

# $\sqcap$ -ideals and $\sqcup$ -filters in double Boolean algebras

By:

***Gaël Tenkeu Kembang***<sup>1</sup>, ***Michel Krebs***<sup>2</sup>, ***Léonard Kwuida***<sup>2</sup>, ***Etienne Romuald Alomo Temgoua***<sup>1</sup> and ***Yannick Léa Tenkeu Jeufack***<sup>1</sup>

<sup>1</sup> University of Yaounde 1, Yaounde, Cameroon

<sup>2</sup> Bern University of Applied Science, Bern, Switzerland

February 6, 2026

# Context and motivations

Double Boolean algebras are algebras  $\underline{D} := (D; \sqcap, \sqcup, \neg, \sqsubseteq, \perp, \top)$  of type  $(2, 2, 1, 1, 0, 0)$  introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts.

Every double Boolean algebra  $\underline{D}$  contains two Boolean algebras:  $\underline{D}_{\sqcap}$  and  $\underline{D}_{\sqcup}$ .

As in classical algebraic structures, Wille defines the notion of an ideal (resp. a filter) in double Boolean algebra  $\underline{D}$  as a subset  $I$  (resp.  $F$ ) of  $D$  such that  $\perp \in I$  (resp.  $\top \in F$ ) and for all  $x, y \in D$ ,

(resp.

- (1)  $x, y \in I \Rightarrow x \sqcup y \in I,$
- (2)  $y \in I, x \sqsubseteq y \Rightarrow x \in I.$

(1')  $x, y \in F \Rightarrow x \sqcap y \in F,$

(2')  $x \in F, x \sqsubseteq y \Rightarrow y \in F.)$

# Context and motivations

Double Boolean algebras are algebras  $\underline{D} := (D; \sqcap, \sqcup, \neg, \sqsubseteq, \perp, \top)$  of type  $(2, 2, 1, 1, 0, 0)$  introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts.

Every double Boolean algebra  $\underline{D}$  contains two Boolean algebras:  $\underline{D}_{\sqcap}$  and  $\underline{D}_{\sqcup}$ .

As in classical algebraic structures, Wille defines the notion of an ideal (resp. a filter) in double Boolean algebra  $\underline{D}$  as a subset  $I$  (resp.  $F$ ) of  $D$  such that  $\perp \in I$  (resp.  $\top \in F$ ) and for all  $x, y \in D$ ,

(resp.

- (1)  $x, y \in I \Rightarrow x \sqcup y \in I,$
- (2)  $y \in I, x \sqsubseteq y \Rightarrow x \in I.$

(1')  $x, y \in F \Rightarrow x \sqcap y \in F,$

(2')  $x \in F, x \sqsubseteq y \Rightarrow y \in F.)$

# Context and motivations

Double Boolean algebras are algebras  $\underline{D} := (D; \sqcap, \sqcup, \neg, \sqsubseteq, \perp, \top)$  of type  $(2, 2, 1, 1, 0, 0)$  introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts.

Every double Boolean algebra  $\underline{D}$  contains two Boolean algebras:  $\underline{D}_{\sqcap}$  and  $\underline{D}_{\sqcup}$ .

As in classical algebraic structures, Wille defines the notion of an ideal (resp. a filter) in double Boolean algebra  $\underline{D}$  as a subset  $I$  (resp.  $F$ ) of  $D$  such that  $\perp \in I$  (resp.  $\top \in F$ ) and for all  $x, y \in D$ ,

(resp.

- (1)  $x, y \in I \Rightarrow x \sqcup y \in I,$
- (2)  $y \in I, x \sqsubseteq y \Rightarrow x \in I.$

(1')  $x, y \in F \Rightarrow x \sqcap y \in F,$

(2')  $x \in F, x \sqsubseteq y \Rightarrow y \in F.)$

# Context and motivations

In [5] Y. Tenkeu et al showed that the set of all ideals (resp. filters) of a dBa  $\underline{D}$  is endowed with the structure of lattice isomorphic to the lattice of ideals (resp. filters) of the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ).

This result shows that the notion of ideal (resp. filter) defined by Wille allows us just to understand the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ) but not the dBa  $\underline{D}$ .

To overcome this, we introduce in this work a new class of ideals (resp. filters) in dBAs called  $\sqcap$ -ideals ( $\sqcup$ -filters) and we study their properties.

# Context and motivations

In [5] Y. Tenkeu et al showed that the set of all ideals (resp. filters) of a dBa  $\underline{D}$  is endowed with the structure of lattice isomorphic to the lattice of ideals (resp. filters) of the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ).

This result shows that the notion of ideal (resp. filter) defined by Wille allows us just to understand the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ) but not the dBa  $\underline{D}$ .

To overcome this, we introduce in this work a new class of ideals (resp. filters) in dBAs called  $\sqcap$ -ideals ( $\sqcup$ -filters) and we study their properties.

# Context and motivations

In [5] Y. Tenkeu et al showed that the set of all ideals (resp. filters) of a dBa  $\underline{D}$  is endowed with the structure of lattice isomorphic to the lattice of ideals (resp. filters) of the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ).

