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Algebra vs topology
There are many algebraic objects that are naturally endowed with a
topological structure:

★ normed vector spaces; groups: the additive groups Rn, n ∈ N

★ the automorphism groups Aut(X ) of relational structures X : (N,=),
the random graph R , Q, . . .

★ the endomorphism monoids End(X ) of relational structures X : the
random graph, Q, . . .

★ clones of polymorphisms; (universal) algebras

In these examples, the algebraic operations are compatible with the
topological structure, i.e. they are continuous.

Question

Given an algebraic object what are the compatible topologies?
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Group topology
A topology on a group G is called a group topology if G × G → G
defined by

(x , y) 7→ xy

and G → G defined by
x 7→ x−1

are continuous.

A topological group G is a group together with a group topology.

Examples:

★ The discrete or trivial topology on any group.

★ The standard topology on the additive group of real numbers R.

★ The symmetric group Sym(N) with the subspace topology inherited
from NN.
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0 group topologies
Non-topologizable groups

Problem (Markov Dokl. AN SSSR ’44)

Does there exist an infinite group whose only group topologies are the
trivial and discrete topologies?

Yes: assuming the continuum hypothesis (Shelah, ’80)

Yes: in ZFC (Ol’shanskij, ’80)

So, not every group can have a meaningful topology.
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1 group topology

Unique Hausdorff topologies:

Hausdorffx y

U V

★ Finite rings, fields, or groups (discrete topology)

★ Every finite dimensional real or complex vector space

★ The general linear groups GL(n,R)

★ · · ·
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∞ many group topologies

Example

There are infinitely many non-homeomorphic (Polish) group topologies on
the additive group (R,+).

Proof.

★ The standard topology on (Rn,+) is a group topology.

★ (R,+) is isomorphic as a group to (Rn,+) for all n ∈ N.

★ Rn is homeomorphic to Rm if and only if m = n.
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Polish groups

A Polish group is a separable, completely metrizable topological group.

Examples:

★ the additive group R

★ the symmetric group Sym(N)

★ the automorphism group of any countable relational structure, (Q, <),
the random graph, and so on

★ . . .
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0 or 1 Polish group topologies

Theorem (Dudley ’61)

If G is a completely metrizable group and F is a free group with the
discrete topology, then any homomorphism from G to F is continuous.

Corollary

No free group has a non-discrete Polish group topology.

Theorem (Pettis, Solovay ’70, Shelah ’84)

It is consistent with ZF without C that every Polish group has a unique
Polish group topology.

Remember the example of the additive group of reals R!
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The Baire space

N — discrete topology ⇝ NN — product topology

This is the Baire space, and the topology is the pointwise topology.

Sets of the form
{f ∈ NN : (a)f = b}

for some a, b ∈ N are a subbasis.

The Baire space is Polish: the metric

d(f , g) =

{
1
n if f ̸= g and n = min{m ∈ N : (m)f ̸= (m)g}
0 if f = g

is complete, and the eventually constant functions are countable and dense.
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Symmetric group

Theorem (Folklore)

If G is a Polish group with respect to topologies T1 and T2 and T1 ⊆ T2,
then T1 = T2.

Theorem (Gaughan ’67)

Every Hausdorff group topology on Sym(N) contains the pointwise
topology.

Corollary

The pointwise topology is the unique Polish group topology on Sym(N).
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Semigroup topologies
A topology on a semigroup S is called a semigroup topology if
S × S → S defined by

(x , y) 7→ xy

is continuous.

A topological semigroup is a semigroup together with a semigroup
topology.

Examples of topological semigroups:

★ topological groups

★ the lower limit topology on (R,+) (not a group topology, not Polish)

★ the endomorphism monoid End(X ) where X is any relational structure
over a countable set (such as a graph, for example)

★ the monoid C (X ) of continuous functions from a compact metrizable
space X to itself.
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The full transformation monoid

The Baire space NN is also a monoid under composition of functions; called
the full transformation monoid.

The full transformation monoids are natural analogues of the symmetric
groups in the context of semigroups.

Theorem (Cayley’s Theorem)

Every semigroup embeds into XX for some set X .

