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Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic.

We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders. Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders. Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders.

Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders. Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders. Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A foundational theorem in model theory is Cantor’s categoricity theorem:
DLO is ω-categorical i.e. every pair of countable dense linear orders with
out endpoints are isomorphic. We can rephrase this as follows.

Theorem (Cantor)

Given A,B ⊆ R which are countable and dense then A ∼= B as linear
orders. Consequently for each such A,B ⊆ R there is a linear order
automorphism (and hence a homeomorphism) of R, h : R ∼= R so that
h“A = B.

As we move to higher dimensions we lose the linear order structure but the
same statement holds in the topological setting.

Theorem (Brouwer)

For every natural number n ≥ 1 and every pair A,B ⊆ Rn which are
countable and dense there is a homeomorphism h : Rn ∼= Rn so that
h“A = B.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 2 / 17



Introduction

A persistent and programmatic topic in modern set theory is to understand
when theorems such as these, which deal in some essential way with
countable sets, can be “lifted” to the uncountable setting.

• The goal of this talk is to introduce the case of study of such for
Cantor’s theorem.
• The uncountable version of Cantor’s theorem is known as Baumgartner’s
Axiom (BA) and is independent of ZFC.
• In the rest of the talk we will sketch the background on BA and its
applications as well as some new work due to myself jointly with Marun
and Shelah.
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Baumgartner’s Axiom

It is clear that the most naive generalizations of Cantor’s theorem fail
when “countable” is replaced by “uncountable”. For instance

• Consider the whole real line R versus R \ {0}. Not isomorphic because
one is complete and one is not.
• A little less trivial, consider a dense linear order which can be covered by
countably many closed, nowhere dense subsets of R versus one that is the
intersection of countably many dense subsets of R (not isomorphic by the
Baire category theorem).

• In fact there are many (in fact 22
ℵ0 -many) pairwise non-isomorphic

subsets A ⊆ R of size 2ℵ0 .
• Also, consider linear orders with uncountable intersection in every open
interval versus those that are uncountable in some bounded region but
then countable outside of that.
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Baumgartner’s Axiom

In order to avoid these obvious counter-examples, consider the following
definition.

Definition

A linear order L is ℵ1-dense if for every a < b ∈ L there are ℵ1-many
elements in (a, b).

We will be interested in separable linear orders L, in which case L will be
isomorphic to an ℵ1-dense set of reals - i.e. one whose intersection with
every non-empty open interval has size ℵ1. In what follows we will reserve
ℵ1-dense for this type of linear order.
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Baumgartner’s Axiom

An extremely important result in modern set theory is the following. Like
Cantor’s original categoricity argument, both the proof method and the
statement itself have been widely applied since.

Theorem (Baumgartner ’73)

It is consistent that every pair of ℵ1-dense linear orders are isomorphic.

The above statement is usually called Baumgartner’s Axiom or BA. By the
counterexamples above note that it follows that 2ℵ0 > ℵ1 and in fact every
set of size ℵ1 must be meager i.e. can be covered by the union of
countably many nowhere dense sets. In fact more is true - the bounding
number, b must be larger than ℵ1 (Todorcevic) and 2ℵ0 = 2ℵ1 (folklore ?).
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Baumgartner’s Axiom

Note that under BA every ℵ1-dense set L must be homogeneous: for every
a, b ∈ L there is an automorphism h : L → L so that h(a) = b.

Strengthening Baumgartner’s result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map ∗ : K → K which is antimonotone and such that (x ∨ y)∗ = x∗ ∧ y∗.

Theorem (Avraham-Rubin-Shelah, ’85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous ℵ1-dense sets (up to isomorphsim) under embeddability
(with ∅) form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L∗ given by
flipping the order. If L ⊆ R then L∗ ∼= {−a | a ∈ L}. Under Martin’s
Axiom the homogeneous ℵ1-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 7 / 17



Baumgartner’s Axiom

Note that under BA every ℵ1-dense set L must be homogeneous: for every
a, b ∈ L there is an automorphism h : L → L so that h(a) = b.
Strengthening Baumgartner’s result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map ∗ : K → K which is antimonotone and such that (x ∨ y)∗ = x∗ ∧ y∗.

Theorem (Avraham-Rubin-Shelah, ’85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous ℵ1-dense sets (up to isomorphsim) under embeddability
(with ∅) form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L∗ given by
flipping the order. If L ⊆ R then L∗ ∼= {−a | a ∈ L}. Under Martin’s
Axiom the homogeneous ℵ1-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 7 / 17



Baumgartner’s Axiom

Note that under BA every ℵ1-dense set L must be homogeneous: for every
a, b ∈ L there is an automorphism h : L → L so that h(a) = b.
Strengthening Baumgartner’s result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map ∗ : K → K which is antimonotone and such that (x ∨ y)∗ = x∗ ∧ y∗.

Theorem (Avraham-Rubin-Shelah, ’85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous ℵ1-dense sets (up to isomorphsim) under embeddability
(with ∅) form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L∗ given by
flipping the order. If L ⊆ R then L∗ ∼= {−a | a ∈ L}. Under Martin’s
Axiom the homogeneous ℵ1-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 7 / 17



Baumgartner’s Axiom

Note that under BA every ℵ1-dense set L must be homogeneous: for every
a, b ∈ L there is an automorphism h : L → L so that h(a) = b.
Strengthening Baumgartner’s result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map ∗ : K → K which is antimonotone and such that (x ∨ y)∗ = x∗ ∧ y∗.