This result shows that the notion of ideal (resp. filter) defined by Wille allows us just to understand the Boolean algebra  $\underline{D}_{\sqcup}$  (resp.  $\underline{D}_{\sqcap}$ ) but not the dBa  $\underline{D}$ .

To overcome this, we introduce in this work a new class of ideals (resp. filters) in dBAs called  $\sqcap$ -ideals ( $\sqcup$ -filters) and we study their properties.

- ☞ **Preliminaries on double Boolean algebras**
- ☞  **$\sqcap$ -ideal and  $\sqcup$ -filter in double Boolean algebras**
- ☞ **The structure of the set of  $\sqcap$ -ideals (resp.  $\sqcup$ -filters) in double Boolean algebras**
- ☞ **Conclusion and perspectives**

# Preliminaries on double Boolean algebras

## Definition 1

An algebra  $\underline{D} = (D; \sqcap, \sqcup, \neg, \perp, \top, \top)$  of type  $(2, 2, 1, 1, 0, 0)$  is called **double Boolean algebra (dBa)** if the following axioms are satisfied:

|                                                             |                                                                 |
|-------------------------------------------------------------|-----------------------------------------------------------------|
| (1a) $(x \sqcap x) \sqcap y = x \sqcap y$                   | (1b) $(x \sqcup x) \sqcup y = x \sqcup y$                       |
| (2a) $x \sqcap y = y \sqcap x$                              | (2b) $x \sqcup y = y \sqcup x$                                  |
| (3a) $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$        | (3b) $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$            |
| (4a) $x \sqcap (x \sqcup y) = x \sqcap x$                   | (4b) $x \sqcup (x \sqcap y) = x \sqcup x$                       |
| (5a) $x \sqcap (x \vee y) = x \sqcap x$                     | (5b) $x \sqcup (x \wedge y) = x \sqcup x$                       |
| (6a) $x \sqcap (y \vee z) = (x \sqcap y) \vee (x \sqcap z)$ | (6b) $x \sqcup (y \wedge z) = (x \sqcup y) \wedge (x \sqcup z)$ |
| (7a) $\neg\neg(x \sqcap y) = x \sqcap y$                    | (7b) $\perp\perp(x \sqcup y) = x \sqcup y$                      |
| (8a) $\neg(x \sqcap x) = \neg x$                            | (8b) $\perp\perp(x \sqcup x) = \perp\perp x$                    |
| (9a) $x \sqcap \neg x = \perp$                              | (9b) $x \sqcup \perp\perp x = \top$                             |
| (10a) $\neg\perp = \top \sqcap \top$                        | (10b) $\perp\top = \perp \sqcup \perp$                          |
| (11a) $\neg\top = \perp$                                    | (11b) $\perp\perp = \top$                                       |

$$(12) (x \sqcap x) \sqcup (x \sqcap x) = (x \sqcup x) \sqcap (x \sqcup x)$$

where  $x \vee y = \neg(\neg x \sqcap \neg y)$  and  $x \wedge y = \perp\perp(x \sqcup \perp\perp y)$

# Preliminaries on double Boolean algebras

On a double Boolean algebra  $\underline{D}$ , a quasi-order relation  $\sqsubseteq$  is defined as follows:

$$x \sqsubseteq y \iff x \sqcap y = x \sqcap x \text{ and } x \sqcup y = y \sqcup y. \quad (1)$$

- $D_{\sqcap} := \{x \in \underline{D} \mid x \sqcap x = x\}$ ,  $D_{\sqcup} := \{x \in \underline{D} \mid x \sqcup x = x\}$ , and  $D_p := D_{\sqcap} \cup D_{\sqcup}$ .

$\underline{D}_{\sqcap} = (D_{\sqcap}; \sqcap, \vee, \neg, \perp, \top \sqcap \top)$  and  $\underline{D}_{\sqcup} = (D_{\sqcup}; \sqcup, \wedge, \lrcorner, \perp \sqcup \perp, \top)$  are Boolean algebras.

## Definition 2 ([6, 2])

A *dba*  $\underline{D}$  is called :

- 1 *Pure* if  $D = D_p$ .
- 2 *Trivial* if  $\top \sqcap \top = \perp \sqcup \perp$ .
- 3 *Regular* if " $\sqsubseteq$ " is an order.

# Preliminaries on double Boolean algebras

On a double Boolean algebra  $\underline{D}$ , a quasi-order relation  $\sqsubseteq$  is defined as follows:

$$x \sqsubseteq y \iff x \sqcap y = x \sqcap x \text{ and } x \sqcup y = y \sqcup y. \quad (1)$$

- $D_{\sqcap} := \{x \in \underline{D} \mid x \sqcap x = x\}$ ,  $D_{\sqcup} := \{x \in \underline{D} \mid x \sqcup x = x\}$ , and  $D_p := D_{\sqcap} \cup D_{\sqcup}$ .

