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Interpolation in fields
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Classical Lagrange interpolation

Theorem 1

Let K = (K ,+, ·) be a field, n > 1, a1, . . . , an different elements of K and
f : K → K and define p1, . . . , pn, p : K → K by

pi (x) =
n∏

j=1
j ̸=i

x − aj
ai − aj

for i = 1, . . . , n,

p(x) :=
n∑

i=1

f (ai )pi (x)

for all x ∈ K. Then p(x) is the unique polynomial over K of degree at most
n satisfying p(ak) = f (ak) for k = 1, . . . , n.

Here and in the following pi (ak) = δik for i , k = 1, . . . , n.
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Interpolation in unitary rings
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Interpolation in unitary rings

Theorem 2

Let (R,+, ·, 0, 1) be a unitary ring, n > 1, a1, . . . , an different elements of
R and f : R → R and define ∆, p1, . . . , pn, p : R → R by

∆(x) :=

{
0 if x = 0,
1 otherwise,

(“Baaz Delta”)

pi (x) :=
n∏

j=1
j ̸=i

∆(x − aj) for i = 1, . . . , n,

p(x) :=
n∑

i=1

f (ai )pi (x)

for all x ∈ B. Then p(x) is a polynomial over the enriched unitary ring
(R,+, ·,∆, 0, 1) satisfying p(ak) = f (ak) for k = 1, . . . , n.
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Interpolation in Boolean algebras
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Interpolation in Boolean algebras

Theorem 3

Let (B,∨,∧, ′, 0, 1) be a Boolean algebra, n > 1, a1, . . . , an different ele-
ments of B and f : B → B and define ∆, p1, . . . , pn, p : B → B by

∆(x) :=

{
0 if x = 0,
1 otherwise,

pi (x) :=
n∧

j=1
j ̸=i

∆
(
(x ′ ∧ aj) ∨ (x ∧ a′j)

)
for i = 1, . . . , n,

p(x) :=
n∨

i=1

(
f (ai ) ∧ pi (x)

)
for all x ∈ B. Then p(x) is a polynomial over the enriched Boolean algebra
(B,∨,∧, ′,∆, 0, 1) satisfying p(ak) = f (ak) for k = 1, . . . , n.

For k , j = 1, . . . , n we have (a′k ∧ aj) ∨ (ak ∧ a′j) = 0 if and only if k = j .
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Interpolation in Boolean posets
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Distributive posets

For a poset (P,≤) let (U, L) denote the Galois correspondence between
(2P ,⊆) and (2P ,⊆) induced by ≤, i.e.

U(A) := {y ∈ P | x ≤ y for all x ∈ A} for all A ⊆ P,

L(B) := {x ∈ P | x ≤ y for all y ∈ B} for all B ⊆ P.

Definition 4

A distributive poset is a poset (P,≤) satisfying the LU-identity

L
(
U(x , y), z

)
≈ LU

(
L(x , z), L(y , z)

)
.

A lattice is distributive if and only if it is a distributive poset.
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Boolean posets

Definition 5

A poset with complementation is a bounded poset (P,≤, ′, 0, 1) with a unary
operation ′ satisfying the LU-identities

U(x , x ′) ≈ 1 and L(x , x ′) ≈ 0.

A Boolean poset is a distributive poset with complementation.

In the following we identify singletons with their unique element. For a
subset A of a poset we denote by MinA the set of its minimal elements.
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Example of a Boolean poset

Example 6
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1

(with 0′ = 1, 1′ = 0 and involution ′) is a Boolean poset.
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Interpolation in Boolean posets

Theorem 7

Let (B,≤, ′, 0, 1) be a Boolean poset, n > 1, a1, . . . , an different elements
of B and f : B → B and define ∆: 2B → B, p1, . . . , pn : B → B and
p : B → 2B by

∆(A) :=

{
0 if A = 0,
1 otherwise,

pi (x) :=
n∧

j=1
j ̸=i

∆
(
MinU

(
L(x ′, aj), L(x , a

′
j)
))

for i = 1, . . . , n,

p(x) := MinU
( n⋃

i=1

(
f (ai ) ∧ pi (x)

))
for all A ⊆ B and all x ∈ B. Then p(x) is an operator term over
(B,≤, ′,∆, 0, 1) satisfying p(ak) = f (ak) for k = 1, . . . , n.
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Final remark

For k , j = 1, . . . , n we have MinU
(
L(a′k , aj), L(ak , a

′
j)
)
= 0 if and only if

k = j .

Chajda, Länger Lagrange-like interpolation 14 / 17



Final remark

For k , j = 1, . . . , n we have MinU
(
L(a′k , aj), L(ak , a

′
j)
)
= 0 if and only if

k = j .

Chajda, Länger Lagrange-like interpolation 14 / 17



References I

[1] G. Birkhoff, Lattice Theory. AMS, Providence, RI, 1979. ISBN 0-8212-
1025-1.
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Thank you for your attention!
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