

The semigroup topologies of the symmetric inverse monoid

J. D. Mitchell

February 5, 2026

Algebra vs topology

There are many algebraic objects that are naturally endowed with a topological structure:

- ★ normed vector spaces; groups: the additive groups \mathbb{R}^n , $n \in \mathbb{N}$
- ★ the automorphism groups $\text{Aut}(X)$ of relational structures X : $(\mathbb{N}, =)$, the random graph R , \mathbb{Q} , ...
- ★ the endomorphism monoids $\text{End}(X)$ of relational structures X : the random graph, \mathbb{Q} , ...
- ★ clones of polymorphisms; (universal) algebras

Algebra vs topology

There are many algebraic objects that are naturally endowed with a topological structure:

- ★ normed vector spaces; groups: the additive groups \mathbb{R}^n , $n \in \mathbb{N}$
- ★ the automorphism groups $\text{Aut}(X)$ of relational structures X : $(\mathbb{N}, =)$, the random graph R , \mathbb{Q} , ...
- ★ the endomorphism monoids $\text{End}(X)$ of relational structures X : the random graph, \mathbb{Q} , ...
- ★ clones of polymorphisms; (universal) algebras

In these examples, the algebraic operations are compatible with the topological structure, i.e. they are *continuous*.

Question

Given an algebraic object what are the compatible topologies?

Group topology

A topology on a group G is called a *group topology* if $G \times G \rightarrow G$ defined by

$$(x, y) \mapsto xy$$

and $G \rightarrow G$ defined by

$$x \mapsto x^{-1}$$

are continuous.

Group topology

A topology on a group G is called a *group topology* if $G \times G \rightarrow G$ defined by

$$(x, y) \mapsto xy$$

and $G \rightarrow G$ defined by

$$x \mapsto x^{-1}$$

are continuous.

A *topological group* G is a group together with a group topology.

Group topology

A topology on a group G is called a *group topology* if $G \times G \rightarrow G$ defined by

$$(x, y) \mapsto xy$$

and $G \rightarrow G$ defined by

$$x \mapsto x^{-1}$$

are continuous.

A *topological group* G is a group together with a group topology.

Examples:

- ★ The discrete or trivial topology on any group.
- ★ The standard topology on the additive group of real numbers \mathbb{R} .
- ★ The symmetric group $\text{Sym}(\mathbb{N})$ with the subspace topology inherited from $\mathbb{N}^{\mathbb{N}}$.

0 group topologies

Non-topologizable groups

0 group topologies

Non-topologizable groups

Problem (Markov Dokl. AN SSSR '44)

Does there exist an infinite group whose only group topologies are the trivial and discrete topologies?

0 group topologies

Non-topologizable groups

Problem (Markov Dokl. AN SSSR '44)

Does there exist an infinite group whose only group topologies are the trivial and discrete topologies?

Yes: assuming the continuum hypothesis (Shelah, '80)

0 group topologies

Non-topologizable groups

Problem (Markov Dokl. AN SSSR '44)

Does there exist an infinite group whose only group topologies are the trivial and discrete topologies?

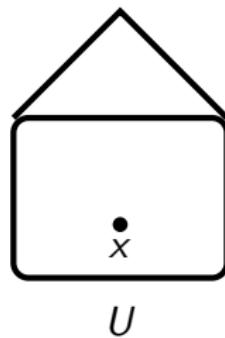
Yes: assuming the continuum hypothesis (Shelah, '80)

Yes: in ZFC (Ol'shanskij, '80)

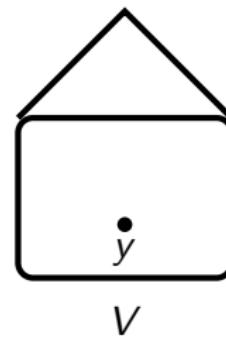
So, not every group can have a meaningful topology.

1 group topology

Unique Hausdorff topologies:



Hausdorff



V

- ★ Finite rings, fields, or groups (discrete topology)
- ★ Every finite dimensional real or complex vector space
- ★ The general linear groups $GL(n, \mathbb{R})$
- ★ ...

∞ many group topologies

Example

There are infinitely many non-homeomorphic (Polish) group topologies on the additive group $(\mathbb{R}, +)$.

∞ many group topologies

Example

There are infinitely many non-homeomorphic (Polish) group topologies on the additive group $(\mathbb{R}, +)$.

Proof.

★ The standard topology on $(\mathbb{R}^n, +)$ is a group topology.

∞ many group topologies

Example

There are infinitely many non-homeomorphic (Polish) group topologies on the additive group $(\mathbb{R}, +)$.

