

A 10-page proof of the Dichotomy Theorem (using the Dichotomy Theorem)

Petar Marković
(joint work with Miklós Maróti and Aleksandar Prokić)

University of Novi Sad

AAA 108, Vienna, 6th of February, 2026.

The Dichotomy Theorem

The Fixed-Template Constraint Satisfaction Problem

Let \mathbb{A} be a fixed finite model. $CSP(\mathbb{A})$ is the decision problem which inputs a finite model \mathbb{B} in the same language as \mathbb{A} and accepts \mathbb{B} iff there exists a homomorphism from \mathbb{B} into \mathbb{A} .

The Dichotomy Theorem

The Fixed-Template Constraint Satisfaction Problem

Let \mathbb{A} be a fixed finite model. $CSP(\mathbb{A})$ is the decision problem which inputs a finite model \mathbb{B} in the same language as \mathbb{A} and accepts \mathbb{B} iff there exists a homomorphism from \mathbb{B} into \mathbb{A} .

We make \mathbb{A} as a finite language reduct of $(A; \text{Inv } \mathbf{A})$, where \mathbf{A} is a finite algebra (for short, reduct of $(A; \text{Inv } \mathbf{A})$).

The Dichotomy Theorem

The Fixed-Template Constraint Satisfaction Problem

Let \mathbb{A} be a fixed finite model. $CSP(\mathbb{A})$ is the decision problem which inputs a finite model \mathbb{B} in the same language as \mathbb{A} and accepts \mathbb{B} iff there exists a homomorphism from \mathbb{B} into \mathbb{A} .

We make \mathbb{A} as a finite language reduct of $(A; \text{Inv } \mathbf{A})$, where \mathbf{A} is a finite algebra (for short, reduct of $(A; \text{Inv } \mathbf{A})$).

The Dichotomy Theorem (Bulatov, 2017; Zhuk, 2017)

If there exists a minimal Taylor algebra \mathbf{A} such that \mathbb{A} is a reduct of $(A; \text{Inv } \mathbf{A})$, then $CSP(\mathbb{A})$ is in P.

The Dichotomy Theorem

The Fixed-Template Constraint Satisfaction Problem

Let \mathbb{A} be a fixed finite model. $CSP(\mathbb{A})$ is the decision problem which inputs a finite model \mathbb{B} in the same language as \mathbb{A} and accepts \mathbb{B} iff there exists a homomorphism from \mathbb{B} into \mathbb{A} .

We make \mathbb{A} as a finite language reduct of $(A; \text{Inv } \mathbf{A})$, where \mathbf{A} is a finite algebra (for short, reduct of $(A; \text{Inv } \mathbf{A})$).

The Dichotomy Theorem (Bulatov, 2017; Zhuk, 2017)

If there exists a minimal Taylor algebra \mathbf{A} such that \mathbb{A} is a reduct of $(A; \text{Inv } \mathbf{A})$, then $CSP(\mathbb{A})$ is in P.

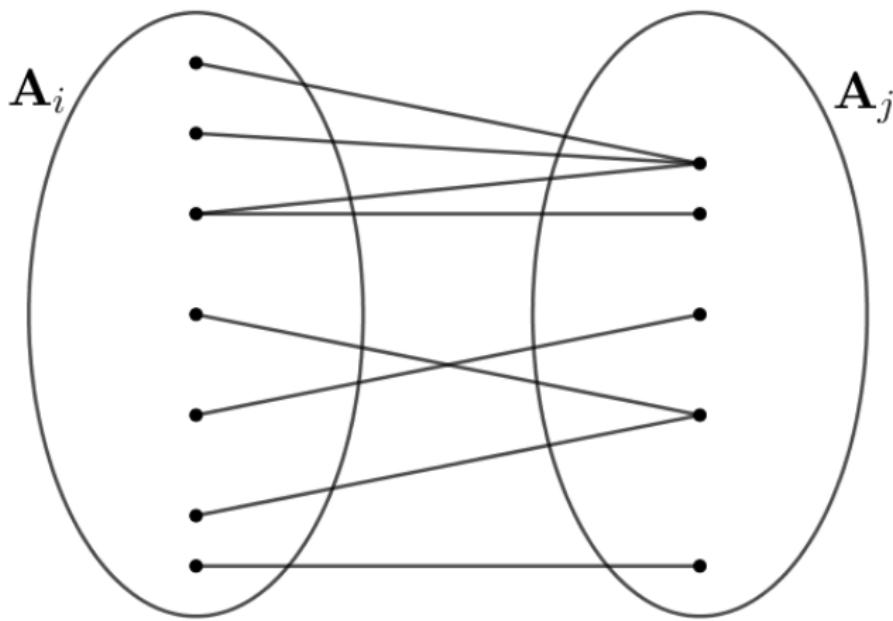
As was previously known, in all other cases $CSP(\mathbb{A})$ must be NP-complete, so a full dichotomy was thus proved.

Local consistency

In this talk, the only notion of local consistency we will use is (2,3)-minimality, which means:

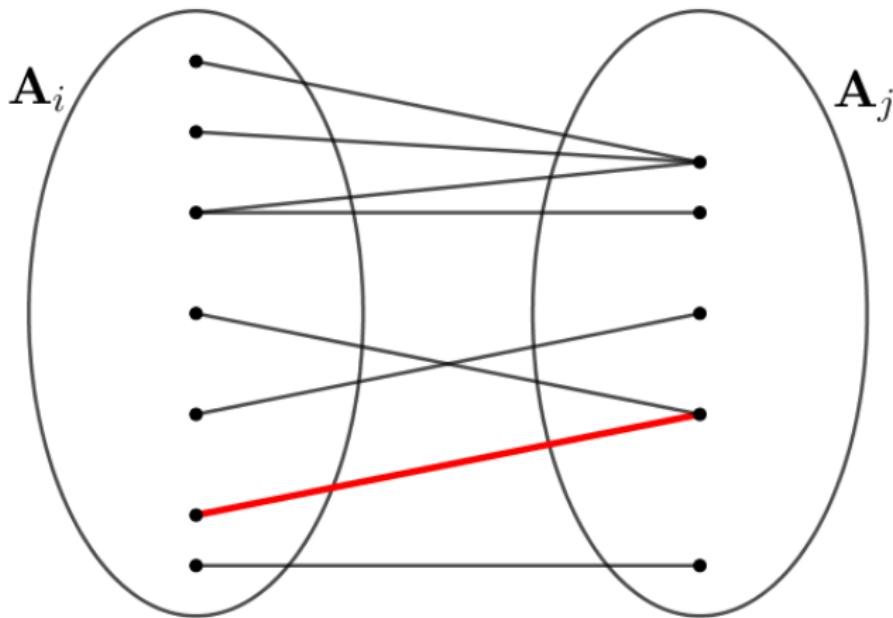
Local consistency

(2-consistency): For any variables i, j , any constraint that has $\{i, j\}$ in its scope restricts to $\{i, j\}$ the same way as R_{ij} , depicted here as a graph between \mathbf{A}_i , the restriction to $\{i\}$, and \mathbf{A}_j , the restriction to $\{j\}$, and