$\underline{D}_{\sqcap} = (D_{\sqcap}; \sqcap, \vee, \neg, \perp, \top \sqcap \top)$  and  $\underline{D}_{\sqcup} = (D_{\sqcup}; \wedge, \sqcup, \lrcorner, \perp \sqcup \perp, \top)$  are Boolean algebras.

## Definition 2 ([6, 2])

A *dba*  $\underline{D}$  is called :

- ① **Pure** if  $D = D_p$ .
- ② **Trivial** if  $\top \sqcap \top = \perp \sqcup \perp$ .
- ③ **Regular** if " $\sqsubseteq$ " is an order.

# Preliminaries on double Boolean algebras

## Example 1

The algebra  $\underline{D}_3 := (\{\perp, a, \top\}; \sqcap, \sqcup, \neg, \lrcorner, \lrcurlywedge, \perp, \top)$  defined by the Hasse diagram and the Cayley tables in Fig. 1 is a **pure and trivial dBa**. Moreover  $D_{3\sqcap} = \{\perp, a\}$  and  $D_{3\sqcup} = \{a, \top\}$ .

$\top$   
 $\perp$   
 $a$   
 $\lrcorner$   
 $\lrcurlywedge$

| $\sqcap$ | $\perp$ | $a$     | $\top$  |
|----------|---------|---------|---------|
| $\perp$  | $\perp$ | $\perp$ | $\perp$ |
| $a$      | $\perp$ | $a$     | $a$     |
| $\top$   | $\perp$ | $a$     | $a$     |

| $\sqcup$ | $\perp$ | $a$    | $\top$ |
|----------|---------|--------|--------|
| $\perp$  | $a$     | $a$    | $\top$ |
| $a$      | $a$     | $a$    | $\top$ |
| $\top$   | $\top$  | $\top$ | $\top$ |

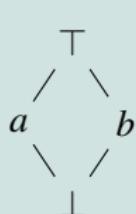
| $x$           | $\perp$ | $a$     | $\top$  |
|---------------|---------|---------|---------|
| $\neg x$      | $a$     | $\perp$ | $\perp$ |
| $\lrcorner x$ | $\top$  | $\top$  | $a$     |

Fig. 1:  $\underline{D}_3$  and its Cayley tables

# Preliminaries on double Boolean algebras

## Example 2

The algebra  $D_4 := (\{\perp, a, b, \top\}; \sqcap, \sqcup, \neg, \perp, \top)$  defined by the Hasse diagram and the Cayley tables in Fig. 2 is a **trivial dBA that is not pure**. Moreover  $D_{4\sqcap} = \{\perp, a\}$  and  $D_{4\sqcup} = \{a, \top\}$ .



| $\sqcap$ | $\perp$ | $a$     | $b$     | $\top$  |
|----------|---------|---------|---------|---------|
| $\perp$  | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| $a$      | $\perp$ | $a$     | $\perp$ | $a$     |
| $b$      | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| $\top$   | $\perp$ | $a$     | $\perp$ | $a$     |

| $\sqcup$ | $\perp$ | $a$    | $b$    | $\top$ |
|----------|---------|--------|--------|--------|
| $\perp$  | $a$     | $a$    | $\top$ | $\top$ |
| $a$      | $a$     | $a$    | $\top$ | $\top$ |
| $b$      | $\top$  | $\top$ | $\top$ | $\top$ |
| $\top$   | $\top$  | $\top$ | $\top$ | $\top$ |

| $x$       | $\perp$ | $a$     | $b$ | $\top$  |
|-----------|---------|---------|-----|---------|
| $\neg x$  | $a$     | $\perp$ | $a$ | $\perp$ |
| $\perp x$ | $\top$  | $\top$  | $a$ | $a$     |

Fig.2:  $D_4$  and its Cayley tables

# Preliminaries on double Boolean algebras

The following proposition is useful to perform calculations in dBas.

## Proposition 1 ([3, 4])

Let  $\underline{D}$  be a dBa. For all  $x, y \in D$ , the following statements hold.

- (1)  $x \sqcap y \in D_{\sqcap}$  and  $x \sqcup y \in D_{\sqcup}$ .
- (2)  $\neg x \in D_{\sqcap}$  and  $\perp x \in D_{\sqcup}$ .
- (3)  $x \vee y \in D_{\sqcap}$  and  $x \wedge y \in D_{\sqcup}$ .
- (4)  $\neg(x \vee y) = \neg x \sqcap \neg y$  and  $\neg(x \sqcap y) = \neg x \vee \neg y$ .
- (5)  $\perp(x \wedge y) = \perp x \sqcup \perp y$  and  $\perp(x \sqcup y) = \perp x \wedge \perp y$ .
- (6)  $x \sqcap y \sqsubseteq x \vee y \sqsubseteq x \sqcup y$  and  $x \sqcap y \sqsubseteq x \wedge y \sqsubseteq x \sqcup y$

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

## Definition 3

Let  $\underline{D}$  be a dBa. A subset  $I$  of  $D$  is called a  **$\sqcap$ -ideal** if  $\perp \in I$  and for all  $x, y \in D$

- (i)  $x, y \in I \Rightarrow x \vee y \in I$ ,
- (ii)  $y \in I \Rightarrow x \sqcap y \in I$ .

