

2-generated minimal Taylor algebras on a 4-element set

Aleksandar Prokić

(joint work with Z. Brady, P. Đapić, V. Đinović, P. Marković, V. Toljić,
V. Uljarević)

University of Novi Sad

AAA108, Vienna
February, 2026

Motivation

The colored edge theory invented by Andrei Bulatov in his proof of the Dichotomy Theorem defines edges in an algebra based on its 2-generated subalgebras. If every 2-generated minimal Taylor algebra with at least three elements were either affine or had a nontrivial congruence, then Bulatov's theory could be significantly simplified.

Motivation

The colored edge theory invented by Andrei Bulatov in his proof of the Dichotomy Theorem defines edges in an algebra based on its 2-generated subalgebras. If every 2-generated minimal Taylor algebra with at least three elements were either affine or had a nontrivial congruence, then Bulatov's theory could be significantly simplified.

Brady's Notes on CSPs and Polymorphisms (Problem 4.2.2)

Is there any minimal Taylor algebra which is simple, is generated by two elements, has size at least 3, and is not affine?

Motivation

The colored edge theory invented by Andrei Bulatov in his proof of the Dichotomy Theorem defines edges in an algebra based on its 2-generated subalgebras. If every 2-generated minimal Taylor algebra with at least three elements were either affine or had a nontrivial congruence, then Bulatov's theory could be significantly simplified.

Brady's Notes on CSPs and Polymorphisms (Problem 4.2.2)

Is there any minimal Taylor algebra which is simple, is generated by two elements, has size at least 3, and is not affine?

[BBBKZ] Conjecture 5.17

If \mathbf{A} is a minimal Taylor algebra which is generated by two elements $a, b \in A$ such that neither (a, b) nor (b, a) is an edge, then there are proper 3-absorbing subuniverses $C, D \trianglelefteq_3 \mathbf{A}$ such that $a \in C$ and $b \in D$.

Definition

A finite algebra \mathbf{A} is a minimal Taylor algebra if it is Taylor, and it has no proper reduct that is also Taylor.

Minimal Taylor algebras (MTA)

Definition

A finite algebra \mathbf{A} is a minimal Taylor algebra if it is Taylor, and it has no proper reduct that is also Taylor.

Proposition (BBBKZ)

Any subalgebra, finite power, or quotient of a MTA is a MTA.

Proposition (BBBKZ)

Let \mathbf{A} be a MTA and $B \subseteq A$ be closed under an operation $f \in \text{Clo}(\mathbf{A})$ such that B together with the restriction of f to B forms a Taylor algebra. Then B is a subuniverse of \mathbf{A} .

Definition (BBBKZ)

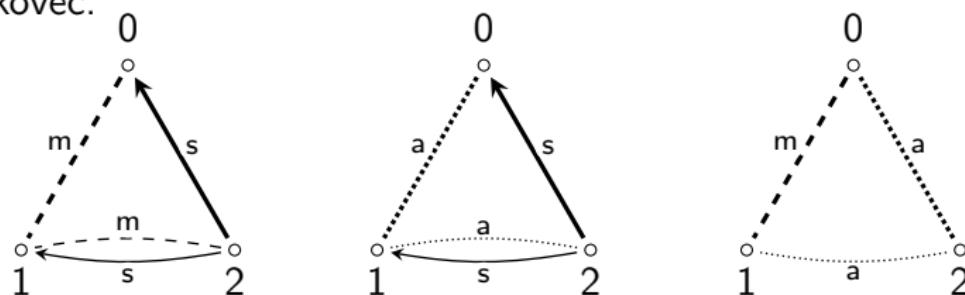
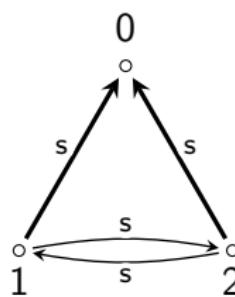
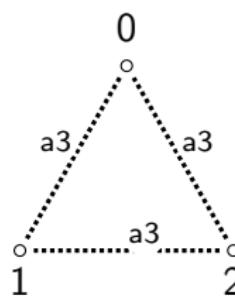
Let \mathbf{A} be an algebra and $a, b \in A$.

