

Boolean \pm -preclones

Peter Jipsen
Erkko Lehtonen
Reinhard Pöschel

Chapman University, Orange, CA (USA)
Khalifa University, Abu Dhabi (United Arab Emirates)
Technische Universität Dresden (Germany)

AAA108
108. Arbeitstagung Allgemeine Algebra
108th Workshop on General Algebra
Wien, February 6-8, 2026

In memoriam Günther Eigenthaler

This is the first AAA attended by me since the passing of Günther Eigenthaler. Therefore I dedicate this talk to the memory of my esteemed colleague and dear friend Günther.

GÜNTHER EIGENTHALER
9.2.1950 - 14.2.2025

Günther, Laci Márki, R.P.

September 2023 during an excursion (Lunzer See) in Austria

Outline

\pm -preclones (S -preclones)

\pm -relations, \pm -preservation and a Galois connection

The lattice ${}^\pm\mathcal{L}_A$ of Boolean \pm -preclones

Outline

\pm -preclones (S -preclones)

\pm -relations, \pm -preservation and a Galois connection

The lattice ${}^\pm\mathcal{L}_A$ of Boolean \pm -preclones

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions $g \in A^A$.

“motivating example”: $P = +$: order-preserving

$P = -$: order-reversing

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions $g \in A^A$.

“motivating example”: $P = +$: order-preserving

$P = -$: order-reversing

An n -ary operation $f(x_1, \dots, x_n)$ has property P in an argument, say x_1 , if and only if each translation $x_1 \mapsto f(x_1, c_2, \dots, c_n)$ has this property P (for all constants $c_2, \dots, c_n \in A$).

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions $g \in A^A$.

“motivating example”: $P = +$: order-preserving

$P = -$: order-reversing

An n -ary *operation* $f(x_1, \dots, x_n)$ has property P in an argument, say x_1 , : \iff each translation $x_1 \mapsto f(x_1, c_2, \dots, c_n)$ has this property P (for all constants $c_2, \dots, c_n \in A$).

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions $g \in A^A$.

“motivating example”: $P = +$: order-preserving

$P = -$: order-reversing

An n -ary *operation* $f(x_1, \dots, x_n)$ has property P in an argument, say x_1 , : \iff each translation $x_1 \mapsto f(x_1, c_2, \dots, c_n)$ has this property P (for all constants $c_2, \dots, c_n \in A$).

How to handle composition? order-reversing composed with

order-reversing is order-preserving! Formalization: Collect the properties

Motivating example

some history:

Nov. 2021 PALS talk by P. Jipsen on partially ordered algebras (and po-clones): operations which in each argument are *order-preserving* or *order-reversing* (for some given order on the base set).

Questions: how to characterize such “po-clones”?

R.P.: characterization via invariant relations?

Analogies to many-sorted algebras

(results of E. Lehtonen/ R. Pöschel/ T. Waldhauser),

Let P be a property for unary functions $g \in A^A$.

“motivating example”: $P = +$: order-preserving

$P = -$: order-reversing

An n -ary *operation* $f(x_1, \dots, x_n)$ has property P in an argument, say x_1 , : \iff each translation $x_1 \mapsto f(x_1, c_2, \dots, c_n)$ has this property P (for all constants $c_2, \dots, c_n \in A$).

How to handle composition? order-reversing composed with order-reversing is order-preserving! Formalization: Collect the properties

in a monoid $S = (\{+, -\}, \cdot)$, here a group

.	+	-
+	+	-
-	-	+

\pm -operations (S -operations)

$S := \pm := \{+, -\}$ (in general, finite monoid S).

n-ary S -operation (\pm -operation): operation f together with its *signum*

$f: A^n \rightarrow A$ with $\text{sgn}(f) = (s_1, \dots, s_n) \in S^n$,

i.e., the i -th argument of f gets a label (*sign*) $s_i \in S$ ($i = 1, \dots, n$).

$\pm\text{Op}(A) :=$ all finitary \pm -operations

\pm -operations (S -operations)

$S := \pm := \{+, -\}$ (in general, finite monoid S).

n -ary S -operation (\pm -operation): operation f together with its *signum*

$f: A^n \rightarrow A$ with $\text{sgn}(f) = (s_1, \dots, s_n) \in S^n$,

i.e., the i -th argument of f gets a label (*sign*) $s_i \in S$ ($i = 1, \dots, n$).

$\pm\text{Op}(A) :=$ all finitary \pm -operations

\pm -operations (S -operations)

$S := \pm := \{+, -\}$ (in general, finite monoid S).

n -ary S -operation (\pm -operation): operation f together with its *signum*

$f: A^n \rightarrow A$ with $\text{sgn}(f) = (s_1, \dots, s_n) \in S^n$,

i.e., the i -th argument of f gets a label (*sign*) $s_i \in S$ ($i = 1, \dots, n$).

$\pm\text{Op}(A) :=$ all finitary \pm -operations

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm \text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm \langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm \text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) **permutation of arguments** (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm \text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm \langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm \text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm \text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm \text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm \langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm \text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq \pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

$\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq \pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq {}^\pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

${}^\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq {}^\pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq \pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

$\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq \pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

(Boolean) \pm -preclones

\pm -preclone := set $F \subseteq \pm\text{Op}(A)$ of \pm -operations closed under:

- (1) $\text{id}_A \in F$, $\text{id}_A(x) = x$, $\text{sgn}(\text{id}_A) := (+)$ (+ unit element of S),
- (2) permutation of arguments (operations ζ, τ),
- (3) identification of arguments *with the same sign* s (Δ^s),
- (4) adding fictitious arguments of (arbitrary) sign $s \in S$,
 e.g., $(\nabla^s f)(x_1, x_2, \dots, x_{n+1}) := f(x_2, \dots, x_{n+1})$, where
 $\text{sgn}(\nabla^s f) = (s, s_1, \dots, s_n)$ for $\text{sgn}(f) = (s_1, \dots, s_n)$,
- (5) “linearized” composition

$\text{sgn}(f) = (s_1, \dots, s_n)$ and $\text{sgn}(g) = (s'_1, \dots, s'_m)$. Then

$$\begin{aligned} (f \circ g)(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n-1}) \\ := f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{m+n-1}) \end{aligned}$$

with $\text{sgn}(f \circ g) = (s'_1 s_1, \dots, s'_m s_1, s_2, \dots, s_n)$.