## Lemma 4

Let  $\underline{D}$  be a dBa and  $I \subseteq D$ . Then the following statements are equivalent:

- (1)  $\forall x, y \in D, y \in I \Rightarrow x \sqcap y \in I$ .
- (2)  $\forall x, y \in D, y \in I \text{ and } x \sqsubseteq y \Rightarrow x \sqcap x \in I$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

## Definition 3

Let  $\underline{D}$  be a dBa. A subset  $I$  of  $D$  is called a  **$\sqcap$ -ideal** if  $\perp \in I$  and for all  $x, y \in D$

- (i)  $x, y \in I \Rightarrow x \vee y \in I$ ,
- (ii)  $y \in I \Rightarrow x \sqcap y \in I$ .

## Lemma 4

Let  $\underline{D}$  be a dBa and  $I \subseteq D$ . Then the following statements are equivalent:

- (1)  $\forall x, y \in D, y \in I \Rightarrow x \sqcap y \in I$ .
- (2)  $\forall x, y \in D, y \in I \text{ and } x \sqsubseteq y \Rightarrow x \sqcap x \in I$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

From Lemma 4, we obtain the following characterization of  $\sqcap$ -ideals using the dBa quasi-order.

## Proposition 2

Let  $\underline{D}$  be a dBa and  $I \subseteq D$ .  $I$  is a  $\sqcap$ -ideal if and only if the following conditions are satisfied:

- (i)  $\perp \in I$ ,
- (ii)  $\forall x, y \in D, x, y \in I \Rightarrow x \vee y \in I$ ,
- (iii)  $\forall x, y \in D, y \in I \text{ and } x \sqsubseteq y \Rightarrow x \sqcap x \in I$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

The dual notion of  $\sqcap$ -ideal in dBa is the notion of  $\sqcup$ -filter:

## Definition 5

Let  $\underline{D}$  be a dBa. A subset  $F$  of  $D$  is called a  **$\sqcup$ -filter** if  $\top \in F$  and for all  $x, y \in D$ ,

- (i)  $x, y \in F \Rightarrow x \wedge y \in F$ ,
- (ii)  $y \in F \Rightarrow x \sqcup y \in F$ .

The dual version of Proposition 2 is given by:

## Proposition 3

Let  $\underline{D}$  be a dBa and  $F \subseteq D$ .  $F$  is a  $\sqcup$ -filter if and only if the following conditions are satisfied:

- (i)  $\top \in F$ ,
- (ii)  $\forall x, y \in D, x, y \in F \Rightarrow x \wedge y \in F$ ,
- (iii)  $\forall x, y \in D, x \in F \text{ and } x \sqsubseteq y \Rightarrow y \sqcup y \in F$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

The dual notion of  $\sqcap$ -ideal in dBa is the notion of  $\sqcup$ -filter:

## Definition 5

Let  $\underline{D}$  be a dBa. A subset  $F$  of  $D$  is called a  **$\sqcup$ -filter** if  $\top \in F$  and for all  $x, y \in D$ ,

- (i)  $x, y \in F \Rightarrow x \wedge y \in F$ ,
- (ii)  $y \in F \Rightarrow x \sqcup y \in F$ .

The dual version of Proposition 2 is given by:

## Proposition 3

Let  $\underline{D}$  be a dBa and  $F \subseteq D$ .  $F$  is a  $\sqcup$ -filter if and only if the following conditions are satisfied:

- (i)  $\top \in F$ ,
- (ii)  $\forall x, y \in D, x, y \in F \Rightarrow x \wedge y \in F$ ,
- (iii)  $\forall x, y \in D, x \in F \text{ and } x \sqsubseteq y \Rightarrow y \sqcup y \in F$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

We give some examples to illustrate our definition.

## Example 6

We consider the dBA  $\underline{D}_4$  of Example 2. Then the sets  $I = \{\perp, b\}$  and  $J = \{\perp, a, \top\}$  are  $\sqcap$ -ideals, but the set  $M = \{\perp, b, \top\}$  is not a  $\sqcap$ -ideal (since  $\top \in M$  but  $\top \sqcap \top = a \notin M$ ).

The following lemma is a direct consequence of Definition 3 and Definition 5.

## Lemma 7

Let  $\underline{D}$  be a dBA. Then,

- (1) If  $I$  is a  $\sqcap$ -ideal, then  $I \cap D_{\sqcap}$  is an ideal of the Boolean algebra  $D_{\sqcap}$ .
- (2) If  $F$  is a  $\sqcup$ -filter, then  $F \cap D_{\sqcup}$  is a filter of the Boolean algebra  $D_{\sqcup}$ .

# The notion of $\sqcap$ -ideal (resp. $\sqcup$ -filter) in double Boolean algebras

We give some examples to illustrate our definition.