- (a, b) is a weak semilattice edge if there is a proper congruence θ on $\text{Sg}\{a, b\}$ and a binary term t such that $t(a/\theta, b/\theta) = t(b/\theta, a/\theta) = b/\theta$.
- $\{a, b\}$ is a weak majority edge if there is a proper congruence θ on $\text{Sg}\{a, b\}$ and a term $m \in \text{Clo}_3(\mathbf{A})$ which acts as the majority operation on $\{a/\theta, b/\theta\}$.
- $\{a, b\}$ is a weak affine edge if there is a proper congruence θ on $\text{Sg}\{a, b\}$ and a term operation $p \in \text{Clo}_3(\mathbf{A})$ such that $(\text{Sg}\{a, b\}/\theta; p)$ is an affine Mal'cev algebra with respect to some abelian group $(\text{Sg}\{a, b\}/\theta; +)$.

An edge (a, b) is called strong if for some maximal congruence θ witnessing the edge and every $a', b' \in A$ such that $(a, a'), (b, b') \in \theta$, we have $\text{Sg}\{a, b\} = \text{Sg}\{a', b'\}$.

Post lattice: there are only three MTA on a two-element domain - the semilattice, majority algebra and affine Mal'cev algebra.

Brady's Notes: there are 24 MTA on a three-element domain, among which 5 are 2-generated. You can also find them in the master's thesis of Filip Jankovec.

 T_1^N  T_2^N  T_3^N T_4^N $T_5^N \cong \mathbb{Z}_3^{\text{aff}}$

Absorption

Definition (BBBKZ)

Let \mathbf{A} be an algebra and $B \subseteq A$. We call B an n -absorbing set of \mathbf{A} if there is a term operation $t \in \text{Clo}_n(\mathbf{A})$ such that $t(\mathbf{a}) \in B$ whenever $\mathbf{a} \in A^n$ and $|\{i : a_i \in B\}| \geq n - 1$. If, additionally, B is a subuniverse of \mathbf{A} , we write $B \trianglelefteq_n \mathbf{A}$ (B n -absorbs \mathbf{A} by t).

Theorem (BBBKZ)

Let \mathbf{A} be a MTA and B an n -absorbing set of \mathbf{A} . Then B is a subuniverse of \mathbf{A} .

Proposition (BBBKZ)

Let \mathbf{A} be a MTA and $B, C \subseteq A$. The following hold:

- (1) If $B, C \trianglelefteq_3 \mathbf{A}$, then $B \cup C \leq \mathbf{A}$ and $B \cap C \trianglelefteq_3 \mathbf{A}$.
- (2) If $C \trianglelefteq_3 B \trianglelefteq_3 \mathbf{A}$, then $C \trianglelefteq_3 \mathbf{A}$.

Proposition (BBBKZ)

Let \mathbf{A} be a MTA and $B, C \subseteq A$. The following hold:

- (1) If $B, C \trianglelefteq_2 \mathbf{A}$, then $B \cup C \leq \mathbf{A}$ and $B \cap C \trianglelefteq_2 \mathbf{A}$.
- (2) If $C \trianglelefteq_2 B \trianglelefteq_2 \mathbf{A}$, then $C \trianglelefteq_2 \mathbf{A}$.

Lemma (BBBKZ)

Let \mathbf{A} be a MTA and $B \subseteq A$. The following are equivalent.

- $B \trianglelefteq_2 \mathbf{A}$.
- \mathbf{B} is strongly absorbing subalgebra of \mathbf{A} , i.e. for any term $t(x_1, \dots, x_n)$ and any essential position x_i of $t^{\mathbf{A}}$, if $a_1, \dots, a_n \in A$ and $a_i \in B$, then $t^{\mathbf{A}}(a_1, \dots, a_n) \in B$.

