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In memoriam Günther Eigenthaler
This is the first AAA attended by me since the passing of Günther Eigenthaler.
Therefore I dedicate this talk to the memory of my esteemed colleague and
dear friend Günther. Günther Eigenthaler

9.2.1950 - 14.2.2025

Günther, Laci Márki, R.P.
September 2023 during an excursion (Lunzer See) in Austria
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Motivating example
some history:
Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and
po-clones): operations which in each argument are order-preserving or
order-reversing (for some given order on the base set).
Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?
Analogies to many-sorted algebras
(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions g ∈ AA.
“motivating example”: P = + : order-preserving

P = − : order-reversing
An n-ary operation f (x1, . . . , xn) has property P in an argument, say x1,
: ⇐⇒ each translation x1 7→ f (x1, c2, . . . , cn) has this property P (for all
constants c2, . . . , cn ∈ A).

How to handle composition? order-reversing composed with
order-reversing is order-preserving! Formalization: Collect the properties

in a monoid S = ({+,−}, ·), here a group
· | + | − |
+ | + | − |
− | − | + |
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Let P be a property for unary functions g ∈ AA.
“motivating example”: P = + : order-preserving

P = − : order-reversing
An n-ary operation f (x1, . . . , xn) has property P in an argument, say x1,
: ⇐⇒ each translation x1 7→ f (x1, c2, . . . , cn) has this property P (for all
constants c2, . . . , cn ∈ A).

How to handle composition? order-reversing composed with
order-reversing is order-preserving! Formalization: Collect the properties

in a monoid S = ({+,−}, ·), here a group
· | + | − |
+ | + | − |
− | − | + |

AAA108, Wien, February 6, 2026 R. Pöschel, Boolean ±-preclones (5/22)
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±-operations (S-operations)

S := ± := {+,−} (in general, finite monoid S).

n-ary S-operation (±-operation): operation f together with its
signum

f : An → A with sgn(f ) = (s1, . . . , sn) ∈ Sn,

i.e., the i-th argument of f gets a label (sign) si ∈ S (i = 1, . . . , n).

±Op(A) := all finitary ±-operations
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±-preclones (S-preclones) ±-relations, ±-preservation and a Galois connection The lattice ±LA of Boolean ±-preclones

±-operations (S-operations)

S := ± := {+,−} (in general, finite monoid S).

n-ary S-operation (±-operation): operation f together with its
signum

f : An → A with sgn(f ) = (s1, . . . , sn) ∈ Sn,

i.e., the i-th argument of f gets a label (sign) si ∈ S (i = 1, . . . , n).

±Op(A) := all finitary ±-operations

AAA108, Wien, February 6, 2026 R. Pöschel, Boolean ±-preclones (6/22)
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(Boolean) ±-preclones
±-preclone := set F ⊆ ±Op(A) of ±-operations closed under:

(1) idA ∈ F , idA(x) = x , sgn(idA) := (+) (+ unit element of S),

(2) permutation of arguments (operations ζ, τ),

(3) identification of arguments with the same sign s (∆s),

(4) adding fictitious arguments of (arbitrary) sign s ∈ S ,
e.g., (∇s f )(x1, x2, . . . , xn+1) := f (x2, . . . , xn+1), where
sgn(∇s f ) = (s, s1, . . . , sn) for sgn(f ) = (s1, . . . , sn),

(5) “linearized” composition
sgn(f ) = (s1, . . . , sn) and sgn(g) = (s ′1, . . . , s

′
m). Then

(f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1)

:= f (g(x1, . . . , xm), xm+1, . . . , xm+n−1)

with sgn(f ◦ g) = (s ′1s1, . . . , s
′
ms1, s2, . . . , sn).

±⟨F ⟩ := ±-preclone generated by F ⊆ ±Op(A).
Boolean ±-preclone if A = {0, 1} [Remark: preclone = operad ]
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(3) identification of arguments with the same sign s (∆s),

(4) adding fictitious arguments of (arbitrary) sign s ∈ S ,
e.g., (∇s f )(x1, x2, . . . , xn+1) := f (x2, . . . , xn+1), where
sgn(∇s f ) = (s, s1, . . . , sn) for sgn(f ) = (s1, . . . , sn),

(5) “linearized” composition
sgn(f ) = (s1, . . . , sn) and sgn(g) = (s ′1, . . . , s

′
m). Then

(f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1)

:= f (g(x1, . . . , xm), xm+1, . . . , xm+n−1)

with sgn(f ◦ g) = (s ′1s1, . . . , s
′
ms1, s2, . . . , sn).