## Example 6

We consider the dBA  $\underline{D}_4$  of Example 2. Then the sets  $I = \{\perp, b\}$  and  $J = \{\perp, a, \top\}$  are  $\sqcap$ -ideals, but the set  $M = \{\perp, b, \top\}$  is not a  $\sqcap$ -ideal (since  $\top \in M$  but  $\top \sqcap \top = a \notin M$ ).

The following lemma is a direct consequence of Definition 3 and Definition 5.

## Lemma 7

Let  $\underline{D}$  be a dBA. Then,

- (1) If  $I$  is a  $\sqcap$ -ideal, then  $I \cap D_{\sqcap}$  is an ideal of the Boolean algebra  $\underline{D}_{\sqcap}$ .
- (2) If  $F$  is a  $\sqcup$ -filter, then  $F \cap D_{\sqcup}$  is a filter of the Boolean algebra  $\underline{D}_{\sqcup}$ .

## Proposition 4

Let  $\underline{D}$  be a dBa. Then,

- (1) Every ideal of the Boolean algebra  $\underline{D}_{\sqcap}$  is a  $\sqcap$ -ideal.
- (2) Every filter of the Boolean algebra  $\underline{D}_{\sqcup}$  is a  $\sqcup$ -filter.

Wille [6] defines ideals and filters in dBa as follows:

### Definition 8 ([6])

Let  $D$  be a dBa. A subset  $I$  of  $D$  is called an **ideal** if  $\perp \in I$  and for all  $x, y \in D$ ,

- (1)  $x, y \in I \Rightarrow x \sqcup y \in I$ ,
- (2)  $y \in I, x \sqsubseteq y \Rightarrow x \in I$ .

The notion of **filter** is defined dually.

The following proposition shows that the notion of  $\sqcap$ -ideal (resp.  $\sqcup$ -filter) in double Boolean algebras generalizes that of ideal (resp. filter) as defined by Rudolf Wille.

### Proposition 5

*In any dBa, ideals are  $\sqcap$ -ideals and filters are  $\sqcup$ -filters. The converse is not true.*

Wille [6] defines ideals and filters in dBa as follows:

### Definition 8 ([6])

Let  $D$  be a dBa. A subset  $I$  of  $D$  is called an **ideal** if  $\perp \in I$  and for all  $x, y \in D$ ,

- (1)  $x, y \in I \Rightarrow x \sqcup y \in I$ ,
- (2)  $y \in I, x \sqsubseteq y \Rightarrow x \in I$ .

The notion of **filter** is defined dually.

The following proposition shows that the notion of  $\sqcap$ -ideal (resp.  $\sqcup$ -filter) in double Boolean algebras generalizes that of ideal (resp. filter) as defined by Rudolf Wille.

### Proposition 5

*In any dBa, ideals are  $\sqcap$ -ideals and filters are  $\sqcup$ -filters. The converse is not true.*

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

We denote by  $\mathcal{I}(\underline{D})$  (resp.  $\mathcal{F}(\underline{D})$ ) the set of all ideals (resp. filter) of  $\underline{D}$  and by  $\mathcal{I}_{\sqcap}(\underline{D})$  (resp.  $\mathcal{F}_{\sqcup}(\underline{D})$ ) the set of all  $\sqcap$ -ideals (resp.  $\sqcup$ -filters) of  $\underline{D}$ .

A **closure system** on a set  $A$  is a collection of subsets of  $A$  that contains  $A$  and closed under arbitrary intersections.

## Lemma 9

Let  $\underline{D}$  be a dBa. Then, the sets  $\mathcal{I}_{\sqcap}(\underline{D})$  and  $\mathcal{F}_{\sqcup}(\underline{D})$  are closure systems.

## Notation 1

We denote by  $I_{\sqcap}(X)$  the  $\sqcap$ -ideal generated by  $X$ . If  $X = \{a\}$ , then  $I_{\sqcap}(X)$  is denoted by  $I_{\sqcap}(a)$  and is called the **principal  $\sqcap$ -ideal** generated by  $a$ . Dually, we denote by  $F_{\sqcup}(X)$  the  $\sqcup$ -filter generated by  $X$ . If  $X = \{a\}$ , then  $F_{\sqcup}(X)$  is denoted by  $F_{\sqcup}(a)$  and is called the **principal  $\sqcup$ -filter** generated by  $a$ .

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

We denote by  $\mathcal{I}(\underline{D})$  (resp.  $\mathcal{F}(\underline{D})$ ) the set of all ideals (resp. filter) of  $\underline{D}$  and by  $\mathcal{I}_{\sqcap}(\underline{D})$  (resp.  $\mathcal{F}_{\sqcup}(\underline{D})$ ) the set of all  $\sqcap$ -ideals (resp.  $\sqcup$ -filters) of  $\underline{D}$ .

A **closure system** on a set  $A$  is a collection of subsets of  $A$  that contains  $A$  and closed under arbitrary intersections.