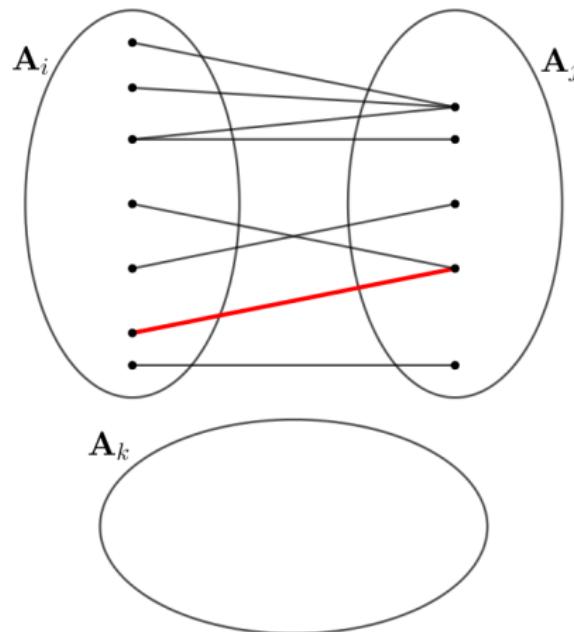
Local consistency

(3-density): For any edge in R_{ij} ,



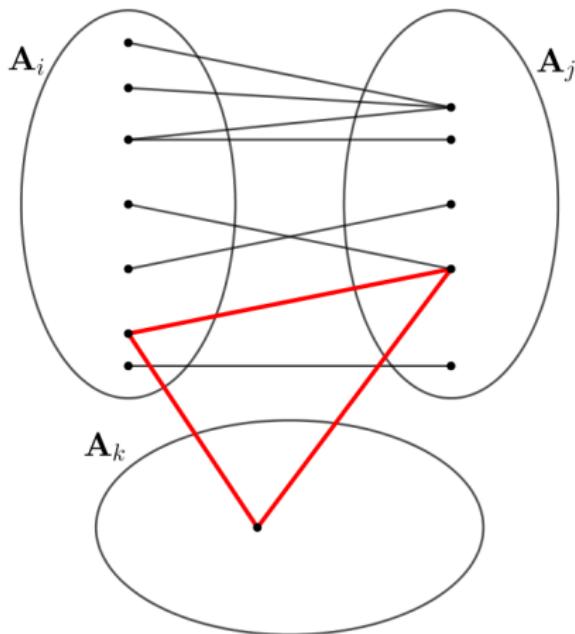
Local consistency

(3-density): For any edge in R_{ij} , and any variable k



Local consistency

(3-density): For any edge in R_{ij} , and any variable k there exists a point in \mathbf{A}_k such that the selected edge is in a triangle wrt. R_{ik} and R_{jk} .

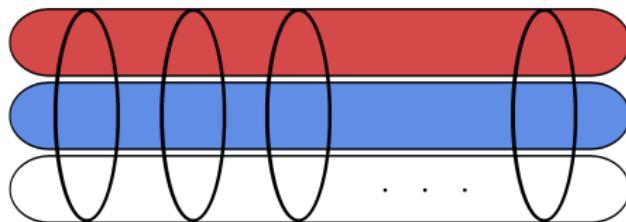


Structural consistency

In a $(2,3)$ -minimal instance P , a subinstance is created by taking a subset W of variables and projecting all constraints to the intersection of their scopes with W .

Structural consistency

In a $(2,3)$ -minimal instance P , a subinstance is created by taking a subset W of variables and projecting all constraints to the intersection of their scopes with W . Whenever the subinstance looks like this



Structural consistency

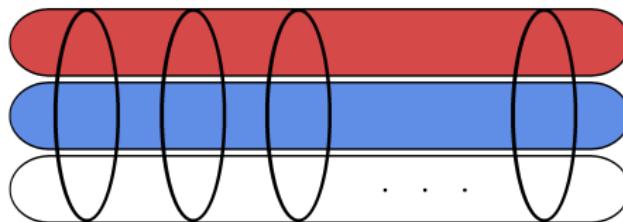
In a $(2,3)$ -minimal instance P , a subinstance is created by taking a subset W of variables and projecting all constraints to the intersection of their scopes with W . Whenever the subinstance looks like this



Zhuk requires that such a subinstance must be solvable through any point, while Bulatov wants it solvable through any tuple in any constraint. We call those properties *structural consistency*, today we use Zhuk's.

Structural consistency

In a $(2,3)$ -minimal instance P , a subinstance is created by taking a subset W of variables and projecting all constraints to the intersection of their scopes with W . Whenever the subinstance looks like this



Zhuk requires that such a subinstance must be solvable through any point, while Bulatov wants it solvable through any tuple in any constraint. We call those properties *structural consistency*, today we use Zhuk's.

NB: Both local consistency and structural consistency can be enforced in polytime via *universal algorithms*.

Reduction to binary ideals

Recall that our instances are compatible with a minimal Taylor algebra (MTA) and all \mathbf{A}_i are its subalgebras.

Reduction to binary ideals

Recall that our instances are compatible with a minimal Taylor algebra (MTA) and all \mathbf{A}_i are its subalgebras. Hence, all \mathbf{A}_i are MTAs, too.

Definition 1

A subset B of an algebra \mathbf{A} is *binary absorbing* (binary ideal) if there exists a binary term $t(x, y)$ such that $t(a, b) \in B$ whenever $|\{a, b\} \cap B| \geq 1$. If \mathbf{A} is a MTA, then such subset B is a *totally absorbing subuniverse*. We will write $B \triangleleft_2 \mathbf{A}$.