$\pm\langle F \rangle := \pm$ -preclone generated by $F \subseteq \pm\text{Op}(A)$.

Boolean \pm -preclone if $A = \{0, 1\}$ [Remark: preclone = operad]

Example (composition)

properties $S = \{+, -\}$, $A = \{0, 1\}$ with order $0 < 1$,
+ means order preserving, - means order reversing
(such functions really form a \pm -preclone).

Composition:

$$f(x_1, x_2) = \neg x_1 \wedge x_2, \text{sgn}(f) = (s_1, s_2) = (-, +),$$
$$g(x_1, x_2) = x_1 \vee \neg x_2, \text{sgn}(g) = (s'_1, s'_2) = (+, -).$$

$$(f \circ g)(x_1, x_2, x_3) = f(g(x_1, x_2), x_3) = \neg(x_1 \vee \neg x_2) \wedge x_3 = \neg x_1 \wedge x_2 \wedge x_3$$

has signum $(s'_1 s_1, s'_2 s_1, s_2) = (+ \cdot -, - \cdot -, +) = (-, +, +)$.

One is allowed to identify x_2 and x_3 , but not x_2 and x_1 .

Example (composition)

properties $S = \{+, -\}$, $A = \{0, 1\}$ with order $0 < 1$,
+ means order preserving, - means order reversing
(such functions really form a \pm -preclone).

Composition:

$$f(x_1, x_2) = \neg x_1 \wedge x_2, \text{sgn}(f) = (s_1, s_2) = (-, +),$$
$$g(x_1, x_2) = x_1 \vee \neg x_2, \text{sgn}(g) = (s'_1, s'_2) = (+, -).$$

$$(f \circ g)(x_1, x_2, x_3) = f(g(x_1, x_2), x_3) = \neg(x_1 \vee \neg x_2) \wedge x_3 = \neg x_1 \wedge x_2 \wedge x_3$$

has signum $(s'_1 s_1, s'_2 s_1, s_2) = (+ \cdot -, - \cdot -, +) = (-, +, +)$.

One is allowed to identify x_2 and x_3 , but not x_2 and x_1 .

Example (composition)

properties $S = \{+, -\}$, $A = \{0, 1\}$ with order $0 < 1$,
+ means order preserving, - means order reversing
(such functions really form a \pm -preclone).

Composition:

$$f(x_1, x_2) = \neg x_1 \wedge x_2, \text{sgn}(f) = (s_1, s_2) = (-, +),$$
$$g(x_1, x_2) = x_1 \vee \neg x_2, \text{sgn}(g) = (s'_1, s'_2) = (+, -).$$

$$(f \circ g)(x_1, x_2, x_3) = f(g(x_1, x_2), x_3) = \neg(x_1 \vee \neg x_2) \wedge x_3 = \neg x_1 \wedge x_2 \wedge x_3$$

has signum $(s'_1 s_1, s'_2 s_1, s_2) = (+ \cdot -, - \cdot -, +) = (-, +, +)$.

One is allowed to identify x_2 and x_3 , but not x_2 and x_1 .

Example (composition)

properties $S = \{+, -\}$, $A = \{0, 1\}$ with order $0 < 1$,
+ means order preserving, - means order reversing
(such functions really form a \pm -preclone).

Composition:

$$f(x_1, x_2) = \neg x_1 \wedge x_2, \text{sgn}(f) = (s_1, s_2) = (-, +),$$
$$g(x_1, x_2) = x_1 \vee \neg x_2, \text{sgn}(g) = (s'_1, s'_2) = (+, -).$$

$$(f \circ g)(x_1, x_2, x_3) = f(g(x_1, x_2), x_3) = \neg(x_1 \vee \neg x_2) \wedge x_3 = \neg x_1 \wedge x_2 \wedge x_3$$

has signum $(s'_1 s_1, s'_2 s_1, s_2) = (+ \cdot -, - \cdot -, +) = (-, +, +)$.

One is allowed to identify x_2 and x_3 , but not x_2 and x_1 .

Outline

\pm -preclones (S -preclones)

\pm -relations, \pm -preservation and a Galois connection

The lattice ${}^\pm\mathcal{L}_A$ of Boolean \pm -preclones

\pm -relations (S -relations) and \pm -preservation \triangleright^\pm

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1 \cdots -}, \dots, \varrho_{s_n \cdots -}) \subseteq \varrho_-$

$f \triangleright^\pm \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm -)invariant for f

\pm -relations (S -relations) and \pm -preservation \triangleright^\pm

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1 \cdots -}, \dots, \varrho_{s_n \cdots -}) \subseteq \varrho_-$

$f \triangleright^\pm \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm -)invariant for f

\pm -relations (S -relations) and \pm -preservation \triangleright^\pm

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1 \cdots}, \dots, \varrho_{s_n \cdots}) \subseteq \varrho_-$

$f \triangleright^\pm \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm -)invariant for f

\pm -relations (S -relations) and \pm -preservation \triangleright^\pm

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1 \cdots}, \dots, \varrho_{s_n \cdots}) \subseteq \varrho_-$

$f \triangleright^\pm \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm -)invariant for f

\pm -relations (S -relations) and \pm -preservation \triangleright^\pm

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1 \cdots -}, \dots, \varrho_{s_n \cdots -}) \subseteq \varrho_-$

$f \triangleright^\pm \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm -)invariant for f

\pm -relations (S -relations) and \pm -preservation \triangleright

recall: $S = \pm := \{+, -\}$

m -ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “ S -version”:

$f \in {}^\pm \text{Op}^{(n)}(A)$, $\text{sgn}(f) = (s_1, \dots, s_n)$, $\varrho = (\varrho_+, \varrho_-) \in {}^\pm \text{Rel}^{(m)}(A)$

$f \triangleright (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+$ and $f(\varrho_{s_1-}, \dots, \varrho_{s_n-}) \subseteq \varrho_-$

$$\begin{array}{c}
 f(\begin{array}{|c|c|c|} \hline a_{11} & a_{12} & \dots & a_{1n} \\ \hline a_{21} & a_{22} & \dots & a_{2n} \\ \hline \end{array}) = \textcolor{red}{\boxed{\bullet}} \\
 f(\begin{array}{|c|c|c|} \hline a_{m1} & a_{m2} & \dots & a_{mn} \\ \hline \end{array}) = \textcolor{red}{\boxed{\bullet}}
 \end{array}$$

