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Introduction

A is a finite idempotent Taylor algebra.

Loop Lemma[Barto, Kozik, Niven, 2008]

R ≤sd A2 is linked ⇒ ∃a ∈ A : (a, a) ∈ R.

≤sd : ∀i pri (R) = A, linked: bipartite graph is connected

Theorem [Maróti, McKenzie, 2008]

∅ ̸= R ≤ Ap, R is symmetric,
p > |A| is a prime
⇒ ∃a ∈ A : (a, a, . . . , a) ∈ R. symmetric

Proof: Induction on |A|.
A ≥ B1 ≥ B2 ≥ B3 ≥ · · · ≥ {a}
We need (strong) subalgebras with additional
properties:

▶ It preserves linkedness.

▶ R ∩ Bp
i ̸= ∅.
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Absorbing Subalgebras Barto, Kozik

A
B

B absorbs A (write B ⊴ A) if B ≤ A and ∃t ∈ Clo(A) s.t.

∀i : t(B, . . . ,B,A︸ ︷︷ ︸
i

,B, . . . ,B) ⊆ B.

Write B ⊴k A if t is of arity k.

Examples

1. {1} ⊴2 ({0, 1};∨).
2. {2, 3} ⊴2 ({0, 1, 2, 3};max).

3. {a} ⊴3 (A;majority).
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Strong Subalgebras Zhuk

S. Contains a Binary Absorbing Subalgebra.
C <S B ⇔ C ≤ B ∧ ∃D ◁2 B s.t. D ⊆ C .

C. Central subalgebra.
C <C B ⇔ C ◁3 B and ∀b ∈ B \ C :

(b, b) /∈ SgB2(({b} × C ) ∪ (C × {b})).

D. Dividing subalgebra.
C <A

D B ⇔ C = B ∩ E ,
where E is a block of a congruence σ on A s.t.

1. σ is ∧-irreducible
2. σ∗ ⊇ B2, where σ∗ is the cover of σ

3. B/σ has no proper binary absorbing or
central subalgebras

Transitive closure.
Bk ≪A B0 ⇔ Bk <A

Tk
Bk−1 <

A
Tk−1

· · · <A
T2

B1 <
A
T1

B0,

where Ti ∈ {S, C,D}.

A

B

C

D
⊴2

A

B

C

⊴3

A

B

A

C

A

B0

B1

B2

Bk−1

Bk
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C <A

D B ⇔ C = B ∩ E ,
where E is a block of a congruence σ on A s.t.

1. σ is ∧-irreducible
2. σ∗ ⊇ B2, where σ∗ is the cover of σ

3. B/σ has no proper binary absorbing or
central subalgebras

Transitive closure.
Bk ≪A B0 ⇔ Bk <A

Tk
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A
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T2
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Properties of ≪A

(Transitivity) D ≪A C ≪A B ⇒ D ≪A B

(Intersection) C,D ≪A B ∧ C ∩D ̸= 0 ⇒ C ∩D ≪A B

(Propagation) if f : A → A′ is a surjective homomorphism,
(Pushforward) C ≪A B ⇒ f (C) ≪A′

f(B)
(Pullback) C′ ≪A′

B′ ⇒ f −1(C′) ≪A f−1(B′)

(Ubiquity) if B ≪A A and |B| > 1 then ∃C ≪A B.

(Helly)

Suppose
▶ R ≤sd A1 × · · · × An, n ≥ 2,
▶ Ci <

Ai
Ti

Bi ≪Ai Ai , Ti ∈ {S, C,D}, i ∈ [n],
▶ R ∩ (C1 × · · · × Cn) = ∅,
▶ ∀j : R ∩ (C1 × · · · × Cj−1 × Bj × Cj+1 × · · · × Cn) ̸= ∅.

then

1. either Ti = C for every i and n = 2,

2. or Ti = D for every i + for all i , j there exists a bridge δ from
σi to σj such that tr(δ) = pri ,j(R)
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Helly property

R ≤sd A0×B0×C0, Ak ≪A0 A0, Bℓ ≪B0 B0, Cm ≪C0 C0.

