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B absorbs A (write B < A) if B < A and 3t € Clo(A) s.t.

Vi: t(B,...,B,AB,...,B) C B.
———

Write B <1, A if t is of arity k.
Examples
1. {1} < ({0,1}; V).
2. {2,3} <5 ({0,1,2,3}; max).
3. {a} <3 (A; majority).
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Bridges

o1 € Con(Ay), o2 € Con(Ay).
0 < A% X A% is a bridge from oy to oy if

L (321’322’323@24) Gi A; x A, x A,
(b1, bo, b3, by) €0 SRS
2. pr1,2(5) 2 01,
pr34(9) 2 o2
3. (a1,a2,33,a1) €0
)

(31782) € o= (33, 34) € o).

Example

Ay = Ay = (Z4,x — y + 2)
§ = {(x1,x0,x3,x2) € Z§ | x1 — x2 = 2x3 — 2x4},




Bridges

o1 € Con(Ay), o2 € Con(Ay).
§ < A2 x A3 is a bridge from oy to oy if

L (921’322’323@;) Gi A; x A; A, x A,
(b1, ba, b3, by) € 0 [ L0
2. pr1,2(5) 2 01,
Prs4(d) 2 o2
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I

(al,az) €01 & (33, 34) € o0o.

Example

Ay = Ay = (Z4,x — y + 2)
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- 0 is a bridge between equality (0a,) and (mod 2)-congruence.




Bridges

o1 € Con(Ay), o2 € Con(Ay).
§ < A2 x A3 is a bridge from oy to oy if

L (921’322’323@;) Ei A; x A; A, x A,
(b1, ba, b3, by) € 0 [ L0
2. pr1,2(5) 2 01,
Prs4(d) 2 o2
3. (a1,a2,33,a1) €0
I

(81,82) €01 & (33, 34) € o0o.

Example

Ay = Ay = (Z4,x — y + 2)
§ = {(x1,x0,x3,x2) € Z§ | x1 — x2 = 2x3 — 2x4},

- 0 is a bridge between equality (0a,) and (mod 2)-congruence.

- Algebras Z4 and Z; are similar.
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- 01 is a bridge from o1 to o2

- Jy is a bridge from o3 to o3

- §:= 01002 is a bridge from o7 to o3 (if o2 is irreducible)
3(x1, X2, 21, 22) := Fy13y2 81(x1, X2, y1, ¥2) A 62(y1, ¥2, 21, 22)
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For a bridge 6 from o1 on A; to o2 on Ay
the trace of a bridge d, denoted tr(d), is a subuniverse A; x A defined by
tr(0)(x,y) = 6(x,x,y,y). Then

> § =081 00 = tr(6) = tr(d1) o tr(d2)
» for every irreducible congruence o there exists a bridge ¢ from o to o with
the largest reflexive trace,



Composition of bridges

- 01 is a bridge from o1 to o2

- Jy is a bridge from o3 to o3

- §:= 01002 is a bridge from o7 to o3 (if o2 is irreducible)
3(x1, X2, 21, 22) := Fy13y2 81(x1, X2, y1, ¥2) A 62(y1, ¥2, 21, 22)

For a bridge 6 from o1 on A; to o2 on Ay
the trace of a bridge d, denoted tr(d), is a subuniverse A; x A defined by
tr(0)(x,y) = 6(x,x,y,y). Then

> § =081 00 = tr(6) = tr(d1) o tr(d2)
» for every irreducible congruence o there exists a bridge ¢ from o to o with
the largest reflexive trace, moreover, tr(d) is the centralizer of o* modulo o.
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Helly property
R <. A x By x Co, A <™ Ag, B, <«<B0 By, C,, << Cy.

o” € Con(Ay) o€ € Con(Cyp)

Then A, <g0 A3 B3 <7830 B, C4 <7C>0 C3

There exists a bridge 6 from ¢ to o8 such that
tr(6) = pri2(R)
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Example: Group S3
S3={e, (12), (13), (23), (123), (132)}.
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lattice o (As)
Os,

Subuniverses of S (idempotent reduct):
> (e}, {(12)}, {(13)}, {(23)}, {(123)}, {(132)};
> {e,(123),(132)} = Zs and {(12), (13), (23)} = Zs;
> {e,(12)} 2 75, {e,(13)} 2 Z>, and {e,(23)} 2 Z,
Strong subuniverses of S¥:
> {(13)} <Boq,) {(12),(13). (23)} <3 S5
> Vae S3: {a} « Ss3
Bridges:
» No bridges between Os,, 0z, and o(~ 0z,)
» tr(4) C o for any reflexive bridge § from 0Os, to Os,
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(132)
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Example: Group S3

- Does S have symmetric term operations of arity 57 No!
3 Yy Yy

f(e, e, (12), (23), (13)) = f(e, e, (23), (13), (12)) = d € {(12), (23), (13)} contradicts the automorphism (123).

XY-symmetric operation
f: A" — Ais XY-symmetric if
flap: {a, b}" — Ais symmetric for all a,b € A

- Does S have XY-symmetric term operations of arity 57 Yes!

Claim
There exists a term operation f in Sgd s.t. forall a,b € S3
» f|ap is symmetric;
» flab(b,a,a,a,a) = fl,p(b,b,b,a, a) = b whenever (a, b) ¢ o;

> flab(x1,x2,X3,Xa,X5) = x2 0 -+ -0 xZ2 whenever (a,b) € o
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» A contradiction should appear on a fixed shape e.g. (x,y, x,x,y).
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Decomposition using bridges

Theorem
Suppose
» 0a is A-irreducible.
4 - . AxA
» 6 < A% is a bridge from 0p to Oa. — ASFSSEEE
> tr(d) = Ax A. \
Then A= A/0A X G
for some affine G

A=BXG:
- domain A=Bx G
- A, x) = (FBGAY, X)),
df(xfl), o ,X,(,l)) + rlez) + I’2X2(2) 44 rnx,(,2))
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Results
- Strong Subalgebras and Bridges are now connected!

- PC and Linear Cases are now one type!
- Congruences are global!
- Subalgebras are stronger!

Existence of an XY-symmetric operation
Every finite Taylor algebra has XY-symmetric term operations.

A simplified proof of the CSP Dichotomy Conjecture

12 pages modulo properties of strong subalgebras.

Existence of palette symmetric operations

Every Taylor algebra A = B; x - - x B,,, where |B;| < 8 for every i
has palette symmetric term operations.

CSP(T) is solvable by the singleton(BLP+AIP) algorithm for any
tractable (multi-sorted) I' on domains of size at most 7.




Thank you for your attention
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