NN is a Polish semigroup with the topology of the Baire space (the
pointwise topology).
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0 or 1 Polish semigroup topologies
Elliott, Jonušas, Mesyan, JDM, Morayne, Péresse ’23
The following monoids have no Polish semigroup topology:

★ the monoid of binary relations on N;

★ diagram monoids (the partition monoid, dual symmetric inverse
monoid);

The following monoids have a unique Polish semigroup topology:

★ the full transformation monoid NN (the pointwise topology)

★ continuous functions on the Hilbert cube [0, 1]N, and the Cantor set 2N

(the compact-open topology)

★ (Elliott, Jonušas, JDM, Péresse, Pinsker ’23) the endomorphism
monoids of the random graph R ; the rationals (Q,≤), . . . (the pointwise
topology)

★ (Pinsker, Schindler ’23) the increasing functions on Q (the pointwise
topology)

★ · · ·
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∞-many Polish semigroup topologies
Let Inj(N) denote the injective functions in NN. Then Inj(N) is closed in
NN.

So, Inj(N) is a Polish semigroup with respect to the pointwise topology.

The minimum Polish semigroup topology on Inj(N) is the pointwise
topology:

{f ∈ Inj(N) : (a)f = b}

The maximum Polish semigroup topology on Inj(N) is generated by the
pointwise topology and:

{f ∈ Inj(N) : (a)f ̸∈ (N)f }, {f ∈ Inj(N) : |N \ (N)f | = n}

for all a ∈ N and n ∈ ω + 1.

There are infinitely many more Polish semigroup topologies between these
two.
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Inverse semigroups
If S is a semigroup and x ∈ S , then y ∈ S is an inverse of x if xyx = x
and yxy = y .

A semigroup S where every x ∈ S has a unique inverse x−1 ∈ S , is called
an inverse semigroup.

Examples:

★ semilattices

★ the bicyclic monoid M = ⟨b, c | bc = 1⟩

★ partial embeddings of relational structures
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Symmetric inverse monoid

If X is any set, then the set IX of bijections between subsets of X is an
inverse semigroup under the usual composition of binary relations:

f ◦ g = {(x , z) ∈ X × X : (x , y) ∈ f , (y , z) ∈ g , y ∈ X}

called the symmetric inverse monoid.

Example:

f =

(
1 2 3 4
− 2 4 −

)
, f 2 =

(
1 2 3 4
− 2 − −

)

Theorem (agner-Preston Representation Theorem)

Every inverse monoid is isomorphic to an inverse submonoid of some IX .
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Topological inverse monoids

A topology on an inverse semigroup S is called an inverse semigroup
topology if S × S → S defined by

(x , y) 7→ xy

and S → S defined by
x 7→ x−1

are continuous.

A topological inverse semigroup G is an inverse semigroup together with
an inverse semigroup topology.

Examples:
★ topological groups

★ the bicyclic monoid M = ⟨b, c | bc = 1⟩
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Topologies on the symmetric inverse monoid

What is the correct topology on IN?

Idea
Try extending the pointwise topology from Sym(N) to IN?

The pointwise topology on Sym(N) has sub-basic sets
{f ∈ Sym(N) : (m)f = n} over all m, n ∈ N.

The topology I0

The topology with sub-basic sets {f ∈ IN : (m, n) ∈ f } over all m, n ∈ N.

The good: I0 is an inverse semigroup topology for IN and induces the
pointwise topology on Sym(N).

The bad: I0 is not T1.
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{f ∈ Sym(N) : (m)f = n} over all m, n ∈ N.

The topology I0

The topology with sub-basic sets {f ∈ IN : (m, n) ∈ f } over all m, n ∈ N.

The good: I0 is an inverse semigroup topology for IN and induces the
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The least T1 shift-continuous topology
If λs , ρs : S → S defined by

(x)λs = sx and (x)ρs = xs

are continuous for all s ∈ S , then S is shift-continuous.

Idea
Can we find the least T1 shift-continuous topology for IN?

★ Suppose that there is a T1 shift-continuous topology on IN.

★ Define sm,n = {(m, n)} ∈ IN for any m, n ∈ N.