A0A0

A1A1
A2A2

A3A3

A4

Ak−1

Ak

×R∩

Then A4 <
A0

D A3

σA ∈ Con(A0)

A4

B0B0

B1B1
B2B2

B3B3

Bℓ−1

Bℓ

×

B3 <
B0

D B2

σB ∈ Con(B0)

B3

C0C0

C1C1
C2C2

C3C3

C4

Cm−1

Cm

̸= ∅= ∅

C4 <
C0

D C3

σC ∈ Con(C0)

C4

There exist bridges between congruences σA, σB , and σC
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Properties of ≪A

(Transitivity) D ≪A C ≪A B ⇒ D ≪A B

(Intersection) C,D ≪A B ∧ C ∩D ̸= 0 ⇒ C ∩D ≪A B

(Propagation) if f : A → A′ is a surjective homomorphism,
(Pushforward) C ≪A B ⇒ f (C) ≪A′

f(B)
(Pullback) C′ ≪A′

B′ ⇒ f −1(C′) ≪A f−1(B ′)

(Ubiquity) if B ≪A A and |B| > 1 then ∃C ≪A B.

(Helly)

Suppose
▶ R ≤sd A1 × · · · × An, n ≥ 2,
▶ Ci <

Ai
Ti

Bi ≪Ai Ai , Ti ∈ {S, C,D}, i ∈ [n],
▶ R ∩ (C1 × · · · × Cn) = ∅,
▶ ∀j : R ∩ (C1 × · · · × Cj−1 × Bj × Cj+1 × · · · × Cn) ̸= ∅.

then

1. either Ti = C for every i and n = 2,

2. or Ti = D for every i + for all i , j there exists a bridge δ from
σi to σj such that tr(δ) = pri ,j(R)
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Composition of bridges

- δ1 is a bridge from σ1 to σ2
- δ2 is a bridge from σ2 to σ3
- δ := δ1 ◦ δ2 is a bridge from σ1 to σ3 (if σ2 is irreducible)

δ(x1, x2, z1, z2) := ∃y1∃y2 δ1(x1, x2, y1, y2) ∧ δ2(y1, y2, z1, z2)

A1 × A1

σ1 σ2δ1
A2 × A2 A3 × A3

σ3δ2

For a bridge δ from σ1 on A1 to σ2 on A2

the trace of a bridge δ, denoted tr(δ), is a subuniverse A1 × A2 defined by
tr(δ)(x , y) = δ(x , x , y , y). Then

▶ δ = δ1 ◦ δ2 =⇒ tr(δ) = tr(δ1) ◦ tr(δ2)
▶ for every irreducible congruence σ there exists a bridge δ from σ to σ with

the largest reflexive trace, moreover, tr(δ) is the centralizer of σ∗ modulo σ.
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Helly property

R ≤sd A0 × B0 × C0, Ak ≪A0 A0, Bℓ ≪B0 B0, Cm ≪C0 C0.

A0

A2

A3A3 ×R∩

Then A4 <
A0

D A3

σA ∈ Con(A0)

A4

B0

B1
B2B2

×

B3 <
B0

D B2

σB ∈ Con(B0)

B3

C0

C1
C2

C3C3 = ∅

C4 <
C0

D C3

σC ∈ Con(C0)

C4

There exists a bridge δ from σA to σB such that
tr(δ) = pr1,2(R)
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Example: Group S3

S3 = {e, (12), (13), (23), (123), (132)}.

