

Lagrange-like interpolation in unitary rings, Boolean algebras and Boolean posets

Ivan Chajda – Helmut Länger

U Olomouc, Czech Republic
email: ivan.chajda@upol.cz

TU Wien, Austria, and U Olomouc, Czech Republic
email: helmut.laenger@tuwien.ac.at

Support of the research of the first author by the Czech Science Foundation (GAČR), project 25-20013L, and by IGA, project PřF 2025 008, and support of the research of the second author by the Austrian Science Fund (FWF), project 10.55776/PIN5424624, is gratefully acknowledged.

108th Workshop on General Algebra, TU Wien, Austria, February 5, 2026

Outline:

Outline:

- Interpolation in fields

Outline:

- Interpolation in fields
- Interpolation in unitary rings

Outline:

- Interpolation in fields
- Interpolation in unitary rings
- Interpolation in Boolean algebras

Outline:

- Interpolation in fields
- Interpolation in unitary rings
- Interpolation in Boolean algebras
- Interpolation in Boolean posets

Interpolation in fields

Classical Lagrange interpolation

Classical Lagrange interpolation

Theorem 1

Let $\mathbf{K} = (K, +, \cdot)$ be a field, $n > 1$, a_1, \dots, a_n different elements of K and $f: K \rightarrow K$ and define $p_1, \dots, p_n, p: K \rightarrow K$ by

Classical Lagrange interpolation

Theorem 1

Let $\mathbf{K} = (K, +, \cdot)$ be a field, $n > 1$, a_1, \dots, a_n different elements of K and $f: K \rightarrow K$ and define $p_1, \dots, p_n, p: K \rightarrow K$ by

$$p_i(x) = \prod_{\substack{j=1 \\ j \neq i}}^n \frac{x - a_j}{a_i - a_j} \text{ for } i = 1, \dots, n,$$

$$p(x) := \sum_{i=1}^n f(a_i)p_i(x)$$

for all $x \in K$.

Classical Lagrange interpolation

Theorem 1

Let $\mathbf{K} = (K, +, \cdot)$ be a field, $n > 1$, a_1, \dots, a_n different elements of K and $f: K \rightarrow K$ and define $p_1, \dots, p_n, p: K \rightarrow K$ by

$$p_i(x) = \prod_{\substack{j=1 \\ j \neq i}}^n \frac{x - a_j}{a_i - a_j} \text{ for } i = 1, \dots, n,$$

$$p(x) := \sum_{i=1}^n f(a_i)p_i(x)$$

for all $x \in K$. Then $p(x)$ is the unique polynomial over \mathbf{K} of degree at most n satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

Classical Lagrange interpolation

Theorem 1

Let $\mathbf{K} = (K, +, \cdot)$ be a field, $n > 1$, a_1, \dots, a_n different elements of K and $f: K \rightarrow K$ and define $p_1, \dots, p_n, p: K \rightarrow K$ by

$$p_i(x) = \prod_{\substack{j=1 \\ j \neq i}}^n \frac{x - a_j}{a_i - a_j} \text{ for } i = 1, \dots, n,$$

$$p(x) := \sum_{i=1}^n f(a_i)p_i(x)$$

for all $x \in K$. Then $p(x)$ is the unique polynomial over \mathbf{K} of degree at most n satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

Here and in the following $p_i(a_k) = \delta_{ik}$ for $i, k = 1, \dots, n$.

Interpolation in unitary rings

Interpolation in unitary rings

Interpolation in unitary rings

Theorem 2

Let $(R, +, \cdot, 0, 1)$ be a unitary ring, $n > 1$, a_1, \dots, a_n different elements of R and $f: R \rightarrow R$ and define $\Delta, p_1, \dots, p_n, p: R \rightarrow R$ by

Interpolation in unitary rings

Theorem 2

Let $(R, +, \cdot, 0, 1)$ be a unitary ring, $n > 1$, a_1, \dots, a_n different elements of R and $f: R \rightarrow R$ and define $\Delta, p_1, \dots, p_n, p: R \rightarrow R$ by

$$\Delta(x) := \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise,} \end{cases} \quad (\text{"Baaz Delta"})$$

$$p_i(x) := \prod_{\substack{j=1 \\ j \neq i}}^n \Delta(x - a_j) \text{ for } i = 1, \dots, n,$$

$$p(x) := \sum_{i=1}^n f(a_i) p_i(x)$$

for all $x \in B$.