$\in \varrho_{s_1s}$ $\in \varrho_{s_2s}$ \dots $\in \varrho_{s_ns}$ \Rightarrow $\in \varrho_s$ $(s \in S)$

$f \triangleright \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm) -invariant for f

±-relations (S -relations) and ±-preservation \triangleright

recall: $S = \pm := \{+, -\}$

m-ary \pm -relation: $\varrho = (\varrho_+, \varrho_-)$ with $\varrho_s \subseteq A^m$ ($s \in S$)

classical notion of preservation: $f \triangleright \varrho : \iff f(\varrho, \dots, \varrho) \subseteq \varrho$

The “S-version”:

$$f \in {}^{\pm}\mathrm{Op}^{(n)}(A), \mathrm{sgn}(f) = (s_1, \dots, s_n), \varrho = (\varrho_+, \varrho_-) \in {}^{\pm}\mathrm{Rel}^{(m)}(A)$$

$$f \models^\pm (\varrho_+, \varrho_-) : \iff f(\varrho_{s_1}, \dots, \varrho_{s_n}) \subseteq \varrho_+ \text{ and } f(\varrho_{s_1 \cdots}, \dots, \varrho_{s_n \cdots}) \subseteq \varrho_-$$

$$\begin{aligned}
 f\left(\begin{array}{|c|c|c|c|} \hline a_{11} & a_{12} & \cdots & a_{1n} \\ \hline a_{21} & a_{22} & \cdots & a_{2n} \\ \hline \end{array}\right) &= \begin{array}{|c|} \hline \bullet \\ \hline \bullet \\ \hline \end{array} \\
 f\left(\begin{array}{|c|c|c|c|} \hline a_{m1} & a_{m2} & \cdots & a_{mn} \\ \hline \end{array}\right) &= \begin{array}{|c|} \hline \bullet \\ \hline \end{array} \\
 \in \varrho_{s_1s} & \in \varrho_{s_2s} & \cdots & \in \varrho_{s_ns} \xrightarrow{\text{red}} \in \varrho_s \quad (s \in S)
 \end{aligned}$$

$f \triangleright \varrho$: f \pm -preserves ϱ , f is an \pm -polymorphism of ϱ , ϱ is (\pm) -invariant for f

The Galois connection $\pm\text{Pol} - \pm\text{Inv}$

$\stackrel{\pm}{\triangleright}$ induces a Galois connection with the operators

$\pm\text{Pol } Q := \{f \in \pm\text{Op}(A) \mid \forall \varrho \in Q: f \stackrel{\pm}{\triangleright} \varrho\}$ (\pm -polymorphisms),

$\pm\text{Inv } F := \{\varrho \in \pm\text{Rel}(A) \mid \forall f \in F: f \stackrel{\pm}{\triangleright} \varrho\}$ (invariant \pm -relations).

for $F \subseteq \pm\text{Op}(A)$ and $Q \subseteq \pm\text{Rel}(A)$.

Theorem (The Galois closures)

$\pm\langle F \rangle = \pm\text{Pol} \pm\text{Inv } F$ (\pm -preclone generated by F),

$\pm[Q] = \pm\text{Inv} \pm\text{Pol } Q$ (\pm -relational clone generated by Q).

[JipLP2023]: *S*-preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part I,
Algebra Universalis 85, 2024

The Galois connection ${}^\pm \text{Pol} - {}^\pm \text{Inv}$

$\stackrel{\pm}{\triangleright}$ induces a Galois connection with the operators

${}^\pm \text{Pol } Q := \{f \in {}^\pm \text{Op}(A) \mid \forall \varrho \in Q: f \stackrel{\pm}{\triangleright} \varrho\}$ (\pm -polymorphisms),

${}^\pm \text{Inv } F := \{\varrho \in {}^\pm \text{Rel}(A) \mid \forall f \in F: f \stackrel{\pm}{\triangleright} \varrho\}$ (invariant \pm -relations).

for $F \subseteq {}^\pm \text{Op}(A)$ and $Q \subseteq {}^\pm \text{Rel}(A)$.

Theorem (The Galois closures)

${}^\pm \langle F \rangle = {}^\pm \text{Pol} {}^\pm \text{Inv } F$ (\pm -preclone generated by F),

${}^\pm [Q] = {}^\pm \text{Inv} {}^\pm \text{Pol } Q$ (\pm -relational clone generated by Q).

[JipLP2023]: *S*-preclones and the Galois connection ${}^S \text{Pol} - {}^S \text{Inv}$, Part I,
Algebra Universalis 85, 2024

The Galois connection $\pm\text{Pol} - \pm\text{Inv}$

$\stackrel{\pm}{\triangleright}$ induces a Galois connection with the operators

$\pm\text{Pol } Q := \{f \in \pm\text{Op}(A) \mid \forall \varrho \in Q: f \stackrel{\pm}{\triangleright} \varrho\}$ (\pm -polymorphisms),

$\pm\text{Inv } F := \{\varrho \in \pm\text{Rel}(A) \mid \forall f \in F: f \stackrel{\pm}{\triangleright} \varrho\}$ (invariant \pm -relations).

for $F \subseteq \pm\text{Op}(A)$ and $Q \subseteq \pm\text{Rel}(A)$.

Theorem (The Galois closures)

$\pm\langle F \rangle = \pm\text{Pol} \pm\text{Inv } F$ (\pm -preclone generated by F),

$\pm[Q] = \pm\text{Inv} \pm\text{Pol } Q$ (\pm -relational clone generated by Q).

[JipLP2023]: *S*-preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part I,
Algebra Universalis 85, 2024

once more: our “motivating” Example

(A, \leq) poset ($0 < 1$), $S = \{+, -\}$ (group).

For the \pm -preclone F (of \pm -operations where $+$ means order preserving und $-$ means order reversing) we have the following relational characterization:

$F = {}^\pm \text{Pol } \varrho$ for the \pm -relation $\varrho = (\varrho_+, \varrho_-) := (\leq, \geq)$.