Proof.

- ★ The standard topology on $(\mathbb{R}^n, +)$ is a group topology.
- ★ $(\mathbb{R}, +)$ is isomorphic as a group to $(\mathbb{R}^n, +)$ for all $n \in \mathbb{N}$.

∞ many group topologies

Example

There are infinitely many non-homeomorphic (Polish) group topologies on the additive group $(\mathbb{R}, +)$.

Proof.

- ★ The standard topology on $(\mathbb{R}^n, +)$ is a group topology.
- ★ $(\mathbb{R}, +)$ is isomorphic as a group to $(\mathbb{R}^n, +)$ for all $n \in \mathbb{N}$.
- ★ \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if $m = n$. □

Polish groups

A *Polish group* is a separable, completely metrizable topological group.

Polish groups

A *Polish group* is a separable, completely metrizable topological group.

Examples:

- ★ the additive group \mathbb{R}
- ★ the symmetric group $\text{Sym}(\mathbb{N})$
- ★ the automorphism group of any countable relational structure, $(\mathbb{Q}, <)$, the random graph, and so on
- ★ ...

0 or 1 Polish group topologies

0 or 1 Polish group topologies

Theorem (Dudley '61)

If G is a completely metrizable group and F is a free group with the discrete topology, then any homomorphism from G to F is continuous.

0 or 1 Polish group topologies

Theorem (Dudley '61)

If G is a completely metrizable group and F is a free group with the discrete topology, then any homomorphism from G to F is continuous.

Corollary

No free group has a non-discrete Polish group topology.

0 or 1 Polish group topologies

Theorem (Dudley '61)

If G is a completely metrizable group and F is a free group with the discrete topology, then any homomorphism from G to F is continuous.

Corollary

No free group has a non-discrete Polish group topology.

Theorem (Pettis, Solovay '70, Shelah '84)

It is consistent with ZF without C that every Polish group has a unique Polish group topology.

0 or 1 Polish group topologies

Theorem (Dudley '61)

If G is a completely metrizable group and F is a free group with the discrete topology, then any homomorphism from G to F is continuous.

Corollary

No free group has a non-discrete Polish group topology.

Theorem (Pettis, Solovay '70, Shelah '84)

It is consistent with ZF without C that every Polish group has a unique Polish group topology.

Remember the example of the additive group of reals \mathbb{R} !

The Baire space

\mathbb{N} — discrete topology $\rightsquigarrow \mathbb{N}^{\mathbb{N}}$ — product topology

The Baire space

\mathbb{N} — discrete topology $\leadsto \mathbb{N}^{\mathbb{N}}$ — product topology

This is the *Baire space*, and the topology is the *pointwise topology*.

The Baire space

\mathbb{N} — discrete topology $\leadsto \mathbb{N}^{\mathbb{N}}$ — product topology

This is the *Baire space*, and the topology is the *pointwise topology*.

Sets of the form

$$\{f \in \mathbb{N}^{\mathbb{N}} : (a)f = b\}$$

for some $a, b \in \mathbb{N}$ are a subbasis.

The Baire space

\mathbb{N} — discrete topology $\leadsto \mathbb{N}^{\mathbb{N}}$ — product topology

This is the *Baire space*, and the topology is the *pointwise topology*.

Sets of the form

$$\{f \in \mathbb{N}^{\mathbb{N}} : (a)f = b\}$$

for some $a, b \in \mathbb{N}$ are a subbasis.

The Baire space is Polish: the metric

$$d(f, g) = \begin{cases} \frac{1}{n} & \text{if } f \neq g \text{ and } n = \min\{m \in \mathbb{N} : (m)f \neq (m)g\} \\ 0 & \text{if } f = g \end{cases}$$

is complete, and the eventually constant functions are countable and dense.

Symmetric group

Theorem (Folklore)

If G is a Polish group with respect to topologies \mathcal{T}_1 and \mathcal{T}_2 and $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then $\mathcal{T}_1 = \mathcal{T}_2$.

Symmetric group

Theorem (Folklore)

If G is a Polish group with respect to topologies \mathcal{T}_1 and \mathcal{T}_2 and $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then $\mathcal{T}_1 = \mathcal{T}_2$.

Theorem (Gaughan '67)

Every Hausdorff group topology on $\text{Sym}(\mathbb{N})$ contains the pointwise topology.

Symmetric group

Theorem (Folklore)

If G is a Polish group with respect to topologies \mathcal{T}_1 and \mathcal{T}_2 and $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then $\mathcal{T}_1 = \mathcal{T}_2$.