Theorem (BBBKZ)

If \mathbf{A} is a MTA that is generated by two distinct elements $a, b \in A$, then either \mathbf{A} has a nontrivial abelian quotient, or at least one of a, b is contained in a proper ternary absorbing subuniverse of \mathbf{A} .

Theorem (BBBKZ)

If \mathbf{A} is a MTA that is generated by two distinct elements $a, b \in A$, then either \mathbf{A} has a nontrivial abelian quotient, or at least one of a, b is contained in a proper ternary absorbing subuniverse of \mathbf{A} .

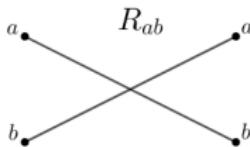
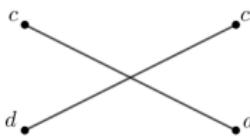
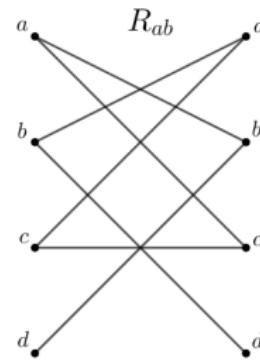
Definition

Let \mathbf{A}_1 and \mathbf{A}_2 be algebras and $R \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$. For any $i \in \{1, 2\}$, the i -th *link tolerance* of R , denoted by $tol_i R$ is defined by

$$tol_1 R := \{(a_1, a'_1) \in A_1^2 : (\exists a_2 \in A_2) (a_1, a_2) \in R \text{ and } (a'_1, a_2) \in R\},$$
$$tol_2 R := \{(a_2, a'_2) \in A_2^2 : (\exists a_1 \in A_1) (a_1, a_2) \in R \text{ and } (a_1, a'_2) \in R\}.$$

The transitive closure of $tol_i R$ is the i -th *link congruence* of R , denoted by $lk_i R$. We say R is *linked* if its link congruences are full.

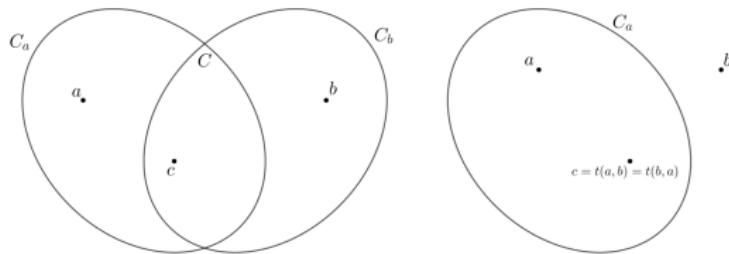
When a MTA $\mathbf{A} = \text{Sg}\{a, b\}$ is simple, it is useful to consider the algebra $R_{ab} = \text{Sg}\{(a, b), (b, a)\} \leq_{sd} \mathbf{A}^2$. Then R_{ab} is either the graph of automorphism φ of \mathbf{A} such that $\varphi(a) = b$ and $\varphi(b) = a$, or the link congruence $l_{k_1} R_{ab}$ is not the identity, which, since \mathbf{A} is simple, means that R_{ab} is linked.



Theorem (Barto, Kozik: *Loop Lemma*)

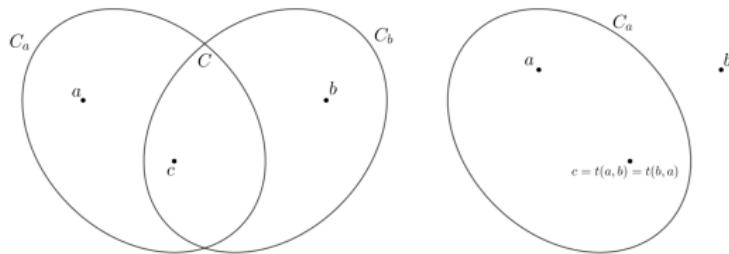
Let \mathbf{A} be a finite Taylor algebra and $R \leq_{sd} \mathbf{A}^2$ is linked. Then R contains a loop, that is $(c, c) \in R$ for some $c \in A$.

