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Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:

DLO is w-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic.
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out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A, B C R which are countable and dense then A= B as linear
orders.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2/17



N
Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is w-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A, B C R which are countable and dense then A= B as linear
orders. Consequently for each such A, B C R there is a linear order
automorphism (and hence a homeomorphism) of R, h: R = R so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2/17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is w-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A, B C R which are countable and dense then A= B as linear
orders. Consequently for each such A, B C R there is a linear order

automorphism (and hence a homeomorphism) of R, h: R = R so that
h"A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.
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A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is w-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A, B C R which are countable and dense then A= B as linear
orders. Consequently for each such A, B C R there is a linear order
automorphism (and hence a homeomorphism) of R, h: R = R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n > 1 and every pair A, B C R" which are
countable and dense there is a homeomorphism h : R" =2 R" so that
h"A=B.
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A persistent and programmatic topic in modern set theory is to understand
when theorems such as these, which deal in some essential way with
countable sets, can be “lifted” to the uncountable setting.
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Introduction

A persistent and programmatic topic in modern set theory is to understand
when theorems such as these, which deal in some essential way with
countable sets, can be “lifted” to the uncountable setting.

e The goal of this talk is to introduce the case of study of such for
Cantor's theorem.

e The uncountable version of Cantor's theorem is known as Baumgartner's
Axiom (BA) and is independent of ZFC.

o In the rest of the talk we will sketch the background on BA and its
applications as well as some new work due to myself jointly with Marun
and Shelah.
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Baumgartner's Axiom

It is clear that the most naive generalizations of Cantor's theorem fail
when “countable” is replaced by “uncountable”. For instance

e Consider the whole real line R versus R \ {0}. Not isomorphic because
one is complete and one is not.

o A little less trivial, consider a dense linear order which can be covered by
countably many closed, nowhere dense subsets of R versus one that is the
intersection of countably many dense subsets of R (not isomorphic by the
Baire category theorem).

e In fact there are many (in fact 22R°—many) pairwise non-isomorphic
subsets A C R of size 280,

e Also, consider linear orders with uncountable intersection in every open
interval versus those that are uncountable in some bounded region but
then countable outside of that.
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Baumgartner's Axiom

In order to avoid these obvious counter-examples, consider the following
definition.
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Baumgartner's Axiom

In order to avoid these obvious counter-examples, consider the following
definition.

Definition

A linear order L is Ni-dense if for every a < b € L there are Nj-many
elements in (a, b).

We will be interested in separable linear orders L, in which case L will be
isomorphic to an N;-dense set of reals - i.e. one whose intersection with
every non-empty open interval has size X;. In what follows we will reserve
N1-dense for this type of linear order.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 5/17



Baumgartner's Axiom

An extremely important result in modern set theory is the following. Like

Cantor’s original categoricity argument, both the proof method and the
statement itself have been widely applied since.
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It is consistent that every pair of X1-dense linear orders are isomorphic.

The above statement is usually called Baumgartner's Axiom or BA. By the
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Baumgartner's Axiom

An extremely important result in modern set theory is the following. Like
Cantor’s original categoricity argument, both the proof method and the
statement itself have been widely applied since.

Theorem (Baumgartner '73)

It is consistent that every pair of X1-dense linear orders are isomorphic.

The above statement is usually called Baumgartner's Axiom or BA. By the
counterexamples above note that it follows that 280 > X; and in fact every
set of size N; must be meager i.e. can be covered by the union of
countably many nowhere dense sets. In fact more is true - the bounding
number, b must be larger than ®; (Todorcevic) and 2% = 2%t (folklore ?).
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Baumgartner's Axiom

Note that under BA every Xi-dense set L must be homogeneous: for every
a,b € L there is an automorphism h: L — L so that h(a) = b.
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Baumgartner's Axiom

Note that under BA every Xi-dense set L must be homogeneous: for every
a,b € L there is an automorphism h: L — L so that h(a) = b.
Strengthening Baumgartner's result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map * : K — K which is antimonotone and such that (xV y)* = x* A y*.
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For any finite distributive lattice with involution, K it is consistent that
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(with () form a distributive lattice isomorphic to K with reversability the
involution.
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Baumgartner's Axiom

Note that under BA every Xi-dense set L must be homogeneous: for every
a,b € L there is an automorphism h: L — L so that h(a) = b.
Strengthening Baumgartner's result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map * : K — K which is antimonotone and such that (xV y)* = x* A y*.

Theorem (Avraham-Rubin-Shelah, '85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous N1-dense sets (up to isomorphsim) under embeddability
(with () form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L* given by
flipping the order. If L C R then L* = {—a| a € L}. Under Martin's
Axiom the homogeneous Xi-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.
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Martin's Axiom

Often statements generalizing sets of reals of size Ry to ¥; follow from
Martin's Axiom, MAy, .
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antichains there is a filter G C P simultaneously intersecting them all.
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Martin's Axiom

Often statements generalizing sets of reals of size Ry to ¥; follow from
Martin's Axiom, MAy, .

e Recall that this states that for each partial order P either has an
uncountable antichain or else for each family of X; many maximal
antichains there is a filter G C P simultaneously intersecting them all.

e The technicalities of this statement are not important here but note that
it implies many of the consequences of BA we have seen. For instance
MAy, implies the failure of CH - apply MAy, to the partial order of finite
binary sequences under end extension.
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Martin's Axiom

For this reason the following theorem is very notable.

Theorem (Avraham-Shelah '81)
BA does not follow from MAy, . J
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Martin's Axiom

For this reason the following theorem is very notable.