Theorem (Gaughan '67)

Every Hausdorff group topology on $\text{Sym}(\mathbb{N})$ contains the pointwise topology.

Corollary

The pointwise topology is the unique Polish group topology on $\text{Sym}(\mathbb{N})$.

Semigroup topologies

A topology on a semigroup S is called a *semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

is continuous.

Semigroup topologies

A topology on a semigroup S is called a *semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

is continuous.

A *topological semigroup* is a semigroup together with a semigroup topology.

Semigroup topologies

A topology on a semigroup S is called a *semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

is continuous.

A *topological semigroup* is a semigroup together with a semigroup topology.

Examples of topological semigroups:

- ★ topological groups
- ★ the lower limit topology on $(\mathbb{R}, +)$ (not a group topology, not Polish)
- ★ the endomorphism monoid $\text{End}(X)$ where X is any relational structure over a countable set (such as a graph, for example)
- ★ the monoid $C(X)$ of continuous functions from a compact metrizable space X to itself.

The full transformation monoid

The Baire space $\mathbb{N}^\mathbb{N}$ is also a monoid under composition of functions; called the ***full transformation monoid***.

The full transformation monoid

The Baire space $\mathbb{N}^\mathbb{N}$ is also a monoid under composition of functions; called the ***full transformation monoid***.

The full transformation monoids are natural analogues of the symmetric groups in the context of semigroups.

Theorem (Cayley's Theorem)

Every semigroup embeds into X^X for some set X .

The full transformation monoid

The Baire space $\mathbb{N}^{\mathbb{N}}$ is also a monoid under composition of functions; called the **full transformation monoid**.

The full transformation monoids are natural analogues of the symmetric groups in the context of semigroups.

Theorem (Cayley's Theorem)

Every semigroup embeds into X^X for some set X .

$\mathbb{N}^{\mathbb{N}}$ is a Polish semigroup with the topology of the Baire space (the pointwise topology).

0 or 1 Polish semigroup topologies

Elliott, Jonušas, Mesyan, JDM, Morayne, Péresse '23

The following monoids have no Polish semigroup topology:

- ★ the monoid of binary relations on \mathbb{N} ;
- ★ diagram monoids (the partition monoid, dual symmetric inverse monoid);

0 or 1 Polish semigroup topologies

Elliott, Jonušas, Mesyan, JDM, Morayne, Péresse '23

The following monoids have no Polish semigroup topology:

- ★ the monoid of binary relations on \mathbb{N} ;
- ★ diagram monoids (the partition monoid, dual symmetric inverse monoid);

The following monoids have a unique Polish semigroup topology:

- ★ the full transformation monoid $\mathbb{N}^{\mathbb{N}}$ (the pointwise topology)
- ★ continuous functions on the Hilbert cube $[0, 1]^{\mathbb{N}}$, and the Cantor set $2^{\mathbb{N}}$ (the compact-open topology)
- ★ (Elliott, Jonušas, JDM, Péresse, Pinsker '23) the endomorphism monoids of the random graph R ; the rationals (\mathbb{Q}, \leq) , \dots (the pointwise topology)
- ★ (Pinsker, Schindler '23) the increasing functions on \mathbb{Q} (the pointwise topology)

...

∞ -many Polish semigroup topologies

Let $\text{Inj}(\mathbb{N})$ denote the injective functions in $\mathbb{N}^{\mathbb{N}}$. Then $\text{Inj}(\mathbb{N})$ is closed in $\mathbb{N}^{\mathbb{N}}$.

∞ -many Polish semigroup topologies

Let $\text{Inj}(\mathbb{N})$ denote the injective functions in $\mathbb{N}^{\mathbb{N}}$. Then $\text{Inj}(\mathbb{N})$ is closed in $\mathbb{N}^{\mathbb{N}}$.

So, $\text{Inj}(\mathbb{N})$ is a Polish semigroup with respect to the pointwise topology.

∞ -many Polish semigroup topologies

Let $\text{Inj}(\mathbb{N})$ denote the injective functions in $\mathbb{N}^{\mathbb{N}}$. Then $\text{Inj}(\mathbb{N})$ is closed in $\mathbb{N}^{\mathbb{N}}$.

So, $\text{Inj}(\mathbb{N})$ is a Polish semigroup with respect to the pointwise topology.

The **minimum** Polish semigroup topology on $\text{Inj}(\mathbb{N})$ is the pointwise topology:

$$\{f \in \text{Inj}(\mathbb{N}) : (a)f = b\}$$

∞ -many Polish semigroup topologies

Let $\text{Inj}(\mathbb{N})$ denote the injective functions in $\mathbb{N}^{\mathbb{N}}$. Then $\text{Inj}(\mathbb{N})$ is closed in $\mathbb{N}^{\mathbb{N}}$.