Reduction to binary ideals

Recall that our instances are compatible with a minimal Taylor algebra (MTA) and all \mathbf{A}_i are its subalgebras. Hence, all \mathbf{A}_i are MTAs, too.

Definition 1

A subset B of an algebra \mathbf{A} is *binary absorbing* (binary ideal) if there exists a binary term $t(x, y)$ such that $t(a, b) \in B$ whenever $|\{a, b\} \cap B| \geq 1$. If \mathbf{A} is a MTA, then such subset B is a *totally absorbing subuniverse*. We will write $B \triangleleft_2 \mathbf{A}$.

A major part of Zhuk's Dichotomy proof is his Reduction Theorem. We will use just one part of it.

Reduction to binary ideals

Recall that our instances are compatible with a minimal Taylor algebra (MTA) and all \mathbf{A}_i are its subalgebras. Hence, all \mathbf{A}_i are MTAs, too.

Definition 1

A subset B of an algebra \mathbf{A} is *binary absorbing* (binary ideal) if there exists a binary term $t(x, y)$ such that $t(a, b) \in B$ whenever $|\{a, b\} \cap B| \geq 1$. If \mathbf{A} is a MTA, then such subset B is a *totally absorbing subuniverse*. We will write $B \triangleleft_2 \mathbf{A}$.

A major part of Zhuk's Dichotomy proof is his Reduction Theorem. We will use just one part of it.

Theorem 2 (Zhuk's Reduction)

Let P be a locally and structurally consistent CSP instance compatible with a MTA. If $B \triangleleft_2 \mathbf{A}_i$, and there exists a solution of P then there exists a solution f of P such that $f(i) \in B$.

Squeezing polynomials

Let P be a (2,3)-minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

Squeezing polynomials

Let P be a $(2,3)$ -minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

- ① For any constraint (S, R) and any tuple $\langle a_i : i \in S \rangle \in R$, the tuple $\langle p_i(a_i) : i \in S \rangle$ is also in R , and

Squeezing polynomials

Let P be a $(2,3)$ -minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

- ① For any constraint (S, R) and any tuple $\langle a_i : i \in S \rangle \in R$, the tuple $\langle p_i(a_i) : i \in S \rangle$ is also in R , and
- ② There exists a variable $i \in V$ such that $p_i(A_i) \subsetneq A_i$.

Squeezing polynomials

Let P be a $(2,3)$ -minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

- ① For any constraint (S, R) and any tuple $\langle a_i : i \in S \rangle \in R$, the tuple $\langle p_i(a_i) : i \in S \rangle$ is also in R , and
- ② There exists a variable $i \in V$ such that $p_i(A_i) \subsetneq A_i$.

One way to ensure the first item holds is:

For every constraint (S, R) there exists a polynomial $p(x) \in \text{Pol}_1 \mathbf{R}$ such that for all $i \in S$ and $\mathbf{a} \in R$, where $\mathbf{a} = \langle a_i : i \in S \rangle$,

$$p(\mathbf{a})(i) = p_i(a_i).$$

Squeezing polynomials

Let P be a $(2,3)$ -minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

- ① For any constraint (S, R) and any tuple $\langle a_i : i \in S \rangle \in R$, the tuple $\langle p_i(a_i) : i \in S \rangle$ is also in R , and
- ② There exists a variable $i \in V$ such that $p_i(A_i) \subsetneq A_i$.

One way to ensure the first item holds is:

For every constraint (S, R) there exists a polynomial $p(x) \in \text{Pol}_1 \mathbf{R}$ such that for all $i \in S$ and $\mathbf{a} \in R$, where $\mathbf{a} = \langle a_i : i \in S \rangle$,

$$p(\mathbf{a})(i) = p_i(a_i).$$

Squeezing polynomials clearly reduce the instance to a smaller, equivalent one.

Squeezing polynomials

Let P be a $(2,3)$ -minimal CSP instance compatible with a MTA. A tuple of polynomials $\langle p_i \in \text{Pol}_1 \mathbf{A}_i : i \in V \rangle$ are *squeezing polynomials* for P if

- ① For any constraint (S, R) and any tuple $\langle a_i : i \in S \rangle \in R$, the tuple $\langle p_i(a_i) : i \in S \rangle$ is also in R , and
- ② There exists a variable $i \in V$ such that $p_i(A_i) \subsetneq A_i$.

One way to ensure the first item holds is:

For every constraint (S, R) there exists a polynomial $p(x) \in \text{Pol}_1 \mathbf{R}$ such that for all $i \in S$ and $\mathbf{a} \in R$, where $\mathbf{a} = \langle a_i : i \in S \rangle$,

$$p(\mathbf{a})(i) = p_i(a_i).$$

Squeezing polynomials clearly reduce the instance to a smaller, equivalent one.

We are looking for a tuple of unary polynomials indexed $i \in V$ so that, for each constraint (S, R) , our tuple restricts to S as a polynomial in $\text{Pol}_1 \mathbf{R}$. (Note: polynomials of \mathbf{R} can be represented as tuples of polynomials of \mathbf{A}_i , $i \in S$).

The polynomial instance

This naturally gives rise to the *polynomial instance*.

Definition 3 (The polynomial instance)

Let P be a $(2, 3)$ -minimal CSP instance compatible with a minimal Taylor algebra. The instance $\text{Pol } P$ has the same variable set V as P , and for each constraint (S, R) of P , the corresponding constraint of $\text{Pol } P$ is $(S, \text{Pol}_1 \mathbf{R})$.

The polynomial instance

This naturally gives rise to the *polynomial instance*.

Definition 3 (The polynomial instance)

Let P be a $(2, 3)$ -minimal CSP instance compatible with a minimal Taylor algebra. The instance $\text{Pol } P$ has the same variable set V as P , and for each constraint (S, R) of P , the corresponding constraint of $\text{Pol } P$ is $(S, \text{Pol}_1 \mathbf{R})$.

Note: Since P was $(2, 3)$ -minimal, for any constant (polynomial) $c \in A_i$, there is a constant (polynomial) in R whose i th projection is c . For any algebra \mathbf{B} , $\text{Pol}_1 \mathbf{B}$ is the subuniverse of \mathbf{B}^B generated by the identity map and the constant maps. Hence, the instance $\text{Pol } P$ is $(2, 3)$ -minimal with the domain of variable i equal to $\text{Pol}_1 \mathbf{A}_i$ and the digraph between variables i and j equal to $\text{Pol}_1 \mathbf{R}_{ij}$.