±⟨F ⟩ := ±-preclone generated by F ⊆ ±Op(A).
Boolean ±-preclone if A = {0, 1} [Remark: preclone = operad ]
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±-preclones (S-preclones) ±-relations, ±-preservation and a Galois connection The lattice ±LA of Boolean ±-preclones

(Boolean) ±-preclones
±-preclone := set F ⊆ ±Op(A) of ±-operations closed under:

(1) idA ∈ F , idA(x) = x , sgn(idA) := (+) (+ unit element of S),

(2) permutation of arguments (operations ζ, τ),

(3) identification of arguments with the same sign s (∆s),

(4) adding fictitious arguments of (arbitrary) sign s ∈ S ,
e.g., (∇s f )(x1, x2, . . . , xn+1) := f (x2, . . . , xn+1), where
sgn(∇s f ) = (s, s1, . . . , sn) for sgn(f ) = (s1, . . . , sn),

(5) “linearized” composition
sgn(f ) = (s1, . . . , sn) and sgn(g) = (s ′1, . . . , s

′
m). Then

(f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1)

:= f (g(x1, . . . , xm), xm+1, . . . , xm+n−1)

with sgn(f ◦ g) = (s ′1s1, . . . , s
′
ms1, s2, . . . , sn).

±⟨F ⟩ := ±-preclone generated by F ⊆ ±Op(A).
Boolean ±-preclone if A = {0, 1} [Remark: preclone = operad ]

AAA108, Wien, February 6, 2026 R. Pöschel, Boolean ±-preclones (7/22)
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Example (composition)

properties S = {+,−}, A = {0, 1} with order 0 < 1,
+ means order preserving, − means order reversing
(such functions really form a ±-preclone).

Composition:
f (x1, x2) = ¬x1 ∧ x2, sgn(f ) = (s1, s2) = (−,+),
g(x1, x2) = x1 ∨ ¬x2, sgn(g) = (s ′1, s

′
2) = (+,−).

(f ◦g)(x1, x2, x3) = f (g(x1, x2), x3) = ¬(x1∨¬x2)∧x3 = ¬x1∧x2∧x3
has signum (s ′1s1, s

′
2s1, s2) = (+ · −,− · −,+) = (−,+,+).

One is allowed to identify x2 and x3, but not x2 and x1.
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Outline

±-preclones (S-preclones)

±-relations, ±-preservation and a Galois connection

The lattice ±LA of Boolean ±-preclones
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±-preclones (S-preclones) ±-relations, ±-preservation and a Galois connection The lattice ±LA of Boolean ±-preclones

±-relations (S-relations) and ±-preservation
±
▷

recall: S = ± := {+,−}
m-ary ±-relation: ϱ = (ϱ+, ϱ−) with ϱs ⊆ Am (s ∈ S)
classical notion of preservation: f ▷ ϱ : ⇐⇒ f (ϱ, . . . , ϱ) ⊆ ϱ

The “S-version”:
f ∈ ±Op

(n)
(A), sgn(f ) = (s1, . . . , sn), ϱ = (ϱ+, ϱ−) ∈ ±Rel

(m)
(A)

f
±
▷ (ϱ+, ϱ−) : ⇐⇒ f (ϱs1 , . . . , ϱsn) ⊆ ϱ+ and f (ϱs1·−, . . . , ϱsn·−) ⊆ ϱ−

⇒ ∈ ϱs. . . ∈ ϱsns∈ ϱs2s∈ ϱs1s

f ( ) =
) =

) =am1

a21 a22

am2

a2n

amn

a12 a1na11
. . .
. . .

. . .

f (

f (

(s∈S)

f
±
▷ ϱ: f ±-preserves ϱ, f is an ±-polymorphism of ϱ, ϱ is (±-)invariant for f
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The Galois connection ±Pol− ±Inv
±
▷ induces a Galois connection with the operators

±PolQ := {f ∈ ±Op(A) | ∀ ϱ ∈ Q : f
±
▷ ϱ} (±-polymorphisms),

±Inv F := {ϱ ∈ ±Rel(A) | ∀ f ∈ F : f
±
▷ ϱ} (invariant ±-relations).

for F ⊆ ±Op(A) and Q ⊆ ±Rel(A).

Theorem (The Galois closures)

±⟨F ⟩ = ±Pol±Inv F (±-preclone generated by F),
±[Q] = ±Inv±PolQ (±-relational clone generated by Q).

[JipLP2023]: S-preclones and the Galois connection SPol− S Inv, Part I,
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once more: our “motivating” Example

(A,≤) poset (0 < 1), S = {+,−} (group).

For the ±-preclone F (of ±-operations where + means order
preserving und − means order reversing) we have the following
relational characterization:

F = ±Pol ϱ for the ±-relation ϱ = (ϱ+, ϱ−) := (≤,≥).