Example: For $g(x_1, x_2) = x_1 \vee \neg x_2$, $\text{sgn}(g) = (+, -)$,

$g \stackrel{+}{\triangleright} \varrho$ implies

$g\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \in f(\varrho_+, \varrho_-) \subseteq \varrho_+ = \left(\begin{smallmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix}\right)$, i.e., order-preserving in x_1 ,

$g\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \in f(\varrho_-, \varrho_+) = f(\varrho_{+-}, \varrho_{--}) \subseteq \varrho_- = \left(\begin{smallmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{smallmatrix}\right)$, i.e.,
order-reversing in x_2 .

once more: our “motivating” Example

(A, \leq) poset ($0 < 1$), $S = \{+, -\}$ (group).

For the \pm -preclone F (of \pm -operations where $+$ means order preserving und $-$ means order reversing) we have the following relational characterization:

$F = {}^\pm\text{Pol } \varrho$ for the \pm -relation $\varrho = (\varrho_+, \varrho_-) := (\leq, \geq)$.

Example: For $g(x_1, x_2) = x_1 \vee \neg x_2$, $\text{sgn}(g) = (+, -)$,

$g \stackrel{\pm}{\triangleright} \varrho$ implies

$g\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} c \\ c \end{smallmatrix}\right) \in f(\varrho_+, \varrho_-) \subseteq \varrho_+ = \left(\begin{smallmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix}\right)$, i.e., order-preserving in x_1 ,

$g\left(\begin{smallmatrix} c \\ c \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \in f(\varrho_-, \varrho_+) = f(\varrho_{+-}, \varrho_{--}) \subseteq \varrho_- = \left(\begin{smallmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{smallmatrix}\right)$, i.e.,
order-reversing in x_2 .

once more: our “motivating” Example

(A, \leq) poset ($0 < 1$), $S = \{+, -\}$ (group).

For the \pm -preclone F (of \pm -operations where $+$ means order preserving und $-$ means order reversing) we have the following relational characterization:

$F = {}^\pm\text{Pol } \varrho$ for the \pm -relation $\varrho = (\varrho_+, \varrho_-) := (\leq, \geq)$.

Example: For $g(x_1, x_2) = x_1 \vee \neg x_2$, $\text{sgn}(g) = (+, -)$,

$g \stackrel{\pm}{\triangleright} \varrho$ implies

$g\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} c \\ c \end{smallmatrix}\right) \in f(\varrho_+, \varrho_-) \subseteq \varrho_+ = \left(\begin{smallmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix}\right)$, i.e., order-preserving in x_1 ,

$g\left(\begin{smallmatrix} c \\ c \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \in f(\varrho_-, \varrho_+) = f(\varrho_{+-}, \varrho_{--}) \subseteq \varrho_- = \left(\begin{smallmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{smallmatrix}\right)$, i.e.,
order-reversing in x_2 .

once more: our “motivating” Example

(A, \leq) poset ($0 < 1$), $S = \{+, -\}$ (group).

For the \pm -preclone F (of \pm -operations where $+$ means order preserving und $-$ means order reversing) we have the following relational characterization:

$F = {}^\pm\text{Pol } \varrho$ for the \pm -relation $\varrho = (\varrho_+, \varrho_-) := (\leq, \geq)$.

Example: For $g(x_1, x_2) = x_1 \vee \neg x_2$, $\text{sgn}(g) = (+, -)$,

$g \stackrel{\pm}{\triangleright} \varrho$ implies

$g\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} c \\ c \end{smallmatrix}\right) \in f(\varrho_+, \varrho_-) \subseteq \varrho_+ = \left(\begin{smallmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix}\right)$, i.e., order-preserving in x_1 ,

$g\left(\begin{smallmatrix} c \\ c \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \in f(\varrho_-, \varrho_+) = f(\varrho_{+-}, \varrho_{--}) \subseteq \varrho_- = \left(\begin{smallmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{smallmatrix}\right)$, i.e.,
order-reversing in x_2 .

Outline

\pm -preclones (S -preclones)

\pm -relations, \pm -preservation and a Galois connection

The lattice ${}^\pm\mathcal{L}_A$ of Boolean \pm -preclones

Some properties of the lattice ${}^\pm\mathcal{L}_A$

${}^\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
(${}^\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: ${}^\pm\mathcal{J}_A = \pm$ -projections = ${}^\pm\langle \text{id}_A \rangle$
- largest \pm -preclone: ${}^\pm\text{Op}(A)$
- ${}^\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- ${}^\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

${}^\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

${}^\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

Some properties of the lattice $\pm\mathcal{L}_A$

$\pm\mathcal{L}_A :=$ lattice of all \pm -preclones on A w.r.t. \subseteq
($\pm\mathcal{L}_2$ for Boolean \pm -preclones, $A = \{0,1\}$)

Some properties (hold also for arbitrary monoids S instead of \pm)

- least \pm -preclone: $\pm\mathcal{J}_A = \pm$ -projections $= \pm\langle \text{id}_A \rangle$
- largest \pm -preclone: $\pm\text{Op}(A)$
- $\pm\mathcal{L}_A$ is atomic and coatomic (each \pm -preclone contains an atom and is contained in a coatom).
- $\pm\mathcal{L}_A$ has finitely many atoms and coatoms.

$\pm\text{Op}(A)$ is finitely generated (by at most binary \pm -operations)

$\pm\text{Rel}(A)$ is finitely generated (by at most ternary \pm -relations)

Problem: Describe all maximal or minimal \pm -preclones (coatoms or atoms)

Recall: \mathcal{L}_2 , the Post lattice of Boolean clones, is countable and has 5 maximal and 7 minimal clones.

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = {}^{\pm}\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) ${}^{\pm}\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) ${}^{\pm}\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each +argument is order-preserving and each -argument is order-reversing.
- (c) ${}^{\pm}\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.
- (d) ${}^{\pm}\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).
- (e) ${}^{\pm}\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
 $f \in {}^{\pm}\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0$ and $f(1, 1, 0, 0, 0) = 1$.

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = {}^{\pm}\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) *${}^{\pm}\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)*
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) *${}^{\pm}\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each +argument is order-preserving and each -argument is order-reversing.*
- (c) *${}^{\pm}\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.*
- (d) *${}^{\pm}\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).*
- (e) *${}^{\pm}\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
 $f \in {}^{\pm}\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0$ and $f(1, 1, 0, 0, 0) = 1$.*

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = {}^{\pm}\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) ${}^{\pm}\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) ${}^{\pm}\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each + argument is order-preserving and each - argument is order-reversing.
- (c) ${}^{\pm}\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.
- (d) ${}^{\pm}\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).
- (e) ${}^{\pm}\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
 $f \in {}^{\pm}\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0$ and $f(1, 1, 0, 0, 0) = 1$.