Let \mathbf{A} be a MTA of size at least 3 generated by two distinct elements $a, b \in A$. Let $C \trianglelefteq_3 \mathbf{A}$ and let $a, c \in C$ such that $c = t(a, b) = t(b, a)$ for some binary term t . If $\{a, c\}$ and $\{b, c\}$ are subuniverses, then $\text{Sg}\{a, b\} = \{a, b, c\}$.



Lemma

Let \mathbf{A} be a MTA of size at least 3 generated by two distinct elements $a, b \in A$. Let $C \trianglelefteq_3 \mathbf{A}$ and let $a, c \in C$ such that $c = t(a, b) = t(b, a)$ for some binary term t . If $\{a, c\}$ and $\{b, c\}$ are subuniverses, then $\text{Sg}\{a, b\} = \{a, b, c\}$.



Theorem (Barto, Kozik)

\mathbf{A} is Taylor iff for every prime $p > |A|$, \mathbf{A} has an idempotent term operation g of arity p which is cyclic, that is, for any $\mathbf{x} \in A^p$,

$$g(x_1, x_2, \dots, x_p) = g(x_2, \dots, x_p, x_1).$$

Lemma

Let \mathbf{A} be a simple nonabelian MTA of size at least 3 generated by two distinct elements $a, b \in A$ and $a \in C_a \trianglelefteq_3 \mathbf{A}$.

a) If R_{ab} is the graph of automorphism φ which swaps a and b , and g is a cyclic term of algebra \mathbf{A} of arity n , then there exists a cyclic term g' of the same arity such that

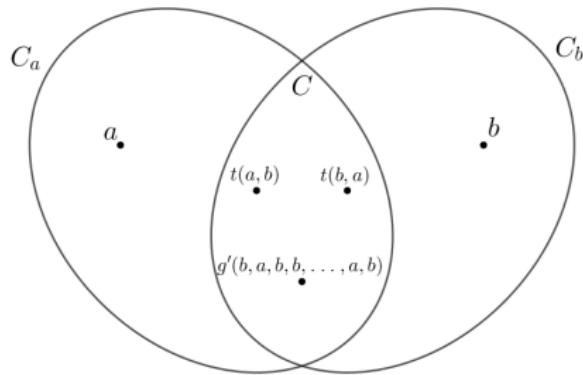
$$g'(\{a, b\}^n \setminus \{(a, a, \dots, a), (b, b, \dots, b)\}) \subseteq C_a \cap C_b,$$

where C_b is the image of C_a under φ , thus $b \in C_b \trianglelefteq_3 \mathbf{A}$.

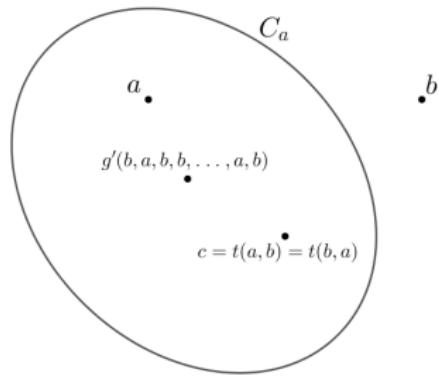
b) If R_{ab} is linked and g is a cyclic term of algebra \mathbf{A} of arity n , then there exists a cyclic term g' of the same arity such that

$$g'(\{a, b\}^n \setminus \{(b, b, \dots, b)\}) \subseteq C_a.$$

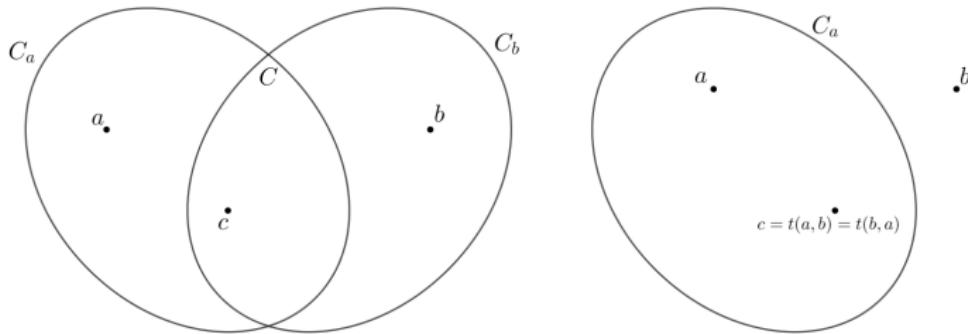
a)



b)