The polynomial instance

This naturally gives rise to the *polynomial instance*.

Definition 3 (The polynomial instance)

Let P be a $(2, 3)$ -minimal CSP instance compatible with a minimal Taylor algebra. The instance $\text{Pol } P$ has the same variable set V as P , and for each constraint (S, R) of P , the corresponding constraint of $\text{Pol } P$ is $(S, \text{Pol}_1 \mathbf{R})$.

Note: Since P was $(2, 3)$ -minimal, for any constant (polynomial) $c \in A_i$, there is a constant (polynomial) in R whose i th projection is c . For any algebra \mathbf{B} , $\text{Pol}_1 \mathbf{B}$ is the subuniverse of \mathbf{B}^B generated by the identity map and the constant maps. Hence, the instance $\text{Pol } P$ is $(2, 3)$ -minimal with the domain of variable i equal to $\text{Pol}_1 \mathbf{A}_i$ and the digraph between variables i and j equal to $\text{Pol}_1 \mathbf{R}_{ij}$.

Any solution of $\text{Pol } P$ is a tuple of polynomials which satisfies the first property from the previous slide. One trivial solution, when the identity map is assigned to each variable, always exists. But identity maps don't squeeze anything!

Maróti reduction: specific squeezing polynomials

Assuming the existence of a binary term with certain properties, Maróti invented the instance $M(P)$ which is a subset of $\text{Pol } P$, and has the following properties:

Maróti reduction: specific squeezing polynomials

Assuming the existence of a binary term with certain properties, Maróti invented the instance $M(P)$ which is a subset of $\text{Pol } P$, and has the following properties:

- ① If P has a solution, then $M(P)$ has a solution and

Maróti reduction: specific squeezing polynomials

Assuming the existence of a binary term with certain properties, Maróti invented the instance $M(P)$ which is a subset of $\text{Pol } P$, and has the following properties:

- ① If P has a solution, then $M(P)$ has a solution and
- ② Denote by $M_i \subseteq \text{Pol}_1 \mathbf{A}_i$ the domain of the variable i in $M(P)$. If no \mathbf{A}_i has a proper binary ideal, then for each i and every $a \in A_i$, the set $\{p(a) : p \in M_i\}$ is a proper subset of A_i .

Maróti reduction: specific squeezing polynomials

Assuming the existence of a binary term with certain properties, Maróti invented the instance $M(P)$ which is a subset of $\text{Pol } P$, and has the following properties:

- ① If P has a solution, then $M(P)$ has a solution and
- ② Denote by $M_i \subseteq \text{Pol}_1 \mathbf{A}_i$ the domain of the variable i in $M(P)$. If no \mathbf{A}_i has a proper binary ideal, then for each i and every $a \in A_i$, the set $\{p(a) : p \in M_i\}$ is a proper subset of A_i .

Hence, the Maróti instance can be decomposed into a smaller CSP instance than P (with one variable for each (i, a) such that $a \in A_i$) which can be solved. Still, no guarantee that the obtained solution squeezes P !

Maróti reduction: specific squeezing polynomials

Assuming the existence of a binary term with certain properties, Maróti invented the instance $M(P)$ which is a subset of $\text{Pol } P$, and has the following properties:

- ① If P has a solution, then $M(P)$ has a solution and
- ② Denote by $M_i \subseteq \text{Pol}_1 \mathbf{A}_i$ the domain of the variable i in $M(P)$. If no \mathbf{A}_i has a proper binary ideal, then for each i and every $a \in A_i$, the set $\{p(a) : p \in M_i\}$ is a proper subset of A_i .

Hence, the Maróti instance can be decomposed into a smaller CSP instance than P (with one variable for each (i, a) such that $a \in A_i$) which can be solved. Still, no guarantee that the obtained solution squeezes P !

Instead, Maróti ran a singleton arc consistency algorithm together with his decomposition and was often able to eliminate elements of A_i and reduce P .

The key idea

Though $\text{Pol } P$ is compatible with a minimal Taylor algebra (the power of the original one), it is also compatible with a binary operation, the composition. And the polynomials in $\text{Pol}_1 \mathbf{A}$; which are not permutations binary-absorb the whole $\text{Pol}_1 \mathbf{A}$; via the composition. Those are precisely the polynomials which DO squeeze P . We can make a new minimal Taylor reduct that $\text{Pol } P$ is compatible with, but that also has this binary absorption.

The key idea

Though $\text{Pol } P$ is compatible with a minimal Taylor algebra (the power of the original one), it is also compatible with a binary operation, the composition. And the polynomials in $\text{Pol}_1 \mathbf{A}_i$ which are not permutations binary-absorb the whole $\text{Pol}_1 \mathbf{A}_i$ via the composition. Those are precisely the polynomials which DO squeeze P . We can make a new minimal Taylor reduct that $\text{Pol } P$ is compatible with, but that also has this binary absorption.

So we should somehow find a subset (tightening) of $\text{Pol } P$ which is locally and structurally consistent, and contains all the identity polynomials (hence, the tightening still has the trivial solution). If at least one non-permutation remains in at least one $\text{Pol}_1 \mathbf{A}_i$, we will be able to squeeze the original instance P .

The twin instance

We assume that P is a locally and structurally consistent instance compatible with a minimal Taylor algebra, and that no \mathbf{A}_i has a proper binary ideal. Moreover, we assume that $M(P)$, generated using Bulatov's binary "universal meet", has no solution which squeezes the instance P . Such an instance P is called "prepared"; the methods we previously considered don't help us.

