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Formulation of the CSP and the Dichotomy
Conjecture

The Fixed-Template Constraint Satisfaction Problem

Let A be a finite relational structure in a finite signature. CSP(A) is the
following decision problem:

Given a finite structure B in the same signature as A, decide whether or not
there is a homomorphism from B into A.

The Dichotomy Conjecture (Feder, Vardi, 1993)

CSP(A) is either solvable in polynomial time, or NP-complete.
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CSP(A) is either solvable in polynomial time, or NP-complete.

Algebraic Dichotomy Conjecture (Bulatov, Jeavons and Krokhin)

Let A be a finite relational structure in a finite signature. Then:
1 If A has a Taylor polymorphism, then CSP(A) is in P;
2 Otherwise, CSP(A) is NP-complete.
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CSP(A) is either solvable in polynomial time, or NP-complete.

Dichotomy Theorem (Bulatov; Zhuk, 2017)

Let A be a finite relational structure in a finite signature. Then:
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2 Otherwise, CSP(A) is NP-complete.
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Minimal Taylor Algebras

Both Dichotomy proofs use term reducts of the original Taylor algebra.

Any finite Taylor algebra A has a term reduct A′ which is still a Taylor algebra,
but no proper subclone of Clo A′ has a Taylor operation.

Such algebras are minimal Taylor algebras, for short MTAs, and any of their
Taylor terms generates the whole clone.

Any finite MTA has a ternary operation which generates its clone.
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How to think of an instance

For each element of B there is the set of possible values, initially all of A.
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How to think of an instance

A constraint shows all the ways in which a homomorphism from B to A can
restrict to some subset.
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How to think of an instance

Of course, there are several constraints to satisfy.
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How to think of an instance

A solution which satisfies both the red and the blue constraint is depicted by
the black line.
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Consistency checking I: local consistency

Returning to the original setup.
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Consistency checking I: local consistency

Some tuples can be removed from a constraint relation. We can also remove
from the domains of variables the points that no tuple passes through.
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Consistency checking I: local consistency

We can, in polynomial time, reduce our instance to an equivalent one such
that:

• For every subset S ⊆ B, |S| ≤ 2, and any pair of constraints (S1,R1) and
(S2,R2) such that S ⊆ S1,S2, the restrictions of R1 and of R2 to S are
equal (2-consistency), and

• For every triple b1, b2, b3 ∈ B, there exists a constraint (S,R) such that
{b1, b2, b3} ⊆ S (3-density).

(To ensure the 3-density, we first add the constraints of the form
({b1, b2, b3},A × A × A) for any b1, b2, b3 that fail the 3-density condition.)

The CSP instance that satisfies the above requirements is (2,3)-minimal.
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Consistency checking II: structural consistency
Various subinstances can be made by:

• restricting the constraints to some subset of B;
• considering a subset of constraints.

Zhuk makes subinstances by using both.

When all remaining variables in a subinstance are connected by the
remaining constraints and the subinstance looks like this

Zhuk’s irreducibility: the subinstance can be solved through any point.
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Vlado Uljarević Similarities between objects in Dichotomy proofs 7 / 17



Consistency checking II: structural consistency
Various subinstances can be made by:

• restricting the constraints to some subset of B;
• considering a subset of constraints.

Zhuk makes subinstances by using both.

When all remaining variables in a subinstance are connected by the
remaining constraints and the subinstance looks like this

Zhuk’s irreducibility: the subinstance can be solved through any point.
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Consistency checking II: structural consistency

Bulatov uses just subinstances obtained by restricting to subsets of variables.

Bulatov’s block-minimality: we can solve such subinstances through any tuple
in any constraint relation.

Theorem (Zhuk, Bulatov)

Let P be a CSP instance. P can be converted in polynomial time to an
equivalent one which is either Zhuk irreducible, or block-minimal.

Proposition

Any (2, 3)-minimal instance which is block-minimal must also be Zhuk
irreducible.
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Zhuk’s four types theorem

Theorem (Zhuk)
Let A be a MTA, then:

1 A has a nontrivial 2-absorbing subuniverse, or
2 A has a nontrivial center, or
3 A/θ is affine for some proper congruence θ, or
4 A/θ is polynomially complete for some proper congruence θ.

Theorem (The Zhuk reduction)

Let be P a consistent enough CSP instance and A a minimal Taylor algebra.
• If C ≤ A is either a binary absorbing subuniverse, or a center, or
• A has no binary absorbing subuniverse, nor a center, A/θ is polynomially

complete and C is a θ-block,
then P has a solution iff there exists a solution through some point of C.
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Centers and →as

Bulatov gives three types of directed edges on any MTA: a-, s- and m-edges.

as(A) – the digraph that is the union of indicated edges.

