

(Co)limits of partial acts

Heleen Saarse-Külaots
heleen.saarse-kulaots@ut.ee

UNIVERSITY OF TARTU

AAA 108, Vienna
06.02.2026

Co-funded by
the European Union

Definition

Let S be a monoid and A be a set. A partial mapping

$$\cdot : A \times S \rightharpoonup A, \quad (a, s) \mapsto a \cdot s,$$

is called a **partial right S -action** if for every $a \in A$ and $s, s' \in S$ the following conditions hold:

- ① $\exists a \cdot s \ \& \ \exists (a \cdot s) \cdot s' \Rightarrow \exists a \cdot (ss') \ \& \ (a \cdot s) \cdot s' = a \cdot (ss');$
- ② $\exists a \cdot 1 \ \& \ a \cdot 1 = a.$

The pair (A, \cdot) is called a **partial right S -act** and is denoted by A_S .

Definition

A mapping $f : A_S \rightarrow B_S$ is called

- a **homomorphism** of partial right S -acts, if for all $a \in A$ and $s \in S$ we have

$$\exists as \Rightarrow \exists f(a)s \ \& \ f(a)s = f(as);$$

- an **op-homomorphism** of partial right S -acts, if for all $a \in A$ and $s \in S$ we have

$$\exists f(a)s \Rightarrow \exists as \ \& \ f(as) = f(a)s;$$

- a **strong homomorphism** of partial right S -acts, if it is a homomorphism and an op-homomorphism.

notation	objects	morphisms
\mathbf{PAct}_S	partial right S -acts	homomorphisms
\mathbf{PAct}_S^o	partial right S -acts	op-homomorphisms
\mathbf{PAct}_S^s	partial right S -acts	strong homomorphisms

Which limits and colimits are interesting?

category	products	equalizers	coproducts	coequalizers
\mathbf{PAct}_S	not really	not really	not really	
\mathbf{PAct}_S^o		not really	not really	not really
\mathbf{PAct}_S^s		not really	not really	not really

Proposition

The coequalizer of the homomorphisms $f : A_S \rightarrow B_S$ and $g : A_S \rightarrow B_S$ is the partial act $(B/\hat{\rho})_S$ with the quotient map $\pi_{\hat{\rho}} : B_S \rightarrow (B/\hat{\rho})_S$, where $\hat{\rho}$ is the congruence generated by a relation

$$\rho := \{(f(a), g(a)) \mid a \in A\} \subseteq B \times B.$$

Problem: How to define a congruence such that the quotient set would be a partial act, quotient map would be a homomorphism, and all the usual conditions of congruences would be satisfied?

Solution: Jerez, E. (2025). The category of partial group actions: quotients, (co)limits and groupoids. Communications in Algebra, 53(6), 2528–2554.

Definition (ρ -chain)

Let us have an equivalence relation $\rho \subseteq A \times A$ and

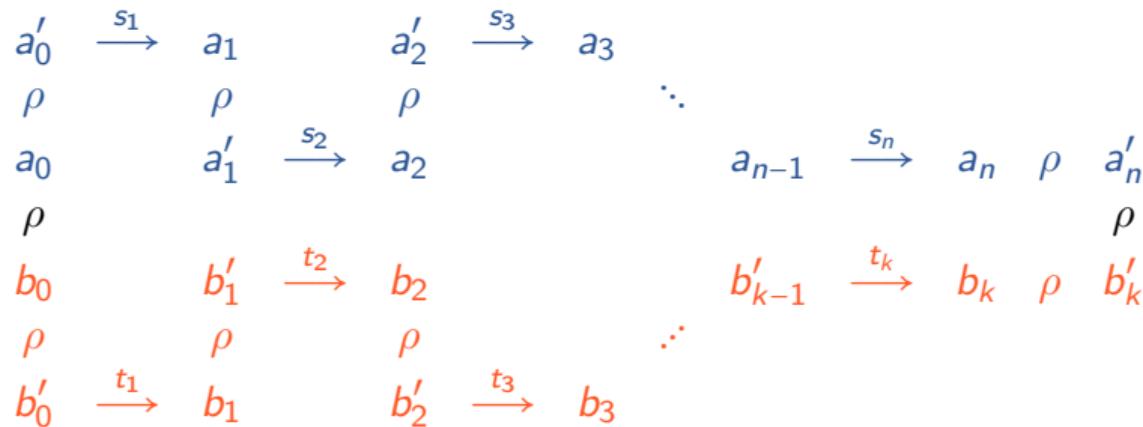
- $a'_0, a'_1, \dots, a'_{n-1} \in A$,
- $s_1, s_2, \dots, s_n \in S$,