The general case

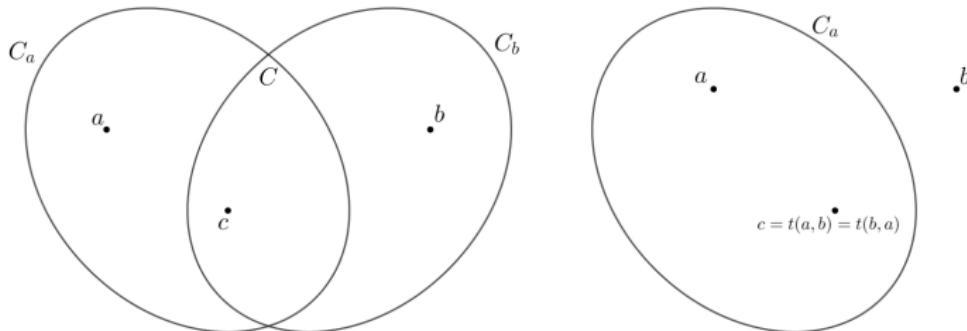


$\{a\} \not\trianglelefteq_3 \mathbf{A}$ and $\{b\} \not\trianglelefteq_3 \mathbf{A}$.

Automorphism case: $C \neq \emptyset$ and for $|A| = 4$ must be $C = \{c, d\}$.

Linked case: $\{a, c\}$ and $\{b, c\}$ cannot both be subuniverses.

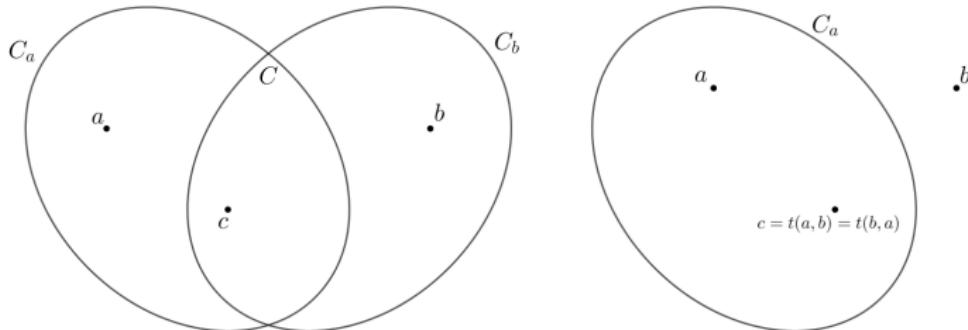
The general case



Theorem (BBBKZ)

If \mathbf{A} is a MTA and $a \in A$ satisfies that there is no outgoing weak semilattice edge, nor weak affine edge, connecting a and any other element, then $\{a\} \trianglelefteq_3 \mathbf{A}$.

The general case



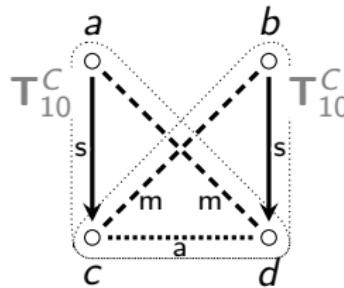
Theorem (BBBKZ)

If \mathbf{A} is a MTA and $a \in A$ satisfies that there is no outgoing weak semilattice edge, nor weak affine edge, connecting a and any other element, then $\{a\} \trianglelefteq_3 \mathbf{A}$.