Interpolation in unitary rings

Theorem 2

Let $(R, +, \cdot, 0, 1)$ be a unitary ring, $n > 1$, a_1, \dots, a_n different elements of R and $f: R \rightarrow R$ and define $\Delta, p_1, \dots, p_n, p: R \rightarrow R$ by

$$\Delta(x) := \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise,} \end{cases} \quad (\text{"Baaz Delta"})$$

$$p_i(x) := \prod_{\substack{j=1 \\ j \neq i}}^n \Delta(x - a_j) \text{ for } i = 1, \dots, n,$$

$$p(x) := \sum_{i=1}^n f(a_i) p_i(x)$$

for all $x \in R$. Then $p(x)$ is a polynomial over the enriched unitary ring $(R, +, \cdot, \Delta, 0, 1)$ satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

Interpolation in Boolean algebras

Interpolation in Boolean algebras

Interpolation in Boolean algebras

Theorem 3

Let $(B, \vee, \wedge, ', 0, 1)$ be a Boolean algebra, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta, p_1, \dots, p_n, p: B \rightarrow B$ by

Interpolation in Boolean algebras

Theorem 3

Let $(B, \vee, \wedge, ', 0, 1)$ be a Boolean algebra, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta, p_1, \dots, p_n, p: B \rightarrow B$ by

$$\Delta(x) := \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise,} \end{cases}$$

$$p_i(x) := \bigwedge_{\substack{j=1 \\ j \neq i}}^n \Delta((x' \wedge a_j) \vee (x \wedge a'_j)) \text{ for } i = 1, \dots, n,$$

$$p(x) := \bigvee_{i=1}^n (f(a_i) \wedge p_i(x))$$

for all $x \in B$.

Interpolation in Boolean algebras

Theorem 3

Let $(B, \vee, \wedge, ', 0, 1)$ be a Boolean algebra, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta, p_1, \dots, p_n, p: B \rightarrow B$ by

$$\Delta(x) := \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise,} \end{cases}$$

$$p_i(x) := \bigwedge_{\substack{j=1 \\ j \neq i}}^n \Delta((x' \wedge a_j) \vee (x \wedge a'_j)) \text{ for } i = 1, \dots, n,$$

$$p(x) := \bigvee_{i=1}^n (f(a_i) \wedge p_i(x))$$

for all $x \in B$. Then $p(x)$ is a polynomial over the enriched Boolean algebra $(B, \vee, \wedge, ', \Delta, 0, 1)$ satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

Interpolation in Boolean algebras

Theorem 3

Let $(B, \vee, \wedge, ', 0, 1)$ be a Boolean algebra, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta, p_1, \dots, p_n, p: B \rightarrow B$ by

$$\Delta(x) := \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{otherwise,} \end{cases}$$

$$p_i(x) := \bigwedge_{\substack{j=1 \\ j \neq i}}^n \Delta((x' \wedge a_j) \vee (x \wedge a'_j)) \text{ for } i = 1, \dots, n,$$

$$p(x) := \bigvee_{i=1}^n (f(a_i) \wedge p_i(x))$$

for all $x \in B$. Then $p(x)$ is a polynomial over the enriched Boolean algebra $(B, \vee, \wedge, ', \Delta, 0, 1)$ satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

For $k, j = 1, \dots, n$ we have $(a'_k \wedge a_j) \vee (a_k \wedge a'_j) = 0$ if and only if $k = j$.

Interpolation in Boolean posets

Distributive posets

Distributive posets

For a poset (P, \leq) let (U, L) denote the Galois correspondence between $(2^P, \subseteq)$ and $(2^P, \subseteq)$ induced by \leq , i.e.