So, $\text{Inj}(\mathbb{N})$ is a Polish semigroup with respect to the pointwise topology.

The **minimum** Polish semigroup topology on $\text{Inj}(\mathbb{N})$ is the pointwise topology:

$$\{f \in \text{Inj}(\mathbb{N}) : (a)f = b\}$$

The **maximum** Polish semigroup topology on $\text{Inj}(\mathbb{N})$ is generated by the pointwise topology and:

$$\{f \in \text{Inj}(\mathbb{N}) : (a)f \notin (\mathbb{N})f\}, \quad \{f \in \text{Inj}(\mathbb{N}) : |\mathbb{N} \setminus (\mathbb{N})f| = n\}$$

for all $a \in \mathbb{N}$ and $n \in \omega + 1$.

∞ -many Polish semigroup topologies

Let $\text{Inj}(\mathbb{N})$ denote the injective functions in $\mathbb{N}^{\mathbb{N}}$. Then $\text{Inj}(\mathbb{N})$ is closed in $\mathbb{N}^{\mathbb{N}}$.

So, $\text{Inj}(\mathbb{N})$ is a Polish semigroup with respect to the pointwise topology.

The **minimum** Polish semigroup topology on $\text{Inj}(\mathbb{N})$ is the pointwise topology:

$$\{f \in \text{Inj}(\mathbb{N}) : (a)f = b\}$$

The **maximum** Polish semigroup topology on $\text{Inj}(\mathbb{N})$ is generated by the pointwise topology and:

$$\{f \in \text{Inj}(\mathbb{N}) : (a)f \notin (\mathbb{N})f\}, \quad \{f \in \text{Inj}(\mathbb{N}) : |\mathbb{N} \setminus (\mathbb{N})f| = n\}$$

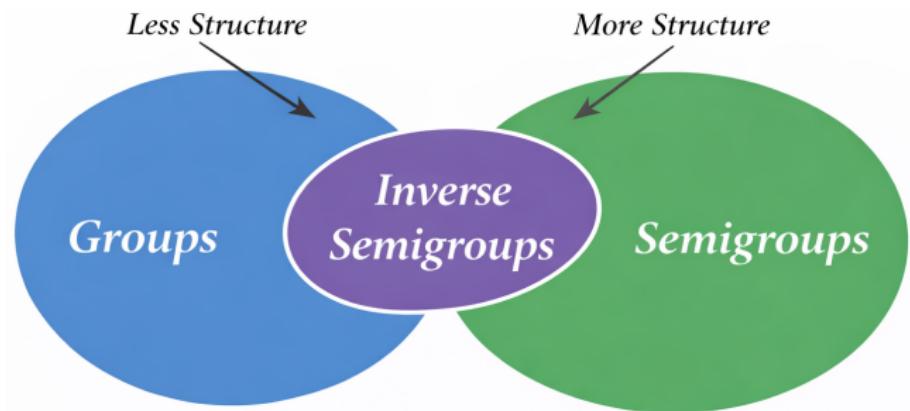
for all $a \in \mathbb{N}$ and $n \in \omega + 1$.

There are infinitely many more Polish semigroup topologies between these two.

Inverse semigroups

If S is a semigroup and $x \in S$, then $y \in S$ is an *inverse* of x if $xyx = x$ and $yxy = y$.

A semigroup S where every $x \in S$ has a unique inverse $x^{-1} \in S$, is called an *inverse semigroup*.



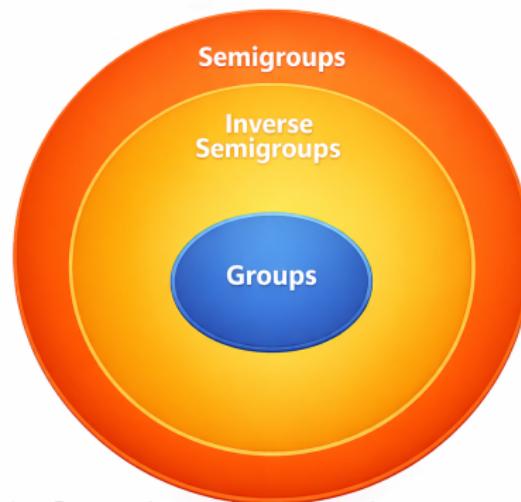
Examples:

- ★ semilattices
- ★ the bicyclic monoid $\mathbb{B} = \langle b, c \mid bc = 1 \rangle$
- ★ partial embeddings of relational structures

Inverse semigroups

If S is a semigroup and $x \in S$, then $y \in S$ is an *inverse* of x if $xyx = x$ and $yxy = y$.