## Lemma 9

Let  $\underline{D}$  be a dBa. Then, the sets  $\mathcal{I}_{\sqcap}(\underline{D})$  and  $\mathcal{F}_{\sqcup}(\underline{D})$  are closure systems.

## Notation 1

We denote by  $I_{\sqcap}(X)$  the  **$\sqcap$ -ideal generated** by  $X$ . If  $X = \{a\}$ , then  $I_{\sqcap}(X)$  is denoted by  $I_{\sqcap}(a)$  and is called the **principal  $\sqcap$ -ideal** generated by  $a$ . Dually, we denote by  $F_{\sqcup}(X)$  the  **$\sqcup$ -filter generated** by  $X$ . If  $X = \{a\}$ , then  $F_{\sqcup}(X)$  is denoted by  $F_{\sqcup}(a)$  and is called the **principal  $\sqcup$ -filter** generated by  $a$ .

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Theorem 10

Let  $\underline{D}$  be a dBa.

① Then  $\mathcal{I}_{\sqcap}(\underline{D})$  is a complete lattice in which sup and inf are given by:

$$\bigwedge_{i \in K} I_i = \bigcap_{i \in K} I_i \text{ and } \bigvee_{i \in K} I_i = I_{\sqcap} \left( \bigcup_{i \in K} I_i \right)$$

② Then  $\mathcal{F}_{\sqcup}(\underline{D})$  is a complete lattice in which sup and inf are given by:

$$\bigwedge_{i \in K} G_i = \bigcap_{i \in K} G_i \text{ and } \bigvee_{i \in K} G_i = F_{\sqcup} \left( \bigcup_{i \in K} G_i \right)$$

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

In the following proposition, we give a description of  $I_{\sqcap}(X)$  and  $F_{\sqcup}(X)$ .

## Proposition 6

Let  $\underline{D}$  be a dBa,  $a \in D$ ,  $\emptyset \neq X \subseteq D$ ,  $I_1, I_2 \in \mathcal{I}_{\sqcap}(\underline{D})$ ,  $F_1, F_2 \in \mathcal{F}_{\sqcup}(\underline{D})$ .

- (1)  $I_{\sqcap}(a) = \{a\} \cup \{x \in D_{\sqcap} \mid x \sqsubseteq a \vee a\}$
- (2)  $I_{\sqcap}(X) = X \cup \{x \in D_{\sqcap} \mid x \sqsubseteq x_1 \vee \cdots \vee x_n \text{ for some } n \in \mathbb{N}^*, x_1, \dots, x_n \in X\}$
- (3)  $I_1 \vee_{\sqcap} I_2 = I_{\sqcap}(I_1 \cup I_2) = I_1 \cup I_2 \cup \{x \in D_{\sqcap} \mid x \sqsubseteq x_1 \vee x_2 \text{ for some } x_1 \in I_1, x_2 \in I_2\}$
- (4)  $F_{\sqcup}(a) = \{a\} \cup \{x \in D_{\sqcup} \mid a \wedge a \sqsubseteq x\}$
- (5)  $F_{\sqcup}(X) = X \cup \{x \in D_{\sqcup} \mid x_1 \wedge \cdots \wedge x_n \sqsubseteq x \text{ for some } n \in \mathbb{N}^*, x_1, \dots, x_n \in X\}$
- (6)  $F_1 \vee_{\sqcup} F_2 = F_{\sqcup}(F_1 \cup F_2) = F_1 \cup F_2 \cup \{x \in D_{\sqcap} \mid x_1 \wedge x_2 \sqsubseteq x \text{ for some } x_1 \in F_1, x_2 \in F_2\}$

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Theorem 11

Let  $\underline{D}$  be a dBa. Then  $\mathcal{I}_{\sqcap}(\underline{D})$  is an algebraic lattice where the compact elements are finitely generated  $\sqcap$ -ideals. Dually,  $\mathcal{F}_{\sqcup}(\underline{D})$  is an algebraic lattice where the compact elements are finitely generated  $\sqcup$ -filters.

We denote by  $\mathcal{I}_{\sqcap p}(\underline{D})$  (resp.  $\mathcal{F}_{\sqcup p}(\underline{D})$ ) the set of all principal  $\sqcap$ -ideals (resp.  $\sqcup$ -filters) of  $\underline{D}$ .

## Lemma 12

Let  $\underline{D}$  be a dBa. The maps  $\Psi: D \rightarrow \mathcal{I}_{\sqcap p}(\underline{D})$ ,  $a \mapsto I_{\sqcap}(a)$  and  $\psi: D \rightarrow \mathcal{F}_{\sqcup p}(\underline{D})$ ,  $a \mapsto F_{\sqcup}(a)$  are bijections.

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Theorem 11

Let  $\underline{D}$  be a dBa. Then  $\mathcal{I}_{\sqcap}(\underline{D})$  is an algebraic lattice where the compact elements are finitely generated  $\sqcap$ -ideals. Dually,  $\mathcal{F}_{\sqcup}(\underline{D})$  is an algebraic lattice where the compact elements are finitely generated  $\sqcup$ -filters.