Example: For g(x1, x2) = x1 ∨ ¬x2, sgn(g) = (+,−),

g
±
▷ ϱ implies

g( 01 ,
c
c ) ∈ f (ϱ+, ϱ−) ⊆ ϱ+ = ( 0 0 1

0 1 1 ), i.e., order-preserving in x1,

g( cc ,
0
1 ) ∈ f (ϱ−, ϱ+) = f (ϱ+·−, ϱ−·−) ⊆ ϱ− = ( 0 1 1

0 0 1 ), i.e.,
order-reversing in x2.
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±-preclones (S-preclones)
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The lattice ±LA of Boolean ±-preclones
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±-preclones (S-preclones) ±-relations, ±-preservation and a Galois connection The lattice ±LA of Boolean ±-preclones

Some properties of the lattice ±LA
±LA := lattice of all ±-preclones on A w.r.t. ⊆
(±L2 for Boolean ±-preclones, A = {0, 1})
Some properties (hold also for arbitrary monoids S instead of ±)

• least ±-preclone: ±JA = ±-projections = ±⟨idA⟩
• largest ±-preclone: ±Op(A)

• ±LA is atomic and coatomic (each ±-preclone contains an
atom and is contained in a coatom).

• ±LA has finitely many atoms and coatoms.

±Op(A) is finitely generated (by at most binary ±-operations)
±Rel(A) is finitely generated (by at most ternary ±-relations)

Problem: Describe all maximal or minimal ±-preclones (coatoms
or atoms)

Recall: L2, the Post lattice of Boolean clones, is countable and
has 5 maximal and 7 minimal clones.
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The maximal Boolean ±-preclones

Theorem
There are nine maximal Boolean ±-preclones listed below. Each such
preclone is of the form F = ±Pol ϱ for some ±-relation ϱ = (ϱ+, ϱ−):

(a) ±Pol(σ, σ) with σ ∈ {σ0, σ1, σ2, σ3, σ4} where Polσi is maximal
in L2 (0-preserving, 1-preserving, monotone, self-dual, linear
operations)
σ0 = {0}, σ1 = {1}, σ2 = ≤ = {(0, 0), (0, 1), (1, 1)},
σ3 = {(0, 1), (1, 0)}, σ4 = {(x , y , z , u) ∈ A4 | x + y + z + u = 0}.

(b) ±Pol(≤,≥) our motivating example! all ±-operations where each

+argument is order-preserving and each −argument is order-reversing.

(c) ±Pol(A, ∅) = all functions with positive or mixed signum.

(d) ±Pol(A2,∆A) = all Boolean ±-operations, where each negative
argument is fictitious (including all negative constants).

(e) ±Pol({0}, {1}) e.g., for f with sgn(f ) = (+,+,−,−,−):

f ∈ ±Pol({0}, {1}) ⇐⇒ f (0, 0, 1, 1, 1) = 0 and f (1, 1, 0, 0, 0) = 1.
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The minimal Boolean ±-preclones

Theorem
There are twenty minimal Boolean ±-preclones. Each such ±-preclone
is of the form ±⟨f ⟩ with one ±-operation f as generator:

(A) ±⟨(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)⟩,±⟨x + y + z⟩
where the generators have signum λ = (+,+,+,−),
(majority and minority operation, the last argument is ficticious) (#2)

(B) ±⟨h0⟩,±⟨h1⟩,±⟨hy ⟩ where h†(x , y , z , u) =

{
x if x = y or z = u,

† otherwise,

where the generators have signum λ = (+,+,−,−), (#3)

(C) ±⟨x ∧ y⟩,±⟨x ∨ y⟩,±⟨x ∨ (y ∧ z)⟩,±⟨x ∧ (y ∨ z)⟩,
±⟨x ∨ (y ∧ ¬z)⟩,±⟨x ∧ (y ∨ ¬z)⟩,
±⟨(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)⟩,±⟨(x ∧ y) ∨ (y ∧ ¬z) ∨ (¬z ∧ x)⟩,
where the generators have signum λ = (+,+,−), (#8)

(D) ±⟨0⟩,±⟨1⟩,±⟨y⟩,±⟨¬y⟩,±⟨¬x⟩,±⟨x ∧ y⟩,±⟨x ∨ y⟩
where the generators have signum λ = (+,−). (#7)
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±⟨x ∨ (y ∧ ¬z)⟩,±⟨x ∧ (y ∨ ¬z)⟩,
±⟨(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)⟩,±⟨(x ∧ y) ∨ (y ∧ ¬z) ∨ (¬z ∧ x)⟩,
where the generators have signum λ = (+,+,−), (#8)

(D) ±⟨0⟩,±⟨1⟩,±⟨y⟩,±⟨¬y⟩,±⟨¬x⟩,±⟨x ∧ y⟩,±⟨x ∨ y⟩
where the generators have signum λ = (+,−). (#7)
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Preimage classes
(a tool for investigations of the structure of ±L2)

Let F ∈ L2 be a Boolean clone.