Theorem (Avraham-Shelah '81)
BA does not follow from MAy, . J

They actually give several proofs of this theorem. The first shows that
MAy, is consistent with an Nj-dense order L which is called essentially
increasing: if f : L — L is a function with uncountable domain then it has
an uncountable subset that is monotonically increasing. Note that this
implies in particular that L is not isomorphic to its reverse
L*={-a|aelL}.
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Martin's Axiom

In fact they show a little more - call an Ri-dense set L = {a¢ | £ € w1}
good if for each n < w and each family of disjoint, increasing n-tuples
{be € [L]" | € € w1} there are £ < 7 so that for all i < n b(i)e < by,(i). It
is not hard to check that under CH there are good RN;-dense sets.

Lemma (Avraham-Shelah, '81)

MAy, is consistent with a good set. If L is good and MAy, holds then L is
essentially increasing.
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Martin's Axiom

Recently we improved this by showing MAy, implies even more properties
of Nj-dense sets.
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Martin's Axiom

Recently we improved this by showing MAy, implies even more properties
of Nj-dense sets.

Theorem (Marun-Shelah-S.)
If L is good then MAy, implies that L is slicewise coverable. J

Here L is slicewise coverable if given any partition of L into wi-many
countable dense sets {L, | & € w1} there are countably many increasing
functions f, : L — L so that 7, = L, x L.

acwy

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 11/17



Martin's Axiom

Recently we improved this by showing MAy, implies even more properties
of Nj-dense sets.

Theorem (Marun-Shelah-S.)
If L is good then MAy, implies that L is slicewise coverable.

Here L is slicewise coverable if given any partition of L into wi-many
countable dense sets {L, | & € w1} there are countably many increasing
functions f, : L — L so that J f, = U,eu, La X La-

e The point here is that if L is slicewise coverable then it cannot be made
isomorphic to its reverse by an Nj-sized forcing which preserves Ni, thus
strengthening the conclusion of the original Avraham-Shelah theorem.
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Martin's Axiom

Note this is in fact a real strengthening.
Lemma

Slicewise coverable implies essentially increasing. J
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Note this is in fact a real strengthening.

Lemma
Slicewise coverable implies essentially increasing.

Proof.
Let f : L — L have uncountable domain. One can find a partition of L into
countable dense sets L, for &« < wy so that each L, is closed under f.
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Martin's Axiom

Note this is in fact a real strengthening.

Lemma
Slicewise coverable implies essentially increasing.

Proof.

Let f : L — L have uncountable domain. One can find a partition of L into
countable dense sets L, for @ < w; so that each L, is closed under f. By
slicewise coverability it follows that the graph of f can be covered by
countably many increasing functions, thus one of these has uncountable
intersection with f. 0)
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Homeomorphism Groups

BA can be reframed topologically as a statement about homeomorphism
groups as follows:

For each A, B C R which are X;-dense there is an autohomeomorphism
h:R — R so that h"A = B.
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BA can be reframed topologically as a statement about homeomorphism
groups as follows:

For each A, B C R which are X;-dense there is an autohomeomorphism
h:R — R so that h"A = B.

For a general topological space X we can define a subset A C X to be
Ni-dense if it has intersection size N; with every nonempty open subset of
X. In this context we can formulate a BA-type axiom for non linearly
ordered spaces, denote BA(X):
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For each A, B C R which are X;-dense there is an autohomeomorphism
h:R — R so that h"A = B.

For a general topological space X we can define a subset A C X to be
Ni-dense if it has intersection size N; with every nonempty open subset of
X. In this context we can formulate a BA-type axiom for non linearly
ordered spaces, denote BA(X):

For each A, B C X which are N;-dense there is an autohomeomorphism
h: X — X so that h*A = B.
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Homeomorphism Groups

Surprisingly the higher dimensional Euclidean spaces behave differently.
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The difficulty is in lifting the ambient structure, as the following theorem
shows.
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Homeomorphism Groups

Surprisingly the higher dimensional Euclidean spaces behave differently.

Theorem (Steprans-Watson, '87)
For every n > 1 the axiom BA(R") follows from MAy, (in fact p > N;). J

The difficulty is in lifting the ambient structure, as the following theorem
shows.

Theorem (S.)

There is a perfect Polish space all of whose X1-dense subsets are
homeomorphic if and only if all perfect Polish spaces have all their

N1 -dense subsets homeomorphic if and only if there is a unique separable,
metrizable, zero dimensional N1-crowded space.
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Homeomorphism Groups

What is left open is the following very intriguing question.
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Homeomorphism Groups

What is left open is the following very intriguing question.

Question
Does BA (:= BA(R)) imply BA(R") for any finite n > 17 }
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THANK YOU!

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 16 /17



References

1. U. Abraham, M. Rubin, and S. Shelah. On the consistency of some
partition theorems for continuous colorings, and the structure of R;-dense
real order types. Ann. Pure Appl. Logic, 29(2):123-206, 1985.

2. U. Avraham and S. Shelah. Martin’s axiom does not imply that every
two Nj-dense sets of reals are isomorphic. Israel J. Math.,
38(1-2):161-176, 1981.

3. J. Baumgartner. All Xi-dense sets of reals can be isomorphic. Fund.
Math., 79(2):101-106, 1973.

4. P. Marun, S. Shelah and C. B. Switzer. Baumgartner's axiom and small
posets. under review.

5. J. Steprans and W. S. Watson. Homeomorphisms of manifolds with
prescribed behaviour on large dense sets. Bull. London Math. Soc.,
19(4):305-310, 1987.

6. C. B. Switzer. Weak Baumgartner axioms and universal spaces.
Topology Appl., 373:Paper No. 109530, 18, 2025.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 17 /17