We denote by  $\mathcal{I}_{\sqcap p}(\underline{D})$  (resp.  $\mathcal{F}_{\sqcup p}(\underline{D})$ ) the set of all principal  $\sqcap$ -ideals (resp.  $\sqcup$ -filters) of  $\underline{D}$ .

## Lemma 12

Let  $\underline{D}$  be a dBa. The maps  $\Psi: D \rightarrow \mathcal{I}_{\sqcap p}(\underline{D})$ ,  $a \mapsto I_{\sqcap}(a)$  and  $\psi: D \rightarrow \mathcal{F}_{\sqcup p}(\underline{D})$ ,  $a \mapsto F_{\sqcup}(a)$  are bijections.

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

The bijections of Lemma 12 make possible to transfer the structure of double Boolean algebra of  $\underline{D}$  to  $\mathcal{I}_{\sqcap p}(\underline{D})$  and  $\mathcal{F}_{\sqcup p}(\underline{D})$ . Therefore we define:

- on  $\mathcal{I}_{\sqcap p}(\underline{D})$  the operation  $\sqcap$ ,  $\sqcup$ ,  $\neg$ ,  $\sqcup$  as follows:

$$I_{\sqcap}(a) \sqcap I_{\sqcap}(b) = I_{\sqcap}(a \sqcap b), \quad I_{\sqcap}(a) \sqcup I_{\sqcap}(b) = I_{\sqcap}(a \sqcup b)$$

$$\neg I_{\sqcap}(a) = I_{\sqcap}(\neg a), \quad \sqcup I_{\sqcap}(a) = I_{\sqcap}(\sqcup a)$$

- on  $\mathcal{F}_{\sqcup p}(\underline{D})$  the operation  $\sqcap$ ,  $\sqcup$ ,  $\neg$ ,  $\sqcup$  as follows:

$$F_{\sqcup}(a) \sqcap F_{\sqcup}(b) = F_{\sqcup}(a \sqcap b), \quad F_{\sqcup}(a) \sqcup F_{\sqcup}(b) = F_{\sqcup}(a \sqcup b)$$

$$\neg F_{\sqcup}(a) = F_{\sqcup}(\neg a), \quad \sqcup F_{\sqcup}(a) = F_{\sqcup}(\sqcup a)$$

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Theorem 13

Let  $\underline{D}$  be a dBa. Then

- (1)  $\underline{\mathcal{I}_{\sqcap_p}(\underline{D})} := (\mathcal{I}_{\sqcap_p}(\underline{D}); \sqcap, \sqcup, \neg, \sqcup, I_{\sqcap}(\perp), I_{\sqcap}(\top))$  is a dBa isomorphic to  $\underline{D}$  via the map  $\Psi: D \rightarrow \mathcal{I}_{\sqcap_p}(\underline{D})$ ,  $a \mapsto I_{\sqcap}(a)$ .
- (2)  $\underline{\mathcal{F}_{\sqcup_p}(\underline{D})} := (\mathcal{F}_{\sqcup_p}(\underline{D}); \sqcap, \sqcup, \neg, \sqcup, F_{\sqcup}(\perp), F_{\sqcup}(\top))$  is a dBa isomorphic to  $\underline{D}$  via the map  $\psi: D \rightarrow \mathcal{F}_{\sqcup_p}(\underline{D})$ ,  $a \mapsto F_{\sqcup}(a)$ .

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

An algebra  $\underline{H} := (H; \wedge, \vee, \rightarrow, 0, 1)$  is called a **Heyting algebra** if  $(H; \wedge, \vee, 0, 1)$  is a Bounded lattice and the following law of Residuation holds: for all  $x, y, z \in H$ ,

$$z \wedge x \leq y \quad \text{if and only if} \quad z \leq x \rightarrow y.$$

For any  $I_1, I_2 \in \mathcal{I}_{\sqcap}(D), F_1, F_2 \in \mathcal{F}_{\sqcup}(D)$ , we set :

$$I_1 \rightarrow I_2 = \{x \in D \mid I_{\sqcap}(x) \cap I_1 \subseteq I_2\} \text{ and } F_1 \rightarrow F_2 = \{x \in D \mid F_{\sqcup}(x) \cap F_1 \subseteq F_2\}.$$

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

An algebra  $\underline{H} := (H; \wedge, \vee, \rightarrow, 0, 1)$  is called a **Heyting algebra** if  $(H; \wedge, \vee, 0, 1)$  is a Bounded lattice and the following law of Residuation holds: for all  $x, y, z \in H$ ,

$$z \wedge x \leq y \quad \text{if and only if} \quad z \leq x \rightarrow y.$$

For any  $I_1, I_2 \in \mathcal{I}_{\sqcap}(D)$ ,  $F_1, F_2 \in \mathcal{F}_{\sqcup}(D)$ , we set :

$$I_1 \rightarrow I_2 = \{x \in D \mid I_{\sqcap}(x) \cap I_1 \subseteq I_2\} \text{ and } F_1 \rightarrow F_2 = \{x \in D \mid F_{\sqcup}(x) \cap F_1 \subseteq F_2\}.$$