A semigroup S where every $x \in S$ has a unique inverse $x^{-1} \in S$, is called an *inverse semigroup*.



Examples:

- ★ semilattices
- ★ the bicyclic monoid $\mathbb{B} = \langle b, c \mid bc = 1 \rangle$
- ★ partial embeddings of relational structures

Symmetric inverse monoid

If X is any set, then the set I_X of bijections between subsets of X is an inverse semigroup under the usual composition of binary relations:

$$f \circ g = \{(x, z) \in X \times X : (x, y) \in f, (y, z) \in g, y \in X\}$$

called the *symmetric inverse monoid*.

Symmetric inverse monoid

If X is any set, then the set I_X of bijections between subsets of X is an inverse semigroup under the usual composition of binary relations:

$$f \circ g = \{(x, z) \in X \times X : (x, y) \in f, (y, z) \in g, y \in X\}$$

called the ***symmetric inverse monoid***.

Example:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ - & 2 & 4 & - \end{pmatrix}, \quad f^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ - & 2 & - & - \end{pmatrix}$$

Theorem (Wagner-Preston Representation Theorem)

Every inverse monoid is isomorphic to an inverse submonoid of some I_X .

Symmetric inverse monoid

If X is any set, then the set I_X of bijections between subsets of X is an inverse semigroup under the usual composition of binary relations:

$$f \circ g = \{(x, z) \in X \times X : (x, y) \in f, (y, z) \in g, y \in X\}$$

called the *symmetric inverse monoid*.

Example:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ - & 2 & 4 & - \end{pmatrix}, \quad f^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ - & 2 & - & - \end{pmatrix}$$

Theorem (Vagner-Preston Representation Theorem)

Every inverse monoid is isomorphic to an inverse submonoid of some I_X .

Topological inverse monoids

A topology on an inverse semigroup S is called an *inverse semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

and $S \rightarrow S$ defined by

$$x \mapsto x^{-1}$$

are continuous.

Topological inverse monoids

A topology on an inverse semigroup S is called an *inverse semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

and $S \rightarrow S$ defined by

$$x \mapsto x^{-1}$$

are continuous.

A *topological inverse semigroup* G is an inverse semigroup together with an inverse semigroup topology.

Topological inverse monoids

A topology on an inverse semigroup S is called an *inverse semigroup topology* if $S \times S \rightarrow S$ defined by

$$(x, y) \mapsto xy$$

and $S \rightarrow S$ defined by

$$x \mapsto x^{-1}$$

are continuous.

A *topological inverse semigroup* G is an inverse semigroup together with an inverse semigroup topology.

Examples:

- ★ topological groups
- ★ the bicyclic monoid $\text{bicyclic} = \langle b, c \mid bc = 1 \rangle$

Topologies on the symmetric inverse monoid

What is the correct topology on $I_{\mathbb{N}}$?

Topologies on the symmetric inverse monoid

What is the correct topology on $I_{\mathbb{N}}$?

Idea

Try extending the pointwise topology from $\text{Sym}(\mathbb{N})$ to $I_{\mathbb{N}}$?

The pointwise topology on $\text{Sym}(\mathbb{N})$ has sub-basic sets
 $\{f \in \text{Sym}(\mathbb{N}) : (m)f = n\}$ over all $m, n \in \mathbb{N}$.

Topologies on the symmetric inverse monoid

What is the correct topology on $I_{\mathbb{N}}$?

Idea

Try extending the pointwise topology from $\text{Sym}(\mathbb{N})$ to $I_{\mathbb{N}}$?

The pointwise topology on $\text{Sym}(\mathbb{N})$ has sub-basic sets
 $\{f \in \text{Sym}(\mathbb{N}) : (m)f = n\}$ over all $m, n \in \mathbb{N}$.

The topology I_0

The topology with sub-basic sets $\{f \in I_{\mathbb{N}} : (m, n) \in f\}$ over all $m, n \in \mathbb{N}$.

Topologies on the symmetric inverse monoid

What is the correct topology on $I_{\mathbb{N}}$?

Idea

Try extending the pointwise topology from $\text{Sym}(\mathbb{N})$ to $I_{\mathbb{N}}$?

The pointwise topology on $\text{Sym}(\mathbb{N})$ has sub-basic sets
 $\{f \in \text{Sym}(\mathbb{N}) : (m)f = n\}$ over all $m, n \in \mathbb{N}$.