such that the products $a'_{i-1}s_i =: a_i$ exists and $a_i \rho a'_{i+1}$. Then the following sequence is called a ρ -chain from a_0 to a'_n :

$$\begin{array}{ccccccccccccc} a_0 & & a'_1 & \xrightarrow{s_2} & a_2 & & & a'_{n-1} & \xrightarrow{s_n} & a_n \\ \rho & & \rho & & \rho & & \ddots & & & \rho \\ a'_0 & \xrightarrow{s_1} & a_1 & & a'_2 & \xrightarrow{s_3} & a_3 & & & a'_n \end{array}$$

Definition (Congruence)

For every two ρ -chains, if $a_0 \rho b_0$ and $s_1 s_2 \dots s_n = t_1 t_2 \dots t_k$, then $a'_n \rho b'_k$.



Proposition

We can view the quotient set A/ρ as a partial right S -act if we define

$\exists [a]s \stackrel{\text{def}}{\Leftrightarrow} \text{there exists a } \rho\text{-chain such that } a_0 = a \text{ and } s_1s_2 \dots s_n = s,$

in which case we set

$$[a]s := [a'_n].$$

category	products	equalizers	coproducts	coequalizers
PAct_S	not really	not really	not really	✓
PAct_S^o		not really	not really	not really
PAct_S^s		not really	not really	not really

Problem: The Cartesian product $A \times B$ with the naive partial action

$$\exists (a, b)s := (as, bs) \Leftrightarrow \exists as \ \& \ \exists bs$$

does not allow the coordinate projections $p_A : A \times B \rightarrow A$, $p_B : A \times B \rightarrow B$ to be op-homomorphisms.

Solution: Consider a set

$$P(A, B) := \{\varphi : S \rightharpoonup A \times B \mid \varphi \text{ satisfies some specific conditions}\}.$$

Partial S -action on the set $P(A, B)$ is defined as

$$\exists \varphi s \iff s \in \text{dom}(\varphi).$$

If the product φs exists, we define φs to be the partial map $S \rightharpoonup A \times B$ with

$$(\varphi s)(s') = \varphi(ss') \quad \text{whenever} \quad s' \in \text{dom}(\varphi s) := \{s' \in S \mid ss' \in \text{dom}(\varphi)\}.$$

Proposition

The product of partial S -acts A_S and B_S is the partial S -act

$$A_S \prod B_S = \{\varphi^\diamond \mid \varphi \in P(A, B)\}$$

with op-homomorphisms

$$\begin{aligned} p_A \circ \text{ev}_1 : A_S \prod B_S &\rightarrow A_S, \\ p_B \circ \text{ev}_1 : A_S \prod B_S &\rightarrow B_S, \end{aligned}$$

where φ^\diamond is a restriction of φ with the minimal domain with respect to the requirements of the elements of $P(A, B)$ and $\text{ev}_1 : \varphi^\diamond \mapsto \varphi^\diamond(1)$.

category	products	equalizers	coproducts	coequalizers
PAct_S	not really	not really	not really	✓
PAct_S^o	✓	not really	not really	not really
PAct_S^s		not really	not really	not really

Problem: The terminal object as the product of a empty family of partial S -acts, has to have more than one element, in general.

Solution: The terminal object in PAct_S^s is the partial act

$$T_S = \{\varphi : S \rightarrow \wp(S) \mid \varphi \text{ satisfies some conditions}\}.$$

The unique strong homomorphism

$$\Phi_A : A_S \rightarrow T_S, \quad a \mapsto \varphi_a,$$

is defined as follows:

$$\text{dom}(\varphi_a) = \{s \in S \mid \exists as\} \quad \text{and} \quad \varphi_a(s) = \{s' \in S \mid \exists (as)s'\}.$$

Proposition

The product of partial right S -acts A_S and B_S is the partial S -act

$$A_S \prod B_S = \{(a, b) \mid \exists \varphi \in T : \Phi_A(a) = \varphi = \Phi_B(b)\} \subseteq A \times B$$

with the usual coordinate projections.

category	products	equalizers	coproducts	coequalizers
PAct_S	not really	not really	not really	✓
PAct_S^o	✓	not really	not really	not really
PAct_S^s	✓	not really	not really	not really

Thank you for listening!