Definition (Zhuk)

A subset C ⊆ A is a center of A if there exist a algebra B which has no binary
absorbing subuniverses, and R ≤sd A × B such that C = {a ∈ A : [a]R = B}.
([a]R:= the set of all right R-neighbors of a. Dual notion: R[b].)

Theorem (Barto, Brady, Bulatov, Kozik, Zhuk)

Let A be a MTA. B ⊆ A is a center of A iff it is a ternary absorbing subset
(=subuniverse) of A (written B �3 A).

Theorem (Barto, Brady, Bulatov, Kozik, Zhuk)

Let A be a MTA. If B ⊆ A is a center, a ∈ B and a →as b, then b ∈ B.

Consequently, any center is the union of one or more strong as-components
which form an order ideal in the poset of strong as-components.

Vlado Uljarević Similarities between objects in Dichotomy proofs 10 / 17



Centers and →as

Bulatov gives three types of directed edges on any MTA: a-, s- and m-edges.

as(A) – the digraph that is the union of indicated edges.

Definition (Zhuk)

A subset C ⊆ A is a center of A if there exist a algebra B which has no binary
absorbing subuniverses, and R ≤sd A × B such that C = {a ∈ A : [a]R = B}.
([a]R:= the set of all right R-neighbors of a. Dual notion: R[b].)

Theorem (Barto, Brady, Bulatov, Kozik, Zhuk)

Let A be a MTA. B ⊆ A is a center of A iff it is a ternary absorbing subset
(=subuniverse) of A (written B �3 A).

Theorem (Barto, Brady, Bulatov, Kozik, Zhuk)

Let A be a MTA. If B ⊆ A is a center, a ∈ B and a →as b, then b ∈ B.

Consequently, any center is the union of one or more strong as-components
which form an order ideal in the poset of strong as-components.
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Comparing centers and sink strong
as-components I

Bulatov uses the sinks in the poset of strong components of as(A).

Advantages of centers:

• Centers are subuniverses,
• Centers are ternary absorbing and
• Zhuk can reduce the domain of a variable in a (locally and structurally

consistent enough) instance to the center of that domain.

Vlado Uljarević Similarities between objects in Dichotomy proofs 11 / 17



Comparing centers and sink strong
as-components I

Bulatov uses the sinks in the poset of strong components of as(A).

Advantages of centers:

• Centers are subuniverses,

• Centers are ternary absorbing and
• Zhuk can reduce the domain of a variable in a (locally and structurally

consistent enough) instance to the center of that domain.
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Comparing centers and sink strong
as-components II

If A is a MTA, denote S(A) := {all sink strong as-components of A}.
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Comparing centers and sink strong
as-components II

If A is a MTA, denote S(A) := {all sink strong as-components of A}.

Theorem (Bulatov’s Maximality Lemma)

Let R ≤sd A × B. If R′ ∈ S(R), then pr1 R′ ∈ S(A). If A′ ∈ S(A), then there
exists R′ ∈ S(R) such that pr1 R′ = A′.
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Theorem (Bulatov’s Quasi-2-Decomposability Theorem)

Let R ≤sd A1 × · · · × An, a ∈ A1 × · · · × An and for all i , j ⩽ n let R′
ij ∈ S(prijR).

If (a(i), a(j)) ∈ R′
ij for all i , j ⩽ n, then there exists R′ ∈ S(R) such that, for all

i , j ⩽ n, prijR′ = R′
ij .
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7-element MTA with a sink strong as-component
which is not a subuniverse

0

23

14

5 6

(Blue edges are m-edges, s-
edges are colored red.)

The algebra A1 has the ternary symmetric
operation t :
• A permutation φ = (0)(123456) is an

automorphism on A1.
• Each {0, x}, 0 ̸= x , is the universe of a

two-element majority subalgebra.

• ({1, 2,3}; t) ∼= TC
1 , i.e. t(1, 2,3) = 3.

• ({1, 2, x}; t) ∼= TC
4 , x ∈ {0,4, 5}, i.e.

t(1, 2,4) = 2.

• ({0, 1,3, 5}; t) ∼= M1 (T. Waldhauser), i.e.
t(x , y , z) = 0 if {x , y , z} ⊆ {0,1, 3,5}
and |{x , y , z}| = 3.
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4-element centerless MTA with comparable
as-components

0

1 2

3

The algebra A2 has the ternary symmetric
operation t :

• ({1, 2,3}; t) ∼= TC
14, i.e. t(1, 2,3) = 3.