The twin instance

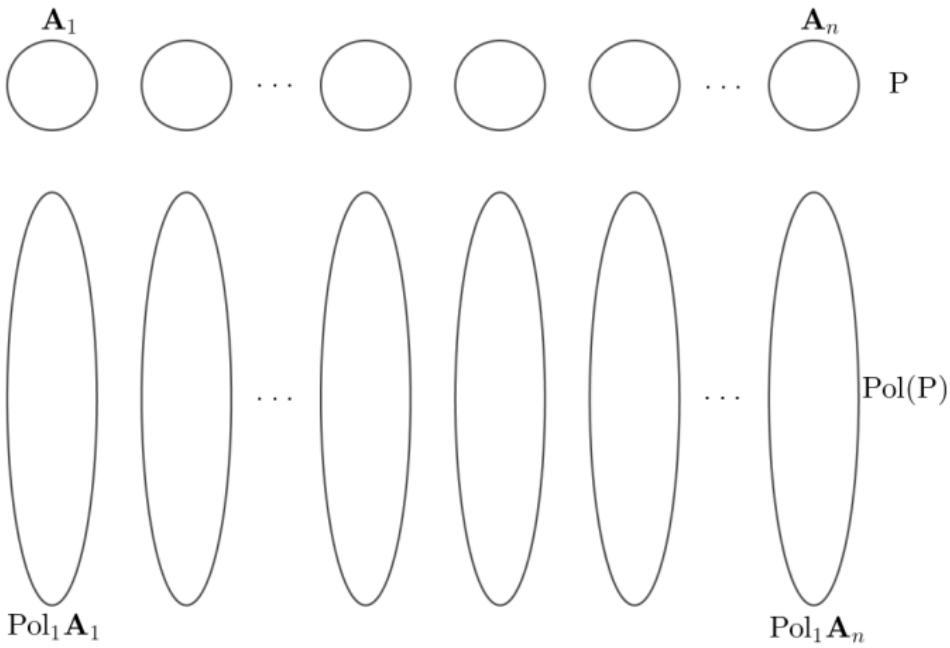
We assume that P is a locally and structurally consistent instance compatible with a minimal Taylor algebra, and that no \mathbf{A}_i has a proper binary ideal. Moreover, we assume that $M(P)$, generated using Bulatov's binary "universal meet", has no solution which squeezes the instance P . Such an instance P is called "prepared"; the methods we previously considered don't help us.

We constructed an instance $Tw(P)$, a tightening of $\text{Pol } P$, such that

- ① The instance $Tw(P)$ is compatible with a Taylor operation,
- ② The instance $Tw(P)$ is locally and structurally consistent, so we denote the domain of variable $i \in V$ by $T_i \subseteq \text{Pol}_1 \mathbf{A}_i$,
- ③ Every polynomial in every constraint relation (also in every T_i) is a twin of the identity, and idempotent (meaning $p \circ p = p$),
- ④ For every $i \in V$ such that \mathbf{A}_i has a semilattice edge, T_i contains a polynomial which maps two endpoints of some semilattice edge into the same element, and
- ⑤ For every $i \in V$ such that \mathbf{A}_i has no semilattice edges, $T_i = \{id_{\mathbf{A}_i}\}$.

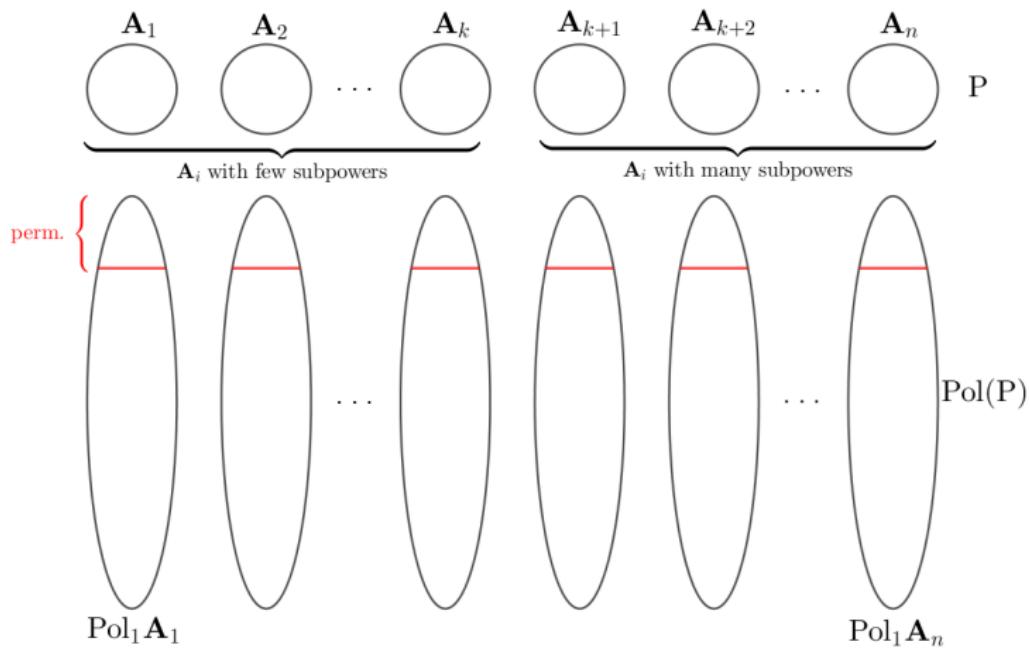
The twin instance

We start from the instances P and $\text{Pol}(P)$.



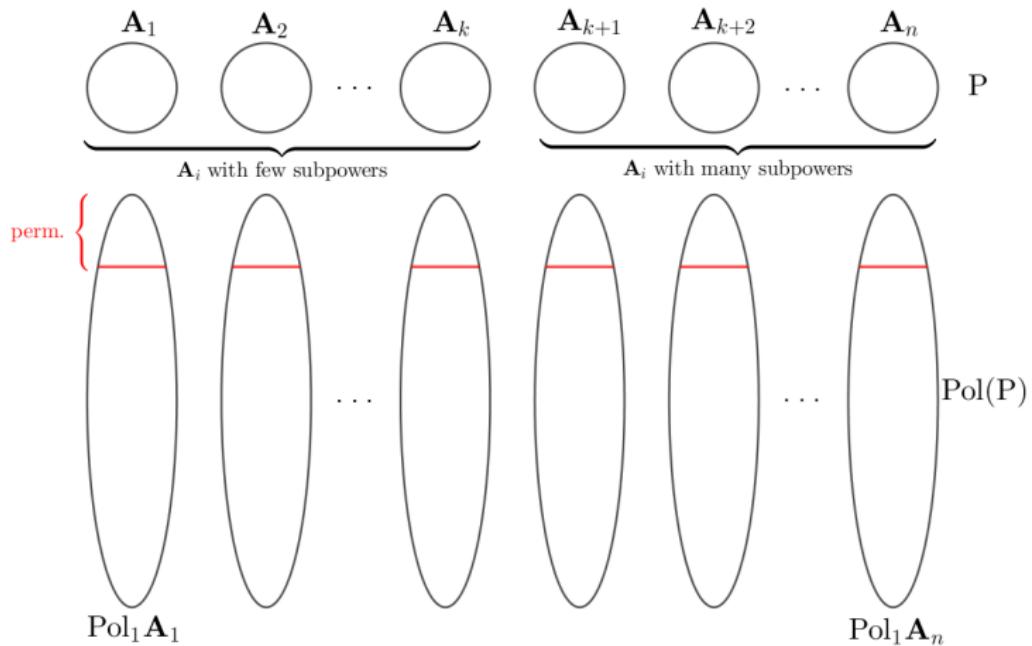
The twin instance

Let the first k have “few subpowers” (no semilattice edges), and the rest “many subpowers” (have semilattice edges).