F⊡ := {P ∈ ±L2 | ⟨P̊⟩ = F} preimage class of F

⟨P̊⟩ = “underlying clone” forgetting all signa

Remark: relational characterization ⟨P̊⟩ = Pol{σ ∈ Rel(A) | (σ, σ) ∈ ±InvP}

Structure: semi-interval with greatest element PF := {f ∈ ±Op(A) | f̊ ∈ F}

The lattice ±L2 of Boolean ±-preclones is the (disjoint) union of
all preimage classes of Boolean clones:

±L2 =
⋃

{F⊡ | F ∈ L2}.
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How preimage classes look like? Some examples

unary clones F (i.e., generated by unary Boolean functions):

F = J2 := ⟨id⟩: |J⊡2 | = 3

id−

id±2

id+

PJ2

±J2

J⊡2

id−(x) = x
sgn(id−) = (−)

id±2(x , y) = y
sgn(id±2) = (+,−)

id+(x) = x
sgn(id+) = (+)

F0 := ⟨c0⟩: |F⊡
0 | = 6,

F1 := ⟨c1⟩: |F⊡
1 | = 6,

F01 := ⟨c0, c1⟩: |F⊡
01| = 10,

F¬ := ⟨¬⟩: |F⊡
¬ | = 7,

F2 := ⟨Op(1)(A)⟩: |F⊡
2 | = 19.

There are 12 join-irreducible elements generated by
id±2

A , id−A , c
±
0 , c+0 , c

−
0 , c±1 , c+1 , c

−
1 , ¬±1 , ¬±2 , ¬+, ¬−.
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AAA108, Wien, February 6, 2026 R. Pöschel, Boolean ±-preclones (18/22)



±-preclones (S-preclones) ±-relations, ±-preservation and a Galois connection The lattice ±LA of Boolean ±-preclones

How preimage classes look like? Some examples

unary clones F (i.e., generated by unary Boolean functions):

F = J2 := ⟨id⟩: |J⊡2 | = 3

id−

id±2

id+

PJ2

±J2

J⊡2

id−(x) = x
sgn(id−) = (−)

id±2(x , y) = y
sgn(id±2) = (+,−)

id+(x) = x
sgn(id+) = (+)

F0 := ⟨c0⟩: |F⊡
0 | = 6,

F1 := ⟨c1⟩: |F⊡
1 | = 6,

F01 := ⟨c0, c1⟩: |F⊡
01| = 10,

F¬ := ⟨¬⟩: |F⊡
¬ | = 7,

F2 := ⟨Op(1)(A)⟩: |F⊡
2 | = 19.

There are 12 join-irreducible elements generated by
id±2

A , id−A , c
±
0 , c+0 , c

−
0 , c±1 , c+1 , c

−
1 , ¬±1 , ¬±2 , ¬+, ¬−.

AAA108, Wien, February 6, 2026 R. Pöschel, Boolean ±-preclones (18/22)
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The lattice of unary ±-preclones

F⊡
01

F⊡
¬

PF0

c−0

c+0

c±0

id−

id±2

id+

c+1

c−1

PF1

F⊡
2

PF01

PF2

J⊡2

PJ2

c±1

±J2

F⊡
0 F⊡

1

¬−

¬+

¬±1 ¬±2

PF¬
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A challenging open problem

up to now, we investigated few preimage classes F⊡ (with F
Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?
Does there exist a preimage class of uncountable cardinality?

Is the lattice ±L2 of Boolean ±-preclones countable?

(compare: the lattice L2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean ±-preclones is contained in

P. Jipsen, E. Lehtonen, and R. Pöschel, S-preclones and
the Galois connection SPol− S Inv, Part II: Boolean ±-preclones
(in preparation, to be submitted)
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R. Pöschel and L.A. Kalužnin, Funktionen- und Relationenalgebren. Deutscher Verlag
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Z. Ésik and P. Weil, Algebraic recognizability of regular tree languages. Theoret.
Comput. Sci. 340(2), (2005), 291–321. (notion of preclone)

E. Lehtonen, Characterization of preclones by matrix collections. Asian-Eur. J. Math. 3(3),
(2010), 457–473.

======= Analogy to multi-sorted algebras =======
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