★ Closed sets:

{f ∈ IN : sm,mfsn,n = sm,n} ={f ∈ IN : (m, n) ∈ f }
{f ∈ IN : sm,mfsn,n = ∅} ={f ∈ IN : (m, n) ̸∈ f }

★ So {f ∈ IN : (m, n) ∈ f } and {f ∈ IN : (m, n) ̸∈ f } are open.
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Properties of I1

Topology I1

The topology with the sub-basic sets

{f ∈ IN | (m, n) ∈ f } & {f ∈ IN | (m, n) ̸∈ f }.

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse ’23)

The topology I1 on IN is
★ Polish and compact(!?);

★ the least T1 shift continuous topology;

★ not a semigroup topology but inversion is continuous.

Can we find a T1 (or higher) semigroup topology for IN?
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Inheriting from NN

IN ↪→ NN as follows:

★ For f ∈ IN define f ′ ∈ NN by

(x + 1)f ′ =

{
(x)f + 1 if x ∈ dom(f )

0 otherwise

Then the map f 7→ f ′ embeds IN in NN.

★ The pointwise topology on NN induces a semigroup topology I2 on IN
via this embedding.
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A semigroup topology

The topology I2

The topology with sub-basic sets

{f ∈ IN : (m, n) ∈ f } & {f ∈ IN : m ̸∈ dom(f )}.

We get immediately from the definition:

★ I2 is a Polish semigroup topology for IN

★ inversion is not continuous!
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Properties of I2 and I3

I2 has a dual I3 = I−1
2 = {U−1 : U ∈ I2} where U−1 = {f −1 : f ∈ U}.

The topology I3

The topology with sub-basic sets

{f ∈ IN : (m, n) ∈ f } & {f ∈ IN : m ̸∈ im(f )}.

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse ’23)

★ I2 and I3 are Polish semigroup topologies for IN;

★ every T1 semigroup topology for IN contains I2 or I3;

★ I1 ⊊ I2 ∩ I3
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The Polish inverse semigroup topology for IN

The topology I4

I4 is generated by I2 ∪ I3 and has sub-basic sets

{f ∈ IN : (m, n) ∈ f }, {f ∈ IN : m ̸∈ dom(f )}, {f ∈ IN : m ̸∈ im(f )}.

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse ’23)

The topology I4 on IN is:
★ the unique T1 and second-countable inverse semigroup topology

★ the maximal second-countable semigroup topology
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A topology for every function

Suppose that f : ω + 1 → ω + 1 is any function. We define Tf to be the
least topology on IN containing I2 and the sets

Uf ,n,X = {g ∈ IN : | im(g) \ X | ≥ n and |X ∩ im(g)| ≤ (n)f }

for all n ∈ N and X ⊆ N is finite.

An element g ∈ Uf ,n,X must map at least n points outside of X and is
allowed at most (n)f mistakes, i.e. points in the image of g in X .
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Waning

Waning function

We say that a non-increasing function f : ω + 1 → ω + 1 is waning if:
★ f is constant with value ω; or

★ (j + 1)f < (j)f for all j ∈ ω such that 0 ̸= (j)f ∈ ω.

If f is a waning function, continuing to speak roughly, partial functions in
Uf ,n,X defined on more points are allowed fewer mistakes.
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Classification of semigroup topologies
Theorem (Bardyla, Elliott, JDM, Péresse ’24)

If T is a T1 second countable semigroup topology on IN, then there exists
a waning function f such that either T = Tf , or T −1 = Tf .
Conversely, if f and g are distinct waning functions, then Tf and Tg are
distinct Polish semigroup topologies for IN.

Lemma (Bardyla, Elliott, JDM, Péresse ’24)

If f and g are waning functions, then Tf ⊆ Tg if and only if (n)g ≤ (n)f
for all n ∈ ω.

Corollary (Bardyla, Elliott, JDM, Péresse ’24)

The partial order of Polish semigroup topologies on IN contains:
(a) infinite descending chains;
(b) finite but not infinite ascending chains; and
(c) every finite partial order.
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Thanks!
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Topology is relevant
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