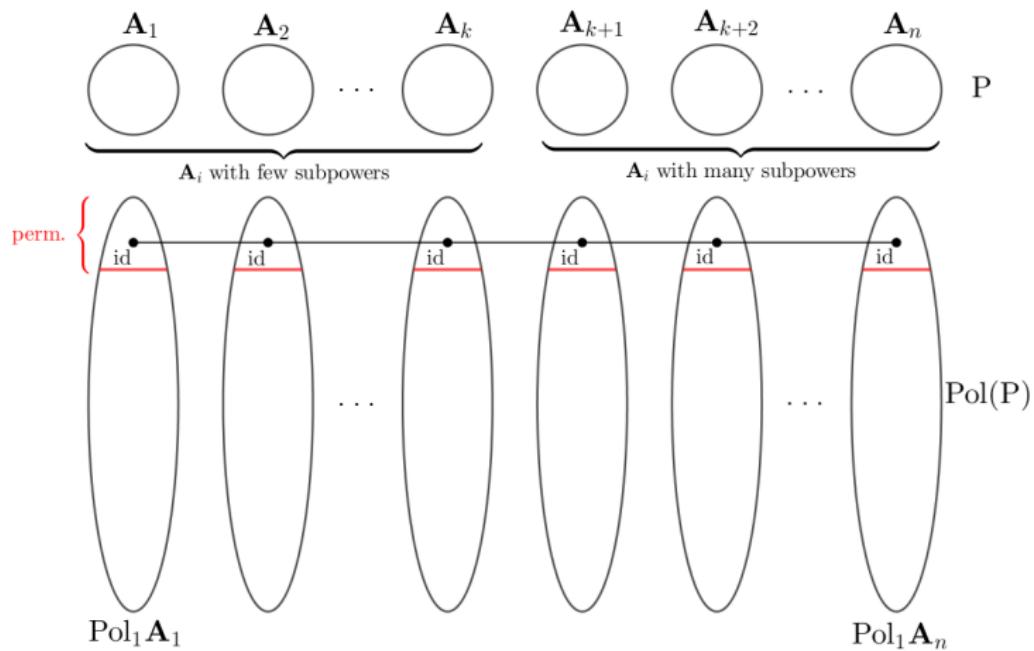
The twin instance

The non-permutation polynomials (below the red line) binary absorb all polynomials.



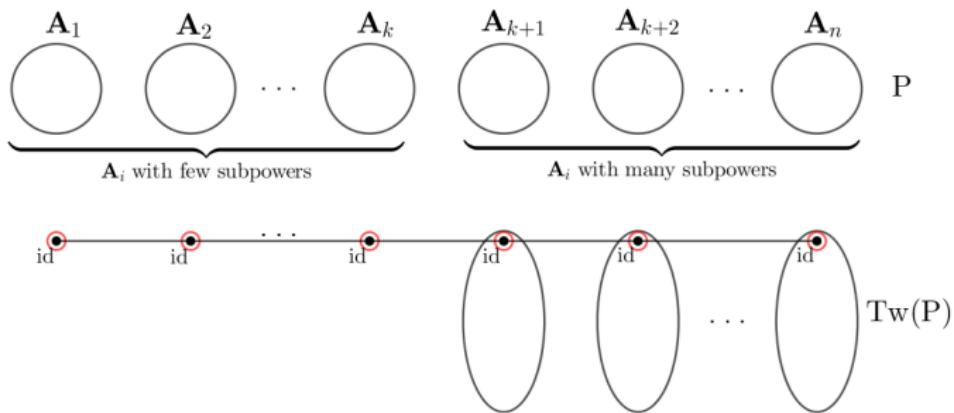
The twin instance

There is a solution to $\text{Pol}(P)$ which always selects the identity map.



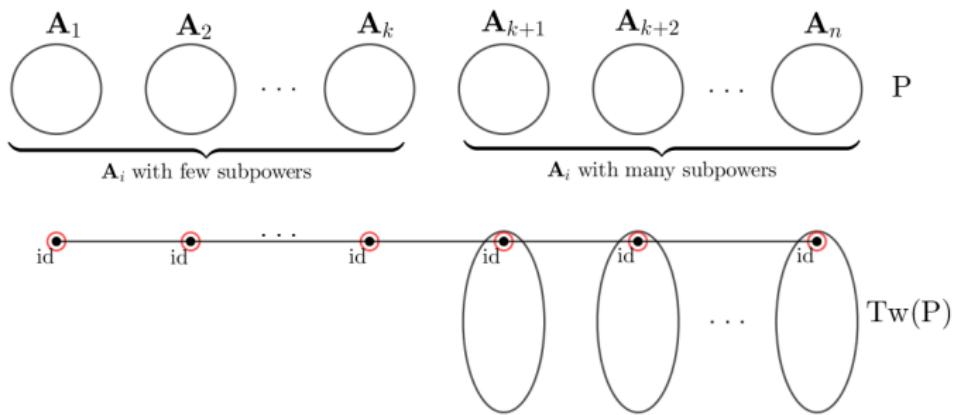
The twin instance

We construct $\text{Tw}(P)$, a tightening of $\text{Pol}(P)$, which is compatible with Taylor polymorphisms and closed under \circ .