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = \pm\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) $\pm\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) $\pm\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each + argument is order-preserving and each - argument is order-reversing.
- (c) $\pm\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.
- (d) $\pm\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).
- (e) $\pm\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
 $f \in \pm\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0$ and $f(1, 1, 0, 0, 0) = 1$.

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = {}^{\pm}\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) ${}^{\pm}\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) ${}^{\pm}\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each + argument is order-preserving and each - argument is order-reversing.
- (c) ${}^{\pm}\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.
- (d) ${}^{\pm}\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).
- (e) ${}^{\pm}\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
 $f \in {}^{\pm}\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0$ and $f(1, 1, 0, 0, 0) = 1$.

The maximal Boolean \pm -preclones

Theorem

There are nine maximal Boolean \pm -preclones listed below. Each such preclone is of the form $F = {}^{\pm}\text{Pol } \varrho$ for some \pm -relation $\varrho = (\varrho_+, \varrho_-)$:

- (a) ${}^{\pm}\text{Pol}(\sigma, \sigma)$ with $\sigma \in \{\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ where $\text{Pol } \sigma_i$ is maximal in \mathcal{L}_2 (0-preserving, 1-preserving, monotone, self-dual, linear operations)
 $\sigma_0 = \{0\}$, $\sigma_1 = \{1\}$, $\sigma_2 = \leq = \{(0, 0), (0, 1), (1, 1)\}$,
 $\sigma_3 = \{(0, 1), (1, 0)\}$, $\sigma_4 = \{(x, y, z, u) \in A^4 \mid x + y + z + u = 0\}$.
- (b) ${}^{\pm}\text{Pol}(\leq, \geq)$ our motivating example! all \pm -operations where each + argument is order-preserving and each - argument is order-reversing.
- (c) ${}^{\pm}\text{Pol}(A, \emptyset)$ = all functions with positive or mixed signum.
- (d) ${}^{\pm}\text{Pol}(A^2, \Delta_A)$ = all Boolean \pm -operations, where each negative argument is fictitious (including all negative constants).
- (e) ${}^{\pm}\text{Pol}(\{0\}, \{1\})$ e.g., for f with $\text{sgn}(f) = (+, +, -, -, -)$:
$$f \in {}^{\pm}\text{Pol}(\{0\}, \{1\}) \iff f(0, 0, 1, 1, 1) = 0 \text{ and } f(1, 1, 0, 0, 0) = 1.$$

The minimal Boolean \pm -preclones

Theorem

There are twenty minimal Boolean \pm -preclones. Each such \pm -preclone is of the form $\pm\langle f \rangle$ with one \pm -operation f as generator:

(A) $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle x + y + z \rangle$
*where the generators have signum $\lambda = (+, +, +, -)$,
 (majority and minority operation, the last argument is fictitious)* (#2)

(B) $\pm\langle h_0 \rangle, \pm\langle h_1 \rangle, \pm\langle h_y \rangle$ where $h_\dagger(x, y, z, u) = \begin{cases} x & \text{if } x = y \text{ or } z = u, \\ \dagger & \text{otherwise,} \end{cases}$
where the generators have signum $\lambda = (+, +, -, -)$ (#3)

(C) $\pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle, \pm\langle x \vee (y \wedge z) \rangle, \pm\langle x \wedge (y \vee z) \rangle,$
 $\pm\langle x \vee (y \wedge \neg z) \rangle, \pm\langle x \wedge (y \vee \neg z) \rangle,$
 $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle (x \wedge y) \vee (y \wedge \neg z) \vee (\neg z \wedge x) \rangle,$
where the generators have signum $\lambda = (+, +, -)$ (#8)

(D) $\pm\langle 0 \rangle, \pm\langle 1 \rangle, \pm\langle y \rangle, \pm\langle \neg y \rangle, \pm\langle \neg x \rangle, \pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle$
where the generators have signum $\lambda = (+, -)$ (#7)

The minimal Boolean \pm -preclones

Theorem

There are twenty minimal Boolean \pm -preclones. Each such \pm -preclone is of the form $\pm\langle f \rangle$ with one \pm -operation f as generator:

(A) $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle x + y + z \rangle$
*where the generators have signum $\lambda = (+, +, +, -)$,
(majority and minority operation, the last argument is fictitious)* (#2)

(B) $\pm\langle h_0 \rangle, \pm\langle h_1 \rangle, \pm\langle h_y \rangle$ where $h_\dagger(x, y, z, u) = \begin{cases} x & \text{if } x = y \text{ or } z = u, \\ \dagger & \text{otherwise,} \end{cases}$
where the generators have signum $\lambda = (+, +, -, -)$ (#3)

(C) $\pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle, \pm\langle x \vee (y \wedge z) \rangle, \pm\langle x \wedge (y \vee z) \rangle,$
 $\pm\langle x \vee (y \wedge \neg z) \rangle, \pm\langle x \wedge (y \vee \neg z) \rangle,$
 $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle (x \wedge y) \vee (y \wedge \neg z) \vee (\neg z \wedge x) \rangle,$
where the generators have signum $\lambda = (+, +, -)$ (#8)

(D) $\pm\langle 0 \rangle, \pm\langle 1 \rangle, \pm\langle y \rangle, \pm\langle \neg y \rangle, \pm\langle \neg x \rangle, \pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle$
where the generators have signum $\lambda = (+, -)$ (#7)

The minimal Boolean \pm -preclones

Theorem

There are twenty minimal Boolean \pm -preclones. Each such \pm -preclone is of the form $\pm\langle f \rangle$ with one \pm -operation f as generator:

(A) $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle x + y + z \rangle$
*where the generators have signum $\lambda = (+, +, +, -)$,
 (majority and minority operation, the last argument is fictitious)* (#2)

(B) $\pm\langle h_0 \rangle, \pm\langle h_1 \rangle, \pm\langle h_y \rangle$ where $h_{\dagger}(x, y, z, u) = \begin{cases} x & \text{if } x = y \text{ or } z = u, \\ \dagger & \text{otherwise,} \end{cases}$
where the generators have signum $\lambda = (+, +, -, -)$ (#3)