Distributive posets

For a poset (P, \leq) let (U, L) denote the Galois correspondence between $(2^P, \subseteq)$ and $(2^P, \subseteq)$ induced by \leq , i.e.

$$U(A) := \{y \in P \mid x \leq y \text{ for all } x \in A\} \text{ for all } A \subseteq P,$$
$$L(B) := \{x \in P \mid x \leq y \text{ for all } y \in B\} \text{ for all } B \subseteq P.$$

Distributive posets

For a poset (P, \leq) let (U, L) denote the Galois correspondence between $(2^P, \subseteq)$ and $(2^P, \subseteq)$ induced by \leq , i.e.

$$U(A) := \{y \in P \mid x \leq y \text{ for all } x \in A\} \text{ for all } A \subseteq P,$$
$$L(B) := \{x \in P \mid x \leq y \text{ for all } y \in B\} \text{ for all } B \subseteq P.$$

Definition 4

A *distributive poset* is a poset (P, \leq) satisfying the LU-identity

$$L(U(x, y), z) \approx LU(L(x, z), L(y, z)).$$

Distributive posets

For a poset (P, \leq) let (U, L) denote the Galois correspondence between $(2^P, \subseteq)$ and $(2^P, \subseteq)$ induced by \leq , i.e.

$$U(A) := \{y \in P \mid x \leq y \text{ for all } x \in A\} \text{ for all } A \subseteq P,$$
$$L(B) := \{x \in P \mid x \leq y \text{ for all } y \in B\} \text{ for all } B \subseteq P.$$

Definition 4

A *distributive poset* is a poset (P, \leq) satisfying the LU-identity

$$L(U(x, y), z) \approx LU(L(x, z), L(y, z)).$$

A lattice is distributive if and only if it is a distributive poset.

Boolean posets

Definition 5

A *poset with complementation* is a bounded poset $(P, \leq, ', 0, 1)$ with a unary operation $'$ satisfying the LU-identities

$$U(x, x') \approx 1 \text{ and } L(x, x') \approx 0.$$

Definition 5

A *poset with complementation* is a bounded poset $(P, \leq, ', 0, 1)$ with a unary operation $'$ satisfying the LU-identities

$$U(x, x') \approx 1 \text{ and } L(x, x') \approx 0.$$

A *Boolean poset* is a distributive poset with complementation.

Definition 5

A *poset with complementation* is a bounded poset $(P, \leq, ', 0, 1)$ with a unary operation $'$ satisfying the LU-identities

$$U(x, x') \approx 1 \text{ and } L(x, x') \approx 0.$$

A *Boolean poset* is a distributive poset with complementation.

In the following we identify singletons with their unique element.

Definition 5

A *poset with complementation* is a bounded poset $(P, \leq, ', 0, 1)$ with a unary operation $'$ satisfying the LU-identities

$$U(x, x') \approx 1 \text{ and } L(x, x') \approx 0.$$

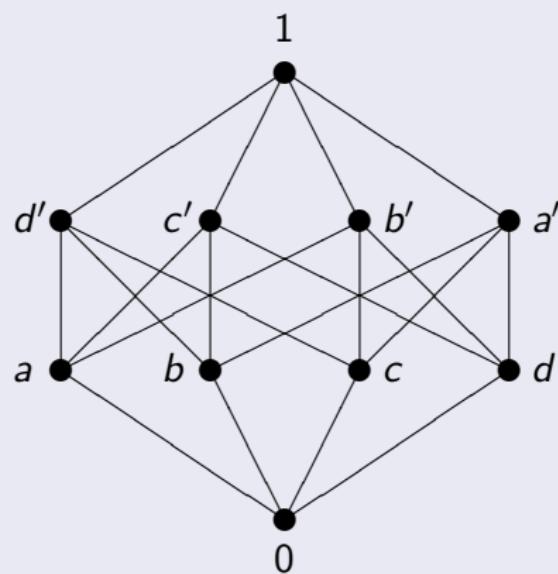
A *Boolean poset* is a distributive poset with complementation.