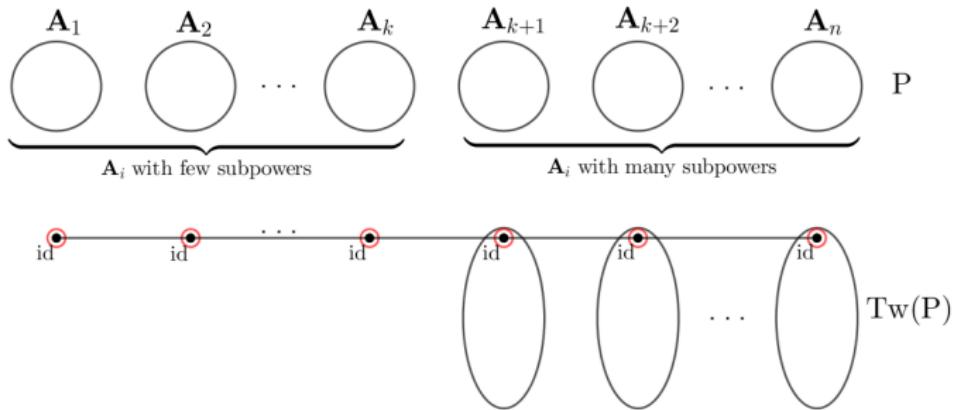
The twin instance

For any $i \in V$ such that \mathbf{A}_i has few subpowers, the corresponding domain of $\text{Tw}(P)$ contains only one map, the identity,



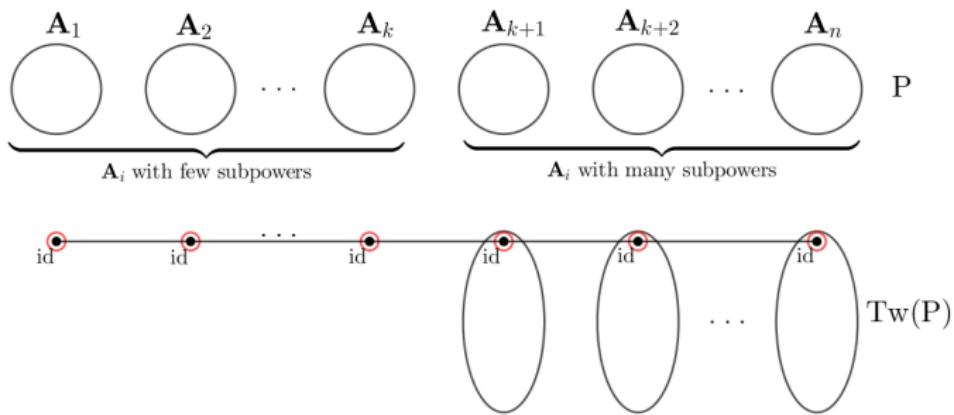
The twin instance

while for the remaining $i \in V$, the i th domain of $\text{Tw}(P)$ contains only the identity among permutations, and must contain some non-permutations.



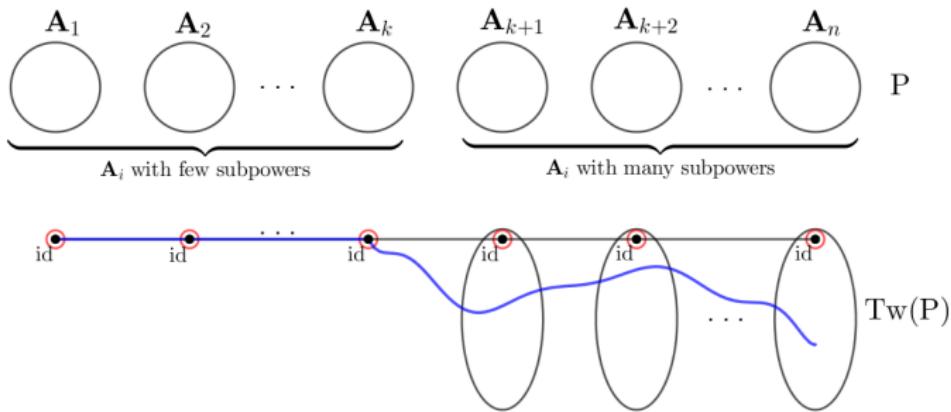
The twin instance

Always picking the identity solves $\text{Tw}(P)$, also, and $\text{Tw}(P)$ is constructed to be $(2, 3)$ -minimal and Zhuk irreducible.



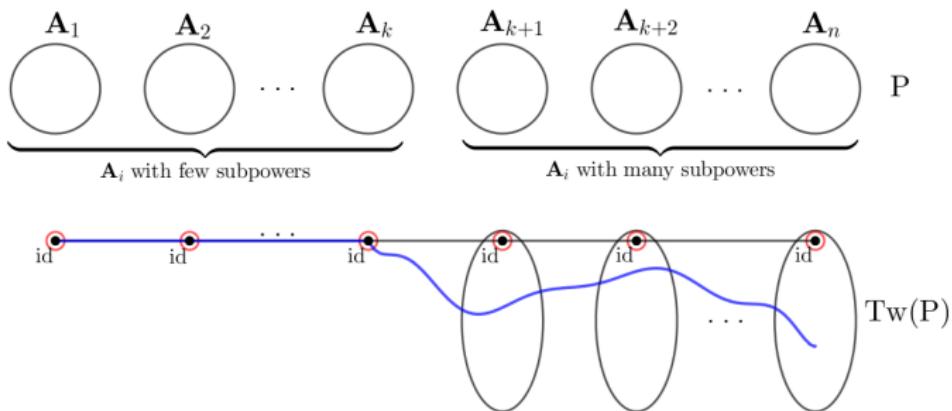
The twin instance

Hence, by Zhuk's Reduction Theorem, there is a **solution** of $\text{Tw}(P)$ which selects non-permutations for all $i \in V$ for which \mathbf{A}_i has many subpowers.



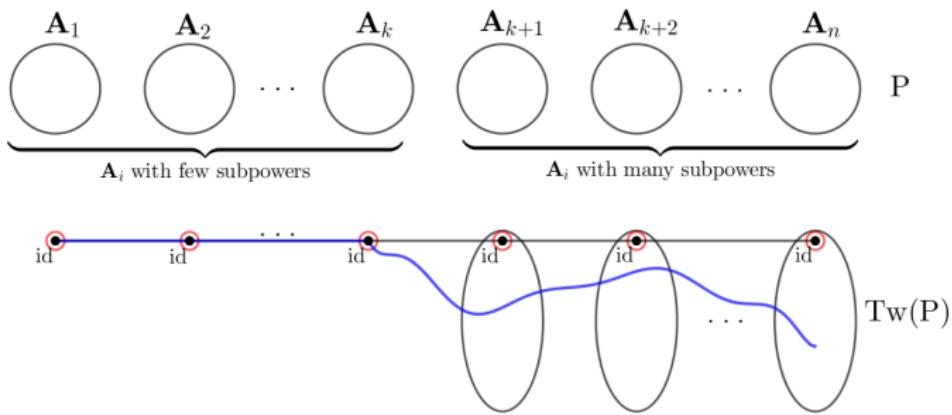
The twin instance

The **solution** to $\text{Tw}(P)$ is also a solution to $\text{Pol}(P)$, thus gives a tuple of polynomial maps which squeeze all \mathbf{A}_i with many subpowers.