(C) $\pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle, \pm\langle x \vee (y \wedge z) \rangle, \pm\langle x \wedge (y \vee z) \rangle,$
 $\pm\langle x \vee (y \wedge \neg z) \rangle, \pm\langle x \wedge (y \vee \neg z) \rangle,$
 $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle (x \wedge y) \vee (y \wedge \neg z) \vee (\neg z \wedge x) \rangle,$
where the generators have signum $\lambda = (+, +, -)$ (#8)

(D) $\pm\langle 0 \rangle, \pm\langle 1 \rangle, \pm\langle y \rangle, \pm\langle \neg y \rangle, \pm\langle \neg x \rangle, \pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle$
where the generators have signum $\lambda = (+, -)$ (#7)

The minimal Boolean \pm -preclones

Theorem

There are twenty minimal Boolean \pm -preclones. Each such \pm -preclone is of the form $\pm\langle f \rangle$ with one \pm -operation f as generator:

(A) $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle x + y + z \rangle$
*where the generators have signum $\lambda = (+, +, +, -)$,
 (majority and minority operation, the last argument is fictitious)* (#2)

(B) $\pm\langle h_0 \rangle, \pm\langle h_1 \rangle, \pm\langle h_y \rangle$ where $h_{\dagger}(x, y, z, u) = \begin{cases} x & \text{if } x = y \text{ or } z = u, \\ \dagger & \text{otherwise,} \end{cases}$
where the generators have signum $\lambda = (+, +, -, -)$ (#3)

(C) $\pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle, \pm\langle x \vee (y \wedge z) \rangle, \pm\langle x \wedge (y \vee z) \rangle,$
 $\pm\langle x \vee (y \wedge \neg z) \rangle, \pm\langle x \wedge (y \vee \neg z) \rangle,$
 $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle (x \wedge y) \vee (y \wedge \neg z) \vee (\neg z \wedge x) \rangle,$
where the generators have signum $\lambda = (+, +, -)$ (#8)

(D) $\pm\langle 0 \rangle, \pm\langle 1 \rangle, \pm\langle y \rangle, \pm\langle \neg y \rangle, \pm\langle \neg x \rangle, \pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle$
where the generators have signum $\lambda = (+, -)$ (#7)

The minimal Boolean \pm -preclones

Theorem

There are twenty minimal Boolean \pm -preclones. Each such \pm -preclone is of the form $\pm\langle f \rangle$ with one \pm -operation f as generator:

(A) $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle x + y + z \rangle$
where the generators have signum $\lambda = (+, +, +, -)$,
(majority and minority operation, the last argument is fictitious) (#2)

(B) $\pm\langle h_0 \rangle, \pm\langle h_1 \rangle, \pm\langle h_y \rangle$ where $h_{\dagger}(x, y, z, u) = \begin{cases} x & \text{if } x = y \text{ or } z = u, \\ \dagger & \text{otherwise,} \end{cases}$
where the generators have signum $\lambda = (+, +, -, -)$, (#3)

(C) $\pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle, \pm\langle x \vee (y \wedge z) \rangle, \pm\langle x \wedge (y \vee z) \rangle,$
 $\pm\langle x \vee (y \wedge \neg z) \rangle, \pm\langle x \wedge (y \vee \neg z) \rangle,$
 $\pm\langle (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \rangle, \pm\langle (x \wedge y) \vee (y \wedge \neg z) \vee (\neg z \wedge x) \rangle,$
where the generators have signum $\lambda = (+, +, -)$, (#8)

(D) $\pm\langle 0 \rangle, \pm\langle 1 \rangle, \pm\langle y \rangle, \pm\langle \neg y \rangle, \pm\langle \neg x \rangle, \pm\langle x \wedge y \rangle, \pm\langle x \vee y \rangle$
where the generators have signum $\lambda = (+, -)$. (#7)

Preimage classes

(a tool for investigations of the structure of ${}^\pm \mathcal{L}_2$)

Let $F \in \mathcal{L}_2$ be a Boolean clone.

$F^\square := \{P \in {}^\pm \mathcal{L}_2 \mid \langle \mathring{P} \rangle = F\}$ preimage class of F

$\langle \mathring{P} \rangle$ = “underlying clone” forgetting all signs

Remark: relational characterization $\langle \mathring{P} \rangle = \text{Pol}\{\sigma \in \text{Rel}(A) \mid (\sigma, \sigma) \in {}^\pm \text{Inv } P\}$

Structure: semi-interval with greatest element $P_F := \{f \in {}^\pm \text{Op}(A) \mid \mathring{f} \in F\}$

The lattice ${}^\pm \mathcal{L}_2$ of Boolean \pm -preclones is the (disjoint) union of all preimage classes of Boolean clones:

$${}^\pm \mathcal{L}_2 = \bigcup \{F^\square \mid F \in \mathcal{L}_2\}.$$

Preimage classes

(a tool for investigations of the structure of ${}^\pm \mathcal{L}_2$)

Let $F \in \mathcal{L}_2$ be a Boolean clone.

$$F^\square := \{P \in {}^\pm \mathcal{L}_2 \mid \langle \mathring{P} \rangle = F\} \text{ preimage class of } F$$

$\langle \mathring{P} \rangle$ = “underlying clone” forgetting all signs

Remark: relational characterization $\langle \mathring{P} \rangle = \text{Pol}\{\sigma \in \text{Rel}(A) \mid (\sigma, \sigma) \in {}^\pm \text{Inv } P\}$

Structure: semi-interval with greatest element $P_F := \{f \in {}^\pm \text{Op}(A) \mid \mathring{f} \in F\}$

The lattice ${}^\pm \mathcal{L}_2$ of Boolean \pm -preclones is the (disjoint) union of all preimage classes of Boolean clones:

$${}^\pm \mathcal{L}_2 = \bigcup \{F^\square \mid F \in \mathcal{L}_2\}.$$

Preimage classes

(a tool for investigations of the structure of ${}^\pm \mathcal{L}_2$)

Let $F \in \mathcal{L}_2$ be a Boolean clone.

