab(x1,x2,X3,Xa,X5) = x2 0 -+ -0 xZ2 whenever (a,b) € o
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» A contradiction should appear on a fixed shape e.g. (x,y, x,x,y).
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Decomposition using bridges

Theorem
Suppose
» 0a is A-irreducible.
4 - . AxA
» 6 < A% is a bridge from 0p to Oa. — ASFSSEEE
> tr(d) = Ax A. \
Then A= A/0A X G
for some affine G

A=BXG:
- domain A=Bx G
- A, x) = (FBGAY, X)),
df(xfl), o ,X,(,l)) + rlez) + I’2X2(2) 44 rnx,(,2))
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Results
- Strong Subalgebras and Bridges are now connected!

- PC and Linear Cases are now one type!
- Congruences are global!
- Subalgebras are stronger!

Existence of an XY-symmetric operation
Every finite Taylor algebra has XY-symmetric term operations.

A simplified proof of the CSP Dichotomy Conjecture

12 pages modulo properties of strong subalgebras.

Existence of palette symmetric operations

Every Taylor algebra A = B; x - - x B,,, where |B;| < 8 for every i
has palette symmetric term operations.

CSP(T) is solvable by the singleton(BLP+AIP) algorithm for any
tractable (multi-sorted) I' on domains of size at most 7.




Thank you for your attention
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