The twin instance

Finally, when no more \mathbf{A}_i with many subpowers exist, the instance P can be solved with the well-known “few subpowers” algorithm.



The algorithm

So our algorithm works like this:

1 Input an instance of $CSP(\mathcal{T})$.

2 Tighten the instance to make it prepared.

3.1 If there exists $i \in V$ such that \mathbf{A}_i has many subpowers, do

3.1.1 Construct the auxiliary instance $\text{Tw}(P)$, its size is constant times bigger. Said constant is $\leq |A|^{|A|-1}$, but that's how complexity works :).

3.1.2 Find a solution \mathbf{p} of $\text{Tw}(P)$ such that, for any $i \in V$, if \mathbf{A}_i has many subpowers, then \mathbf{p}_i is a proper retraction.

3.1.3 Retract P to $\mathbf{p}(P)$. Any \mathbf{A}_i with many subpowers got smaller.

3.1.4 Go back to Step 2.

3.2 If all \mathbf{A}_i have few subpowers, solve P using the few subpowers algorithm.

Caveats and remarks

In the last slide we used Zhuk's Reduction, which is a theorem claiming the **existence** of a solution through binary absorbing ideals, to actually **construct** in Step 3.1.2 such a solution and use it as a part of our CSP-solving algorithm.

Caveats and remarks

In the last slide we used Zhuk's Reduction, which is a theorem claiming the **existence** of a solution through binary absorbing ideals, to actually **construct** in Step 3.1.2 such a solution and use it as a part of our CSP-solving algorithm. This can be done, but the only way we know to prove it works is by *using the Dichotomy Theorem itself*. Cheating! We're using the Dichotomy Theorem to prove the Dichotomy Theorem.

Caveats and remarks

In the last slide we used Zhuk's Reduction, which is a theorem claiming the **existence** of a solution through binary absorbing ideals, to actually **construct** in Step 3.1.2 such a solution and use it as a part of our CSP-solving algorithm. This can be done, but the only way we know to prove it works is by *using the Dichotomy Theorem itself*. Cheating! We're using the Dichotomy Theorem to prove the Dichotomy Theorem.

Moreover, even the existential variant of Zhuk's reduction is proved assuming the Dichotomy (and several other facts) work on all smaller instances than P ,

Caveats and remarks

In the last slide we used Zhuk's Reduction, which is a theorem claiming the **existence** of a solution through binary absorbing ideals, to actually **construct** in Step 3.1.2 such a solution and use it as a part of our CSP-solving algorithm. This can be done, but the only way we know to prove it works is by *using the Dichotomy Theorem itself*. Cheating! We're using the Dichotomy Theorem to prove the Dichotomy Theorem.

Moreover, even the existential variant of Zhuk's reduction is proved assuming the Dichotomy (and several other facts) work on all smaller instances than P , while we applied it to the much larger instance $\text{Pol}(P)$. Cheating again! We shouldn't be able to use even the existential statement in our proof.

Caveats and remarks

In the last slide we used Zhuk's Reduction, which is a theorem claiming the **existence** of a solution through binary absorbing ideals, to actually **construct** in Step 3.1.2 such a solution and use it as a part of our CSP-solving algorithm. This can be done, but the only way we know to prove it works is by *using the Dichotomy Theorem itself*. Cheating! We're using the Dichotomy Theorem to prove the Dichotomy Theorem.

Moreover, even the existential variant of Zhuk's reduction is proved assuming the Dichotomy (and several other facts) work on all smaller instances than P , while we applied it to the much larger instance $\text{Pol}(P)$. Cheating again! We shouldn't be able to use even the existential statement in our proof.

Indeed, until someone proves Zhuk's Reduction Theorem completely independently from the Dichotomy Theorem, and even strengthens it to the effective algorithm we use, we don't have a short proof of the Dichotomy Theorem in the above slides.

What remains

To offset the constructive use of Zhuk's Reduction Theorem, it is possible to represent each $p(x) \in T_i$ as a tuple in $A_i^{A_i}$, like in Maróti's original idea. However, the number of variables increases, while the size of their domains is only guaranteed not to increase, but not to strictly decrease (as was the case in Maróti's original proof). A modification of our construction of $Tw(P)$ may fix this.

What remains

To offset the constructive use of Zhuk's Reduction Theorem, it is possible to represent each $p(x) \in T_i$ as a tuple in $A_i^{A_i}$, like in Maróti's original idea. However, the number of variables increases, while the size of their domains is only guaranteed not to increase, but not to strictly decrease (as was the case in Maróti's original proof). A modification of our construction of $Tw(P)$ may fix this.

Proving Zhuk's Reduction Theorem independently from the Dichotomy seems like a much harder nut to crack.

What remains

To offset the constructive use of Zhuk's Reduction Theorem, it is possible to represent each $p(x) \in T_i$ as a tuple in $A_i^{A_i}$, like in Maróti's original idea. However, the number of variables increases, while the size of their domains is only guaranteed not to increase, but not to strictly decrease (as was the case in Maróti's original proof). A modification of our construction of $Tw(P)$ may fix this.

Proving Zhuk's Reduction Theorem independently from the Dichotomy seems like a much harder nut to crack.

Finally, this inspired us to look at Dichotomy algorithms from the standpoint of Descriptive Complexity. Hopefully, solving any tractable CSPs **except for Mal'cev CSPs over solvable algebras** can be described in the fixed-point logic. Hence, we hope that the class P within the CSPs can be described by fixed-point logic with Rank operator, or at least some generalization of Rank (from finite fields to finite Abelian groups viewed as \mathbb{Z} -modules).

THANK YOU FOR YOUR ATTENTION!