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Lemma 14

Let  $\underline{D}$  be a dBa,  $I_1, I_2, I \in \mathcal{I}_{\sqcap}(D)$ ,  $F_1, F_2, F \in \mathcal{F}_{\sqcup}(D)$ , then the following statements hold:

- (1)  $I_1 \rightarrow I_2$  is a  $\sqcap$ -ideal and  $F_1 \rightarrow F_2$  is a  $\sqcup$ -filter.
- (2)  $I_1 \cap I \subseteq I_2$  iff  $I \subseteq I_1 \rightarrow I_2$ .
- (3)  $F_1 \cap F \subseteq F_2$  iff  $F \subseteq F_1 \rightarrow F_2$ .

## Theorem 15

For any dBa  $\underline{D}$ ,  $(\mathcal{I}_{\sqcap}(\underline{D}); \cap, \vee_{\sqcap}, \rightarrow, \{\perp\}, D)$  and  $(\mathcal{F}_{\sqcup}(\underline{D}); \cap, \vee_{\sqcup}, \rightarrow, \{\top\}, D)$  are Heyting algebras.

# The structure of the set of $\sqcap$ -ideals (resp. $\sqcup$ -filters) in double Boolean algebras

## Lemma 14

Let  $\underline{D}$  be a dBa,  $I_1, I_2, I \in \mathcal{I}_{\sqcap}(D)$ ,  $F_1, F_2, F \in \mathcal{F}_{\sqcup}(D)$ , then the following statements hold:

- (1)  $I_1 \rightarrow I_2$  is a  $\sqcap$ -ideal and  $F_1 \rightarrow F_2$  is a  $\sqcup$ -filter.
- (2)  $I_1 \cap I \subseteq I_2$  iff  $I \subseteq I_1 \rightarrow I_2$ .
- (3)  $F_1 \cap F \subseteq F_2$  iff  $F \subseteq F_1 \rightarrow F_2$ .

## Theorem 15

For any dBa  $\underline{D}$ ,  $(\mathcal{I}_{\sqcap}(\underline{D}); \cap, \vee_{\sqcap}, \rightarrow, \{\perp\}, D)$  and  $(\mathcal{F}_{\sqcup}(\underline{D}); \cap, \vee_{\sqcup}, \rightarrow, \{\top\}, D)$  are Heyting algebras.

# Conclusion and perspectives

In this work, we have introduced  $\sqcap$ -ideals and  $\sqcup$ -filters in dBas. We have shown that this class of ideals (resp. filters) forms an algebraic and residuated lattice that is actually a Heyting algebra.

We plan in our future work to use this notion of  $\sqcap$ -ideals ( $\sqcup$ -filters) to a better understanding of the variety of double Boolean algebras. The study of spectral theory using  $\sqcap$ -ideals and  $\sqcup$ -filters should be considered.

# Conclusion and perspectives

In this work, we have introduced  $\sqcap$ -ideals and  $\sqcup$ -filters in dBas. We have shown that this class of ideals (resp. filters) forms an algebraic and residuated lattice that is actually a Heyting algebra.

We plan in our future work to use this notion of  $\sqcap$ -ideals ( $\sqcup$ -filters) to a better understanding of the variety of double Boolean algebras. The study of spectral theory using  $\sqcap$ -ideals and  $\sqcup$ -filters should be considered.



S. Burris, H.P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag New York Inc., 1981.



L. Kwuida: Prime ideal theorem for double Boolean algebras. *Discussiones Mathematicae - General Algebra and Applications* 27.2, 2007, pp. 263-275. <http://eudml.org/doc/276866>.



P. Howlader, M. Banerjee: Remarks on prime ideal and representation theorem for double Boolean algebras. In Francisco J. Valverde-Albacete, Martin Trnecka (Eds.): *Proceedings of the 15th International Conference on Concept Lattices and Their Applications*, CLA 2020, pp. 83–94, 2020.



P. Howlader, M. Banerjee: Topological representation of double Boolean algebras. *Algebra Univers.* 2023. <https://doi.org/10.1007/s00012-023-00811-x>



Y.L.J. Tenkeu, G.K. Tenkeu, E.R.A. Temgoua, L. Kwuida: *Filters, ideals and power of double Boolean algebras*, *Discussiones Mathematicae - General Algebra and Applications* 44(2) (2024), <https://doi.org/10.7151/dmgaa.1466>



R. Wille: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds) *Conceptual Structures: Logical, Linguistic, and Computational Issues. ICCS 2000. Lecture Notes in Computer Science()*, vol 1867. Springer, Berlin, Heidelberg, 2000. [https://doi.org/10.1007/10722280\\_22](https://doi.org/10.1007/10722280_22).

# ACKNOWLEDGEMENT

We acknowledge the financial support of

- Prof. Sankappanavar
- The BFH-W
- The organizers of AAA 108

who make it possible to attend this conference.