In the following we identify singletons with their unique element. For a subset A of a poset we denote by $\text{Min } A$ the set of its minimal elements.

Example of a Boolean poset

Example of a Boolean poset

Example 6



(with $0' = 1$, $1' = 0$ and involution $'$) is a Boolean poset.

Interpolation in Boolean posets

Interpolation in Boolean posets

Theorem 7

Let $(B, \leq, ', 0, 1)$ be a Boolean poset, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta: 2^B \rightarrow B$, $p_1, \dots, p_n: B \rightarrow B$ and $p: B \rightarrow 2^B$ by

Interpolation in Boolean posets

Theorem 7

Let $(B, \leq, ', 0, 1)$ be a Boolean poset, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta: 2^B \rightarrow B$, $p_1, \dots, p_n: B \rightarrow B$ and $p: B \rightarrow 2^B$ by

$$\Delta(A) := \begin{cases} 0 & \text{if } A = 0, \\ 1 & \text{otherwise,} \end{cases}$$

$$p_i(x) := \bigwedge_{\substack{j=1 \\ j \neq i}}^n \Delta\left(\text{Min } U(L(x', a_j), L(x, a'_j))\right) \text{ for } i = 1, \dots, n,$$

$$p(x) := \text{Min } U\left(\bigcup_{i=1}^n (f(a_i) \wedge p_i(x))\right)$$

for all $A \subseteq B$ and all $x \in B$.

Interpolation in Boolean posets

Theorem 7

Let $(B, \leq, ', 0, 1)$ be a Boolean poset, $n > 1$, a_1, \dots, a_n different elements of B and $f: B \rightarrow B$ and define $\Delta: 2^B \rightarrow B$, $p_1, \dots, p_n: B \rightarrow B$ and $p: B \rightarrow 2^B$ by

$$\Delta(A) := \begin{cases} 0 & \text{if } A = 0, \\ 1 & \text{otherwise,} \end{cases}$$

$$p_i(x) := \bigwedge_{\substack{j=1 \\ j \neq i}}^n \Delta \left(\text{Min } U(L(x', a_j), L(x, a'_j)) \right) \text{ for } i = 1, \dots, n,$$

$$p(x) := \text{Min } U \left(\bigcup_{i=1}^n (f(a_i) \wedge p_i(x)) \right)$$

for all $A \subseteq B$ and all $x \in B$. Then $p(x)$ is an operator term over $(B, \leq, ', \Delta, 0, 1)$ satisfying $p(a_k) = f(a_k)$ for $k = 1, \dots, n$.

Final remark

Final remark

For $k, j = 1, \dots, n$ we have $\text{Min } U(L(a'_k, a_j), L(a_k, a'_j)) = 0$ if and only if $k = j$.

References I

- [1] G. Birkhoff, Lattice Theory. AMS, Providence, RI, 1979. ISBN 0-8212-1025-1.
- [2] I. Chajda, M. Kolařík and H. Länger, Operators Max L and Min U and duals of Boolean posets. *J. Multiple-Valued Logic Soft Computing* (to appear).
- [3] I. Chajda and H. Länger, Lagrange-like interpolation in unitary rings, Boolean algebras and Boolean posets. *Asian-European J. Math.* (2026), 2650004 (10 pp.). DOI 10.1142/S179355712650004X.
- [4] R. P. Dilworth, Lattices with unique complements, *Trans. Amer. Math. Soc.* **57** (1945), 123–154.
- [5] J. Niederle, Boolean and distributive ordered sets: characterization and representation by sets. *Order* **12** (1995), 189–210.

References II

- [6] J. Paseka, Note on distributive posets, *Math. Appl.* **1** (2012), 197–206.
- [7] B. L. van der Waerden, *Algebra*. Vol. I. Springer, New York 1991. ISBN 0-387-97424-5.

Thank you for your attention!