The topology I_0

The topology with sub-basic sets $\{f \in I_{\mathbb{N}} : (m, n) \in f\}$ over all $m, n \in \mathbb{N}$.

The good: I_0 is an inverse semigroup topology for $I_{\mathbb{N}}$ and induces the pointwise topology on $\text{Sym}(\mathbb{N})$.

Topologies on the symmetric inverse monoid

What is the correct topology on $I_{\mathbb{N}}$?

Idea

Try extending the pointwise topology from $\text{Sym}(\mathbb{N})$ to $I_{\mathbb{N}}$?

The pointwise topology on $\text{Sym}(\mathbb{N})$ has sub-basic sets
 $\{f \in \text{Sym}(\mathbb{N}) : (m)f = n\}$ over all $m, n \in \mathbb{N}$.

The topology I_0

The topology with sub-basic sets $\{f \in I_{\mathbb{N}} : (m, n) \in f\}$ over all $m, n \in \mathbb{N}$.

The good: I_0 is an inverse semigroup topology for $I_{\mathbb{N}}$ and induces the pointwise topology on $\text{Sym}(\mathbb{N})$.

The bad: I_0 is not T_1 .

The least T_1 shift-continuous topology

If $\lambda_s, \rho_s : S \rightarrow S$ defined by

$$(x)\lambda_s = sx \quad \text{and} \quad (x)\rho_s = xs$$

are continuous for all $s \in S$, then S is **shift-continuous**.

Idea

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$?

The least T_1 shift-continuous topology

If $\lambda_s, \rho_s : S \rightarrow S$ defined by

$$(x)\lambda_s = sx \quad \text{and} \quad (x)\rho_s = xs$$

are continuous for all $s \in S$, then S is **shift-continuous**.

Idea

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$?

★ Suppose that there is a T_1 shift-continuous topology on $I_{\mathbb{N}}$.

The least T_1 shift-continuous topology

If $\lambda_s, \rho_s : S \rightarrow S$ defined by

$$(x)\lambda_s = sx \quad \text{and} \quad (x)\rho_s = xs$$

are continuous for all $s \in S$, then S is **shift-continuous**.

Idea

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$?

- ★ Suppose that there is a T_1 shift-continuous topology on $I_{\mathbb{N}}$.
- ★ Define $s_{m,n} = \{(m, n)\} \in I_{\mathbb{N}}$ for any $m, n \in \mathbb{N}$.

The least T_1 shift-continuous topology

If $\lambda_s, \rho_s : S \rightarrow S$ defined by

$$(x)\lambda_s = sx \quad \text{and} \quad (x)\rho_s = xs$$

are continuous for all $s \in S$, then S is **shift-continuous**.

Idea

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$?

- ★ Suppose that there is a T_1 shift-continuous topology on $I_{\mathbb{N}}$.
- ★ Define $s_{m,n} = \{(m, n)\} \in I_{\mathbb{N}}$ for any $m, n \in \mathbb{N}$.
- ★ Closed sets:

$$\begin{aligned}\{f \in I_{\mathbb{N}} : s_{m,m}fs_{n,n} = s_{m,n}\} &= \{f \in I_{\mathbb{N}} : (m, n) \in f\} \\ \{f \in I_{\mathbb{N}} : s_{m,m}fs_{n,n} = \emptyset\} &= \{f \in I_{\mathbb{N}} : (m, n) \notin f\}\end{aligned}$$

The least T_1 shift-continuous topology

If $\lambda_s, \rho_s : S \rightarrow S$ defined by

$$(x)\lambda_s = sx \quad \text{and} \quad (x)\rho_s = xs$$

are continuous for all $s \in S$, then S is **shift-continuous**.

Idea

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$?

- ★ Suppose that there is a T_1 shift-continuous topology on $I_{\mathbb{N}}$.
- ★ Define $s_{m,n} = \{(m, n)\} \in I_{\mathbb{N}}$ for any $m, n \in \mathbb{N}$.
- ★ Closed sets:

$$\begin{aligned}\{f \in I_{\mathbb{N}} : s_{m,m}fs_{n,n} = s_{m,n}\} &= \{f \in I_{\mathbb{N}} : (m, n) \in f\} \\ \{f \in I_{\mathbb{N}} : s_{m,m}fs_{n,n} = \emptyset\} &= \{f \in I_{\mathbb{N}} : (m, n) \notin f\}\end{aligned}$$

- ★ So $\{f \in I_{\mathbb{N}} : (m, n) \in f\}$ and $\{f \in I_{\mathbb{N}} : (m, n) \notin f\}$ are open.