Theorem (Bulatov's Rectangularity Theorem)

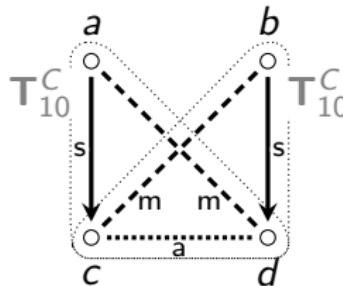
Let $\mathbf{R} \leq_{sd} \mathbf{A}^2$ and \mathbf{A} is a MTA. If B is sink strong a_{ss} -component of \mathbf{A} , R is linked and $R \cap B^2 \neq \emptyset$, then $B^2 \subseteq R$.

Some subcase of the automorphism case



We can find a ternary cyclic operation g such that $g(a, a, b) = d$ and $g(b, b, a) = c$.

Some subcase of the automorphism case



We can find a ternary cyclic operation g such that $g(a, a, b) = d$ and $g(b, b, a) = c$. Let g' be a ternary cyclic term defined by

$$g'(x, y, z) := g(g(x, x, g(x, y, z)), g(y, y, g(y, z, x)), g(z, z, g(z, x, y))).$$

We have $g'(a, a, b) = g(g(a, a, d), g(a, a, d), g(b, b, d)) = g(a, a, d) = a$ and $g'(b, b, a) = b$. Since g' is cyclic, we get $\text{Sg}\{a, b\} = \{a, b\}$, a contradiction.

The main theorem

Theorem

Let \mathbf{A} be a nonabelian MTA on a domain of size four generated by two distinct elements $a, b \in A$. Then \mathbf{A} is not simple.

The main theorem

Theorem

Let \mathbf{A} be a nonabelian MTA on a domain of size four generated by two distinct elements $a, b \in A$. Then \mathbf{A} is not simple.

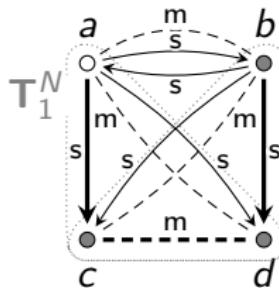
Theorem

Any 2-generated MTA on a domain of size four is not simple.

Proof. If \mathbf{A} is a 2-generated abelian MTA on a four-element domain, then it has to be term-equivalent to an affine Mal'cev algebra $(A; x - y + z)$ over \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. \square

Classification of 2-generated MTA on a domain of size 4

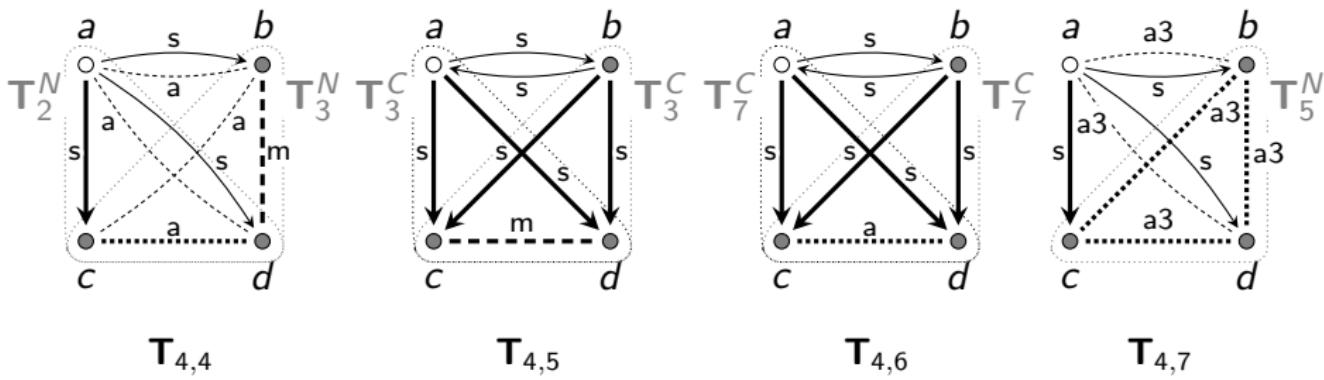
We proved that every 2-generated MTA on a four-element domain is not simple. We classified these algebras based on their maximal quotients. Each MTA $\mathbf{A} = \text{Sg}\{a, b\}$ on a four-element set must have at least one of the following quotients: two-element semilattice, two-element majority algebra, or one of the affine algebras $\mathbb{Z}_2^{\text{aff}}$ and $\mathbb{Z}_3^{\text{aff}}$.