$F^\square := \{P \in {}^\pm \mathcal{L}_2 \mid \langle \mathring{P} \rangle = F\}$ preimage class of F

$\langle \mathring{P} \rangle$ = “underlying clone” forgetting all signs

Remark: relational characterization $\langle \mathring{P} \rangle = \text{Pol}\{\sigma \in \text{Rel}(A) \mid (\sigma, \sigma) \in {}^\pm \text{Inv } P\}$

Structure: semi-interval with greatest element $P_F := \{f \in {}^\pm \text{Op}(A) \mid \mathring{f} \in F\}$

The lattice ${}^\pm \mathcal{L}_2$ of Boolean \pm -preclones is the (disjoint) union of all preimage classes of Boolean clones:

$${}^\pm \mathcal{L}_2 = \bigcup \{F^\square \mid F \in \mathcal{L}_2\}.$$

Preimage classes

(a tool for investigations of the structure of ${}^\pm \mathcal{L}_2$)

Let $F \in \mathcal{L}_2$ be a Boolean clone.

$F^\square := \{P \in {}^\pm \mathcal{L}_2 \mid \langle \mathring{P} \rangle = F\}$ *preimage class of F*

$\langle \mathring{P} \rangle$ = “underlying clone” forgetting all signs

Remark: relational characterization $\langle \mathring{P} \rangle = \text{Pol}\{\sigma \in \text{Rel}(A) \mid (\sigma, \sigma) \in {}^\pm \text{Inv } P\}$

Structure: semi-interval with greatest element $P_F := \{f \in {}^\pm \text{Op}(A) \mid \mathring{f} \in F\}$

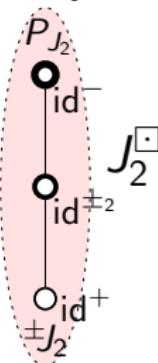
The lattice ${}^\pm \mathcal{L}_2$ of Boolean \pm -preclones is the (disjoint) union of all preimage classes of Boolean clones:

$${}^\pm \mathcal{L}_2 = \bigcup \{F^\square \mid F \in \mathcal{L}_2\}.$$

How preimage classes look like? Some examples

unary clones F (i.e., generated by unary Boolean functions):

$$F = J_2 := \langle \text{id} \rangle: |J_2^\square| = 3$$



$$F_0 := \langle c_0 \rangle: |F_0^\square| = 6,$$

$$F_1 := \langle c_1 \rangle: |F_1^\square| = 6,$$

$$F_{01} := \langle c_0, c_1 \rangle: |F_{01}^\square| = 10,$$

$$F_{\neg} := \langle \neg \rangle: |F_{\neg}^\square| = 7,$$

$$F_2 := \langle \text{Op}^{(1)}(A) \rangle: |F_2^\square| = 19.$$

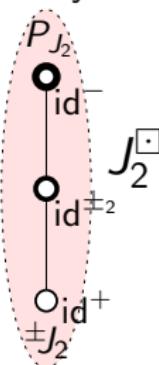
$$\begin{aligned} \text{id}^-(x) &= x \\ \text{sgn}(\text{id}^-) &= (-) \\ \text{id}^{\pm_2}(x, y) &= y \\ \text{sgn}(\text{id}^{\pm_2}) &= (+, -) \\ \text{id}^+(x) &= x \\ \text{sgn}(\text{id}^+) &= (+) \end{aligned}$$

There are 12 join-irreducible elements generated by
 $\text{id}_A^{\pm_2}, \text{id}_A^-, c_0^+, c_0^-, c_1^+, c_1^-, \neg^{\pm_1}, \neg^{\pm_2}, \neg^+, \neg^-$.

How preimage classes look like? Some examples

unary clones F (i.e., generated by unary Boolean functions):

$$F = J_2 := \langle \text{id} \rangle: |J_2^\square| = 3$$



$$F_0 := \langle c_0 \rangle: |F_0^\square| = 6,$$

$$F_1 := \langle c_1 \rangle: |F_1^\square| = 6,$$

$$F_{01} := \langle c_0, c_1 \rangle: |F_{01}^\square| = 10,$$

$$F_{\neg} := \langle \neg \rangle: |F_{\neg}^\square| = 7,$$

$$F_2 := \langle \text{Op}^{(1)}(A) \rangle: |F_2^\square| = 19.$$

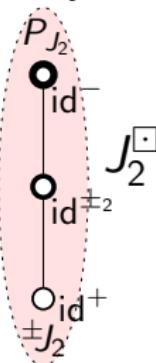
$$\begin{aligned} \text{id}^-(x) &= x \\ \text{sgn}(\text{id}^-) &= (-) \\ \text{id}^{\pm 2}(x, y) &= y \\ \text{sgn}(\text{id}^{\pm 2}) &= (+, -) \\ \text{id}^+(x) &= x \\ \text{sgn}(\text{id}^+) &= (+) \end{aligned}$$

There are 12 join-irreducible elements generated by
 $\text{id}_A^{\pm 2}, \text{id}_A^-, c_0^+, c_0^-, c_1^+, c_1^-, \neg^{\pm 1}, \neg^{\pm 2}, \neg^+, \neg^-$.

How preimage classes look like? Some examples

unary clones F (i.e., generated by unary Boolean functions):