Properties of I_1

Topology I_1

The topology with the sub-basic sets

$$\{f \in I_{\mathbb{N}} \mid (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} \mid (m, n) \notin f\}.$$

Properties of I_1

Topology I_1

The topology with the sub-basic sets

$$\{f \in I_{\mathbb{N}} \mid (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} \mid (m, n) \notin f\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

The topology I_1 on $I_{\mathbb{N}}$ is

- ★ *Polish and compact(!?)*;
- ★ *the least T_1 shift continuous topology*;
- ★ *not a semigroup topology* but inversion is continuous.

Properties of I_1

Topology I_1

The topology with the sub-basic sets

$$\{f \in I_{\mathbb{N}} \mid (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} \mid (m, n) \notin f\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

The topology I_1 on $I_{\mathbb{N}}$ is

- ★ *Polish and compact(!?)*;
- ★ *the least T_1 shift continuous topology*;
- ★ *not a semigroup topology* but inversion is continuous.

Can we find a T_1 (or higher) semigroup topology for $I_{\mathbb{N}}$?

Inheriting from $\mathbb{N}^{\mathbb{N}}$

$I_{\mathbb{N}} \hookrightarrow \mathbb{N}^{\mathbb{N}}$ as follows:

Inheriting from $\mathbb{N}^{\mathbb{N}}$

$I_{\mathbb{N}} \hookrightarrow \mathbb{N}^{\mathbb{N}}$ as follows:

★ For $f \in I_{\mathbb{N}}$ define $f' \in \mathbb{N}^{\mathbb{N}}$ by

$$(x+1)f' = \begin{cases} (x)f + 1 & \text{if } x \in \text{dom}(f) \\ 0 & \text{otherwise} \end{cases}$$

Then the map $f \mapsto f'$ embeds $I_{\mathbb{N}}$ in $\mathbb{N}^{\mathbb{N}}$.

Inheriting from $\mathbb{N}^{\mathbb{N}}$

$I_{\mathbb{N}} \hookrightarrow \mathbb{N}^{\mathbb{N}}$ as follows:

★ For $f \in I_{\mathbb{N}}$ define $f' \in \mathbb{N}^{\mathbb{N}}$ by

$$(x+1)f' = \begin{cases} (x)f + 1 & \text{if } x \in \text{dom}(f) \\ 0 & \text{otherwise} \end{cases}$$

Then the map $f \mapsto f'$ embeds $I_{\mathbb{N}}$ in $\mathbb{N}^{\mathbb{N}}$.

★ The pointwise topology on $\mathbb{N}^{\mathbb{N}}$ induces a semigroup topology I_2 on $I_{\mathbb{N}}$ via this embedding.

A semigroup topology

The topology I_2

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{dom}(f)\}.$$

A semigroup topology

The topology I_2

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{dom}(f)\}.$$

We get immediately from the definition:

★ I_2 is a Polish semigroup topology for $I_{\mathbb{N}}$

A semigroup topology

The topology I_2

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{dom}(f)\}.$$

We get immediately from the definition:

- ★ I_2 is a Polish semigroup topology for $I_{\mathbb{N}}$
- ★ inversion is not continuous!

Properties of I_2 and I_3

I_2 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}$.

Properties of I_2 and I_3

I_2 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}$.

The topology I_3

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

Properties of I_2 and I_3

I_2 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}$.

The topology I_3

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

★ I_2 and I_3 are Polish semigroup topologies for $I_{\mathbb{N}}$;

Properties of I_2 and I_3

I_2 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}$.

The topology I_3

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

- ★ I_2 and I_3 are Polish semigroup topologies for $I_{\mathbb{N}}$;
- ★ every T_1 semigroup topology for $I_{\mathbb{N}}$ contains I_2 or I_3 ;

Properties of I_2 and I_3

I_2 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}$.

The topology I_3

The topology with sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\} \quad \& \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

- ★ I_2 and I_3 are Polish semigroup topologies for $I_{\mathbb{N}}$;
- ★ every T_1 semigroup topology for $I_{\mathbb{N}}$ contains I_2 or I_3 ;
- ★ $I_1 \subsetneq I_2 \cap I_3$

The Polish inverse semigroup topology for $I_{\mathbb{N}}$

The topology I_4

I_4 is generated by $I_2 \cup I_3$ and has sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\}, \quad \{f \in I_{\mathbb{N}} : m \notin \text{dom}(f)\}, \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