Congruence
lattice

1S3

σ (A3)

0S3

1S3

σ (A3)

0S3

S3/σ ∼= Z2

Subuniverses of Sid
3 (idempotent reduct):

▶ {e}, {(12)}, {(13)}, {(23)}, {(123)}, {(132)};
▶ {e, (123), (132)} ∼= Z3 and {(12), (13), (23)} ∼= Z3;

▶ {e, (12)} ∼= Z2, {e, (13)} ∼= Z2, and {e, (23)} ∼= Z2

Strong subuniverses of Sid
3 :

▶

{(13)} <S3
D(0S3 )

{(12), (13), (23)} <S3
D(σ) S3

▶ ∀a ∈ S3 : {a} ≪ S3

Bridges:

▶ No bridges between 0S3 , 0Z3 and σ(∼ 0Z2)

▶ tr(δ) ⊆ σ for any reflexive bridge δ from 0S3 to 0S3

S3

e

(123)

(132)

(12)

(13)

(23)
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Example: Group S3

- Does Sid
3 have symmetric term operations of arity 5? No!

f (e, e, (12), (23), (13)) = f (e, e, (23), (13), (12)) = d ∈ {(12), (23), (13)} contradicts the automorphism (123).

XY-symmetric operation

f : An → A is XY-symmetric if
f |a,b : {a, b}n → A is symmetric for all a, b ∈ A

- Does Sid
3 have XY-symmetric term operations of arity 5? Yes!

Claim

There exists a term operation f in Sid
3 s. t. for all a, b ∈ S3

▶ f |a,b is symmetric;

▶ f |a,b(b, a, a, a, a) = f |a,b(b, b, b, a, a) = b whenever (a, b) /∈ σ;

▶ f |a,b(x1, x2, x3, x4, x5) = x21 ◦ · · · ◦ x25 whenever (a, b) ∈ σ.
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Example: Group S3

It is sufficient to show that

Sid
3

a =
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...
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{(123)} ≪ S3
{(123)} ≪ S3
{(123)} ≪ S3
{(123)} ≪ S3

...
{(12)} ≪ {(12), (13), (23)}
{(12)} ≪ {(12), (13), (23)}
{(12)} ≪ {(12), (13), (23)}

...
{(12)} ≪ {(12), (13), (23)}

Assume a /∈ R ≤sd A1 × · · · × An. Choose a maximal
C1 ≪ A1, . . . ,Cn ≪ An such that a ∈ (C1 × · · · × Cn) and

R ∩ (C1 × · · · × Cn) = ∅.

▶ For every i either Ci = Ai , or |Ci | = 1 and Ai = S3;

▶ pri,j(R) is not linked whenever Ci ̸= Ai and Cj ̸= Aj ;

▶ A contradiction should appear on a fixed shape e.g. (x , y , x , x , y).
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Decomposition using bridges

Theorem

Suppose

▶ 0A is ∧-irreducible.
▶ δ ≤ A4 is a bridge from 0A to 0A.

▶ tr(δ) = A× A.

Then A ∼= A/0∗A ⊠ G
for some affine G

A ∼= B⊠ G:

- domain A = B × G

- f A(x1, . . . , xn) = (f B(x
(1)
1 , . . . , x

(1)
n ),

df (x
(1)
1 , . . . , x

(1)
n ) + r1x

(2)
1 + r2x

(2)
2 + · · ·+ rnx

(2)
n )

A× A A× A

0A 0A
δ

All Edges
A× A Zp

ζ
0σ
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Results

- Strong Subalgebras and Bridges are now connected!

- PC and Linear Cases are now one type!

- Congruences are global!

- Subalgebras are stronger!

Existence of an XY-symmetric operation

Every finite Taylor algebra has XY-symmetric term operations.

A simplified proof of the CSP Dichotomy Conjecture

12 pages modulo properties of strong subalgebras.

Existence of palette symmetric operations

Every Taylor algebra A = B1 × · · · ×Bn, where |Bi | < 8 for every i
has palette symmetric term operations.

CSP(Γ) is solvable by the singleton(BLP+AIP) algorithm for any
tractable (multi-sorted) Γ on domains of size at most 7.
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Thank you for your attention
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