$$F = J_2 := \langle \text{id} \rangle: |J_2^\square| = 3$$



$$\text{id}^-(x) = x$$

$$\text{sgn}(\text{id}^-) = (-)$$

$$\text{id}^{\pm_2}(x, y) = y$$

$$\text{sgn}(\text{id}^{\pm_2}) = (+, -)$$

$$\text{id}^+(x) = x$$

$$\text{sgn}(\text{id}^+) = (+)$$

$$F_0 := \langle c_0 \rangle: |F_0^\square| = 6,$$

$$F_1 := \langle c_1 \rangle: |F_1^\square| = 6,$$

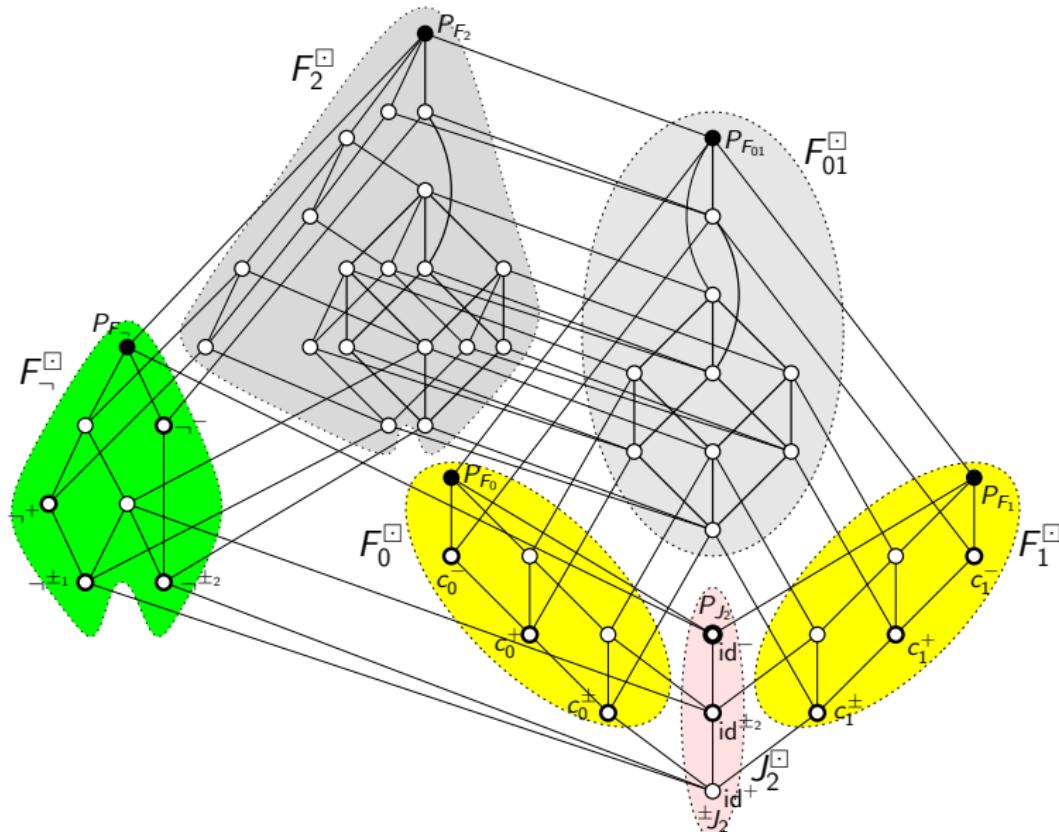
$$F_{01} := \langle c_0, c_1 \rangle: |F_{01}^\square| = 10,$$

$$F_{\neg} := \langle \neg \rangle: |F_{\neg}^\square| = 7,$$

$$F_2 := \langle \text{Op}^{(1)}(A) \rangle: |F_2^\square| = 19.$$

There are 12 join-irreducible elements generated by
 $\text{id}_A^{\pm_2}, \text{id}_A^-, c_0^+, c_0^-, c_1^+, c_1^-, \neg^{\pm_1}, \neg^{\pm_2}, \neg^+, \neg^-$.

The lattice of unary \pm -preclones



A challenging open problem

up to now, we investigated few preimage classes F^\square (with F Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?

Does there exist a preimage class of uncountable cardinality?

Is the lattice ${}^\pm\mathcal{L}_2$ of Boolean \pm -preclones countable?

(compare: the lattice \mathcal{L}_2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean \pm -preclones is contained in

P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part II: Boolean \pm -preclones*
(in preparation, to be submitted)

A challenging open problem

up to now, we investigated few preimage classes F^\square (with F Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?

Does there exist a preimage class of uncountable cardinality?

Is the lattice ${}^\pm\mathcal{L}_2$ of Boolean \pm -preclones countable?

(compare: the lattice \mathcal{L}_2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean \pm -preclones is contained in

P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part II: Boolean \pm -preclones*
(in preparation, to be submitted)

A challenging open problem

up to now, we investigated few preimage classes F^\square (with F Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?

Does there exist a preimage class of uncountable cardinality?

Is the lattice ${}^\pm\mathcal{L}_2$ of Boolean \pm -preclones countable?

(compare: the lattice \mathcal{L}_2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean \pm -preclones is contained in

P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part II: Boolean \pm -preclones*
(in preparation, to be submitted)

A challenging open problem

up to now, we investigated few preimage classes F^\square (with F Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?

Does there exist a preimage class of uncountable cardinality?

Is the lattice ${}^\pm\mathcal{L}_2$ of Boolean \pm -preclones countable?

(compare: the lattice \mathcal{L}_2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean \pm -preclones is contained in

P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part II: Boolean \pm -preclones*
(in preparation, to be submitted)

A challenging open problem

up to now, we investigated few preimage classes F^\square (with F Boolean clone), all of them are finite

Does there exist a preimage class of infinite cardinality?

Does there exist a preimage class of uncountable cardinality?

Is the lattice ${}^\pm\mathcal{L}_2$ of Boolean \pm -preclones countable?

(compare: the lattice \mathcal{L}_2 of Boolean clones is countable
[E.L. Post, 1921])

all what we know about Boolean \pm -preclones is contained in

P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part II: Boolean \pm -preclones*
(in preparation, to be submitted)

References

===== The classical Galois connection $\text{Pol} - \text{Inv}$ =====

- V.G. BODNARČUK, L.A. KALUŽNIN, N.N. KOTOV, AND B.A. ROMOV, *Galois theory for Post algebras I*. Kibernetika (Kiev) (3), (1969), 1–10, (Russian).
- R. PÖSCHEL AND L.A. KALUŽNIN, *Funktionen- und Relationenalgebren*. Deutscher Verlag der Wissenschaften, Berlin, 1979, Birkhäuser Verlag Basel, Math. Reihe Bd. 67, 1979.

===== preclones (operads) =====

- Z. ÉSIK AND P. WEIL, *Algebraic recognizability of regular tree languages*. Theoret. Comput. Sci. 340(2), (2005), 291–321. (notion of preclone)
- E. LEHTONEN, *Characterization of preclones by matrix collections*. Asian-Eur. J. Math. 3(3), (2010), 457–473.

===== Analogy to multi-sorted algebras =====

- E. LEHTONEN, R. PÖSCHEL, AND T. WALDHAUSER, *Reflection-closed varieties of multisorted algebras and minor identities*. Algebra Universalis 79(3), (2018), Art. 70, 22 pages.

===== S -preclones (New) =====

- P. JIPSEN, E. LEHTONEN, AND R. PÖSCHEL, *S -preclones and the Galois connection ${}^S\text{Pol} - {}^S\text{Inv}$, Part I*, Algebra Universalis 85, 2024
(arXiv 2023: <http://arxiv.org/abs/2306.00493>).

*Thank you for your
ATTENTION!*