The Polish inverse semigroup topology for $I_{\mathbb{N}}$

The topology I_4

I_4 is generated by $I_2 \cup I_3$ and has sub-basic sets

$$\{f \in I_{\mathbb{N}} : (m, n) \in f\}, \quad \{f \in I_{\mathbb{N}} : m \notin \text{dom}(f)\}, \quad \{f \in I_{\mathbb{N}} : m \notin \text{im}(f)\}.$$

Theorem (Elliott, Jonušas, JDM, Mesyan, Morayne, Péresse '23)

The topology I_4 on $I_{\mathbb{N}}$ is:

- ★ *the unique T_1 and second-countable inverse semigroup topology*
- ★ *the maximal second-countable semigroup topology*

A topology for every function

Suppose that $f : \omega + 1 \rightarrow \omega + 1$ is any function. We define \mathcal{T}_f to be the least topology on $I_{\mathbb{N}}$ containing I_2 and the sets

$$U_{f,n,X} = \{g \in I_{\mathbb{N}} : |\text{im}(g) \setminus X| \geq n \text{ and } |X \cap \text{im}(g)| \leq (n)f\}$$

for all $n \in \mathbb{N}$ and $X \subseteq \mathbb{N}$ is finite.

A topology for every function

Suppose that $f : \omega + 1 \rightarrow \omega + 1$ is any function. We define \mathcal{T}_f to be the least topology on $I_{\mathbb{N}}$ containing I_2 and the sets

$$U_{f,n,X} = \{g \in I_{\mathbb{N}} : |\text{im}(g) \setminus X| \geq n \text{ and } |X \cap \text{im}(g)| \leq (n)f\}$$

for all $n \in \mathbb{N}$ and $X \subseteq \mathbb{N}$ is finite.

An element $g \in U_{f,n,X}$ must map at least n points outside of X and is allowed at most $(n)f$ mistakes, i.e. points in the image of g in X .

Waning

Waning

Waning function

We say that a non-increasing function $f : \omega + 1 \rightarrow \omega + 1$ is **waning** if:

- ★ f is constant with value ω ; or
- ★ $(j + 1)f < (j)f$ for all $j \in \omega$ such that $0 \neq (j)f \in \omega$.

If f is a waning function, continuing to speak roughly, partial functions in $U_{f,n,X}$ defined on more points are allowed fewer mistakes.

Classification of semigroup topologies

Theorem (Bardyla, Elliott, JDM, Péresse '24)

If \mathcal{T} is a T_1 second countable semigroup topology on $I_{\mathbb{N}}$, then there exists a waning function f such that either $\mathcal{T} = \mathcal{T}_f$, or $\mathcal{T}^{-1} = \mathcal{T}_f$.

Conversely, if f and g are distinct waning functions, then \mathcal{T}_f and \mathcal{T}_g are distinct Polish semigroup topologies for $I_{\mathbb{N}}$.

Classification of semigroup topologies

Theorem (Bardyla, Elliott, JDM, Péresse '24)

If \mathcal{T} is a T_1 second countable semigroup topology on $I_{\mathbb{N}}$, then there exists a waning function f such that either $\mathcal{T} = \mathcal{T}_f$, or $\mathcal{T}^{-1} = \mathcal{T}_f$.

Conversely, if f and g are distinct waning functions, then \mathcal{T}_f and \mathcal{T}_g are distinct Polish semigroup topologies for $I_{\mathbb{N}}$.

Lemma (Bardyla, Elliott, JDM, Péresse '24)

If f and g are waning functions, then $\mathcal{T}_f \subseteq \mathcal{T}_g$ if and only if $(n)g \leq (n)f$ for all $n \in \omega$.

Classification of semigroup topologies

Theorem (Bardyla, Elliott, JDM, Péresse '24)

If \mathcal{T} is a T_1 second countable semigroup topology on $I_{\mathbb{N}}$, then there exists a waning function f such that either $\mathcal{T} = \mathcal{T}_f$, or $\mathcal{T}^{-1} = \mathcal{T}_f$.

Conversely, if f and g are distinct waning functions, then \mathcal{T}_f and \mathcal{T}_g are distinct Polish semigroup topologies for $I_{\mathbb{N}}$.

Lemma (Bardyla, Elliott, JDM, Péresse '24)

If f and g are waning functions, then $\mathcal{T}_f \subseteq \mathcal{T}_g$ if and only if $(n)g \leq (n)f$ for all $n \in \omega$.

Corollary (Bardyla, Elliott, JDM, Péresse '24)

The partial order of Polish semigroup topologies on $I_{\mathbb{N}}$ contains:

- (a) infinite descending chains;
- (b) finite but not infinite ascending chains; and
- (c) every finite partial order.

Thanks!

Topology is relevant