• ({0, 1,2}; t) ∼= TC
12, i.e. t(0, 1,2) = 0.

• ({0, 1,3}; t) ∼= ({0, 2,3}; t) ∼= TC
10,

i.e. t(0, 1,3) = 1 and t(0,2, 3) = 2.
(Blue edges represent m-edges, a-edges are
green, while s-edges are colored red.)
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Centers vs sink strong as-components

Useful properties which hold in centers and those that hold in sink strong
as-components:

Sink as-comp Centers
Subuniverse ✗ ✓

�3 ✗ ✓

Reduce domains of variables ? ✓

Maximality ✓ ?
Rectangularity ✓ ?

Quasi-2-Decomposability ✓ ?
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If we denote by C(A) the set of all centers of a MTA A, the version of the
Maximality Theorem in which we replace S(A) by C(A) holds.
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Centers vs sink strong as-components

However, the Rectangularity Theorem for centers fails,
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Rectangularity ✓ ✗

Quasi-2-Decomposability ✓ ?
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Centers vs sink strong as-components

However, the Rectangularity Theorem for centers fails, and we also expect the
Quasi-2-Decomposability Theorem to fail for centers.
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Vlado Uljarević Similarities between objects in Dichotomy proofs 15 / 17



Centers vs sink strong as-components

It seems that we need to decide whether we prefer Zhuk’s centers or Bulatov’s
sink strong as-components.

Sink as-comp Centers
Subuniverse ✗ ✓

�3 ✗ ✓

Reduce domains of variables ? ✓

Maximality ✓ ✓

Rectangularity ✓ ✗

Quasi-2-Decomposability ✓ ?
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Centers vs sink strong as-components

If we replace the centers with minimal centers (under inclusion), everything
holds.

Sink as-comp Centers Min. centers
Subuniverse ✗ ✓ ✓

�3 ✗ ✓ ✓

Reduce domains of variables ? ✓ ✓

Maximality ✓ ✓ ✓

Rectangularity ✓ ✗ ✓

Quasi-2-Decomposability ✓ ? ✓
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What we did about bridges and inseparability

In Zhuk’s Dichotomy proof, a key notion is that of a bridge between a
congruence of Ai and a congruence of Aj . The bridge is a 4-ary compatible
relation δ ≤ Ai × Ai × Aj × Aj , which naturally defines the binary relation
δ̃ := δ(x , x , y , y).

In Bulatov’s papers there is a notion of inseparability of a covering pair of
congruences of Ai from a covering pair of congruences of Aj . To connect to
Zhuk’s bridges, we consider inseparability with respect to the binary relation
coming from the bridge, while Bulatov considers the inseparability with
respect to the constraint relations. We proved:

1 If there exists a bridge δ between α ∈ Con Ai and β ∈ Con Aj , then there
exist α1, α2 ∈ Con Ai and β1, β2 ∈ Con Aj such that α ≤ α1 ≺ α2,
β ≤ β1 ≺ β2 and (α1, α2) is mutually inseparable from (β1, β2) via δ̃.

2 If α1 ≺ α2 ∈ ConAi and β1 ≺ β2 ∈ ConAj are such that (α1, α2) is mutually
inseparable from (β1, β2) via some R ≤sd A × B, then there exists a
bridge δ between α1 and β1. (We can not ensure δ̃ = R, at least for now.)
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Bridges definition

Let A1,A2 be MTAs and αi ∈ Con Ai , i = 1, 2. We say that
δ ≤ A1 × A1 × A2 × A2 is a bridge between α1 and α2 if

• If (a, b, c,d) ∈ δ, (a′, a), (b′, b) ∈ α1 and (c′, c), (d ′, d) ∈ α2, then
(a′, b′, c′, d ′) ∈ δ.

• For all (a, b, c,d) ∈ δ, (a, b) ∈ α1 ⇔ (c, d) ∈ α2.
• For any (a, b) ∈ α1 there exist (c, d) ∈ α2 such that (a, b, c,d) ∈ δ and

symmetrically, for any (c, d) ∈ α2 there exist (a, b) ∈ α1 such that
(a, b, c,d) ∈ δ.

• There exists (a, b, c,d) ∈ δ such that (a, b) /∈ α1 (and therefore
(c, d) /∈ α2)

The bridge δ between α1 and α2 naturally defines the relation
δ̃ ≤sd (A1/α1)× (A2/α2) by ([a]α1 , [b]α2) ∈ δ̃ iff (a, a,b, b) ∈ δ.
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