Theorem (Avraham-Rubin-Shelah, ’85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous ℵ1-dense sets (up to isomorphsim) under embeddability
(with ∅) form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L∗ given by
flipping the order. If L ⊆ R then L∗ ∼= {−a | a ∈ L}.

Under Martin’s
Axiom the homogeneous ℵ1-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 7 / 17



Baumgartner’s Axiom

Note that under BA every ℵ1-dense set L must be homogeneous: for every
a, b ∈ L there is an automorphism h : L → L so that h(a) = b.
Strengthening Baumgartner’s result Avraham, Rubin and Shelah proved
the following. First recall that given a distributive lattice K an involution is
a map ∗ : K → K which is antimonotone and such that (x ∨ y)∗ = x∗ ∧ y∗.

Theorem (Avraham-Rubin-Shelah, ’85)

For any finite distributive lattice with involution, K it is consistent that
the homogeneous ℵ1-dense sets (up to isomorphsim) under embeddability
(with ∅) form a distributive lattice isomorphic to K with reversability the
involution.

Here the reverse of a linear order L is formally the linear order L∗ given by
flipping the order. If L ⊆ R then L∗ ∼= {−a | a ∈ L}. Under Martin’s
Axiom the homogeneous ℵ1-dense sets form a distributive finite lattice so
in some sense this theorem is best possible.

Corey Switzer (University of Vienna) Linear Orders 108. AAA Feb 6th, 2026 7 / 17



Martin’s Axiom

Often statements generalizing sets of reals of size ℵ0 to ℵ1 follow from
Martin’s Axiom, MAℵ1 .

• Recall that this states that for each partial order P either has an
uncountable antichain or else for each family of ℵ1 many maximal
antichains there is a filter G ⊆ P simultaneously intersecting them all.
• The technicalities of this statement are not important here but note that
it implies many of the consequences of BA we have seen. For instance
MAℵ1 implies the failure of CH - apply MAℵ1 to the partial order of finite
binary sequences under end extension.
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Martin’s Axiom

For this reason the following theorem is very notable.

Theorem (Avraham-Shelah ’81)

BA does not follow from MAℵ1 .

They actually give several proofs of this theorem. The first shows that
MAℵ1 is consistent with an ℵ1-dense order L which is called essentially
increasing: if f : L → L is a function with uncountable domain then it has
an uncountable subset that is monotonically increasing. Note that this
implies in particular that L is not isomorphic to its reverse
L∗ = {−a | a ∈ L}.
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Martin’s Axiom

In fact they show a little more - call an ℵ1-dense set L = {aξ | ξ ∈ ω1}
good if for each n < ω and each family of disjoint, increasing n-tuples
{b̄ξ ∈ [L]n | ξ ∈ ω1} there are ξ < η so that for all i < n b̄(i)ξ < b̄η(i). It
is not hard to check that under CH there are good ℵ1-dense sets.

Lemma (Avraham-Shelah, ’81)

MAℵ1 is consistent with a good set. If L is good and MAℵ1 holds then L is
essentially increasing.
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Martin’s Axiom

Recently we improved this by showing MAℵ1 implies even more properties
of ℵ1-dense sets.

Theorem (Marun-Shelah-S.)

If L is good then MAℵ1 implies that L is slicewise coverable.

Here L is slicewise coverable if given any partition of L into ω1-many
countable dense sets {Lα | α ∈ ω1} there are countably many increasing
functions fn : L → L so that

⋃
fn =

⋃
α∈ω1

Lα × Lα.
• The point here is that if L is slicewise coverable then it cannot be made
isomorphic to its reverse by an ℵ1-sized forcing which preserves ℵ1, thus
strengthening the conclusion of the original Avraham-Shelah theorem.
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Martin’s Axiom

Note this is in fact a real strengthening.

Lemma

Slicewise coverable implies essentially increasing.

Proof.

Let f : L → L have uncountable domain. One can find a partition of L into
countable dense sets Lα for α < ω1 so that each Lα is closed under f . By
slicewise coverability it follows that the graph of f can be covered by
countably many increasing functions, thus one of these has uncountable
intersection with f .
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Homeomorphism Groups

BA can be reframed topologically as a statement about homeomorphism
groups as follows:

For each A,B ⊆ R which are ℵ1-dense there is an autohomeomorphism
h : R → R so that h“A = B.

For a general topological space X we can define a subset A ⊆ X to be
ℵ1-dense if it has intersection size ℵ1 with every nonempty open subset of
X . In this context we can formulate a BA-type axiom for non linearly
ordered spaces, denote BA(X ):

For each A,B ⊆ X which are ℵ1-dense there is an autohomeomorphism
h : X → X so that h“A = B.
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Homeomorphism Groups

Surprisingly the higher dimensional Euclidean spaces behave differently.

Theorem (Steprāns-Watson, ’87)

For every n > 1 the axiom BA(Rn) follows from MAℵ1 (in fact p > ℵ1).

The difficulty is in lifting the ambient structure, as the following theorem
shows.

Theorem (S.)

There is a perfect Polish space all of whose ℵ1-dense subsets are
homeomorphic if and only if all perfect Polish spaces have all their
ℵ1-dense subsets homeomorphic if and only if there is a unique separable,
metrizable, zero dimensional ℵ1-crowded space.
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Homeomorphism Groups

What is left open is the following very intriguing question.

Question

Does BA (:= BA(R)) imply BA(Rn) for any finite n > 1?
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THANK YOU!
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