$\mathbf{T}_{4,1}$

$\mathbf{T}_{4,2}$

$\mathbf{T}_{4,3}$

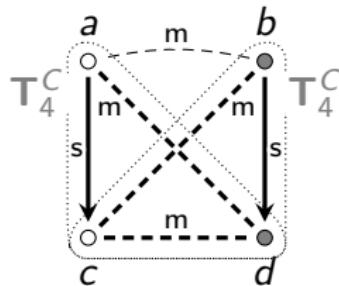


$\mathbf{T}_{4,4}$

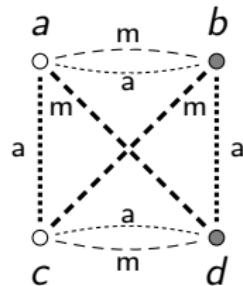
$\mathbf{T}_{4,5}$

$\mathbf{T}_{4,6}$

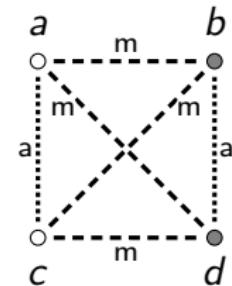
$\mathbf{T}_{4,7}$



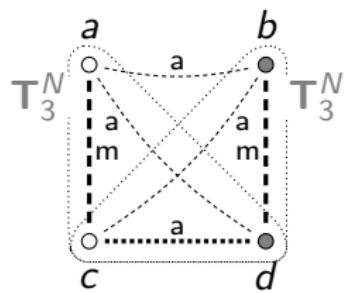
$T_{4,8}$



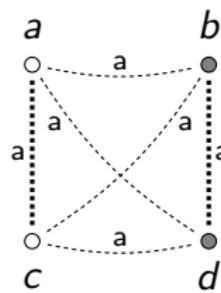
$T_{4,9}$



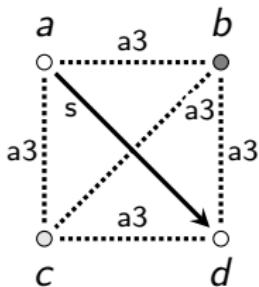
$T_{4,10}$



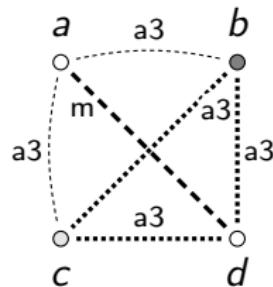
$T_{4,11}$



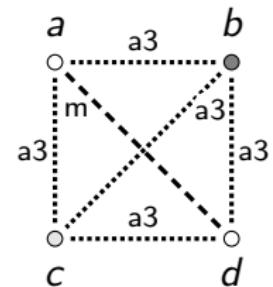
$T_{4,12}, T_{4,13}$



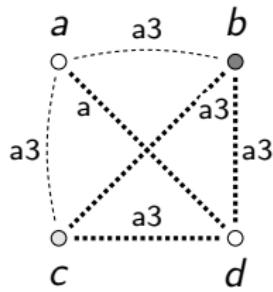
$T_{4,14}$



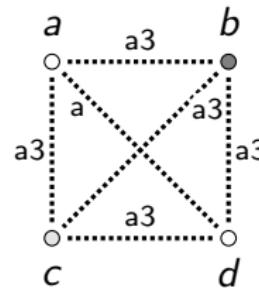
$T_{4,15}$



$T_{4,16}$



T_{4,17}



T_{4,18}

Thank you for your attention!