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Double Boolean algebra [2]

A double Boolean algebra (dBa) is an algebra D := (D; LI, 11, —, 5, T, L) of type
(2,2,1,1,0,0) which satisfies the equations (la.) — (11a.), (1b.) — (11b.) and (12.).

Idempotence:

la. xMx)Ny=xnMNy 1b. (xux) Uy =xUy

8a. ~(xMx) = = 8b. L(xUx) =ux
Commutative and associative:

Za.xﬂy:yﬂx 2b.xl_ly:yux

3a.xM(yMz) = (xMy) Mz 3b.xU(yUz) = (xUy) Uz
Absorption:

4a.xM (xUy) =xMx 4b. xU (xMy) =xUx

Sa.xMN(xVy) =xMNx S5b.xU(xAy) =xUx
Distributive:

6a.xM(yVvz) = (xMy)V (xMz) 6b. xUU(yAz) = (xUy) A (xUz)
Axioms for negations:

Ta. =—(xMy) =xMNy 7b. Ja(xUy) =xUy

9a.xMm—-x= L 9b. xx =T

where x V y := —=(—x M —y) and x Ay :=_1(uxUoy).
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Double Boolean Algebra [2] cont’d.

Axioms for constants:

10a. -L=TnT 10b. T =1L u L

1la. oL =T 11b. =T = L
Proto’s axiom:

12. (xMx) U (xMx) = (xUx) 1 (xUx).

o A weak dBa satisfies equations (la.) — (11a.) and duals (1b.) — (11b.)

@ The relation C on D, defined below, is a quasi-order.

xCy:<= xMNy=xMNxandxUy=yly.

@ Dnh:={xeD | xMNx=x}andD,:={x€D | xUx=x}
@ Dn:=(D;M,V,—, L, TAT) and Dy:= (DA, U 0, LULT)
are Boolean algebras.
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Contexts, Concepts and Protoconcepts [2]

e K:=(G,M,R) with R C G x M is called a formal context (or polarity).

@ Concept forming operator. For A C G, B C M, define
Al:={meM|gRmVgeA} and B :={g€ G|gRmVm < B}

@ Concepts and friends: A pair (A, B) is a
conceptif A’ = Band B’ = A
semiconcept of if A’ = B or B’ = A.
protoconcept if A” = B’.

preconcept if A C B’

e Y(K), B(K), H(K), B(K) denotes the set of pre-, proto-, semi- and
concepts of K, respectively.

o B(K) C H(K) € P(K) € V(K).
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Algebra of Protoconcepts [2]

@ Logical operator on concepts: (meet and join)

(A,B)A(C,D)=(ANC,(BUD)")=(ANC,(ANC))
(A,B)V (C,D)=((AuC)",BND) = ((BND),BND)

e Logical operators on preconcepts: For (A, B) and (C, D) in U(K):
(A,B)n(C,D):=(ANC,(ANC))
(A,B)U(C,D) :=((BND),BND)
—(A,B) ;= (G\ A, (G\A))
J(A,B) :=((M\ B),M\ B)
T:=(G,G") and L := M M).

o P(K) := (P(K),u, M, =, 1, T, L) is a double Boolean algebra.
e DBas generate the equational theory of protoconcept algebras [2].
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Motivation for the present work

@ The definition of dBas given by Rudolf Wille contains a large number of
axioms (2 x 11 +1).

o Immediate Goal: Find a non redundant and complete subset of Wille’s
set of dBas axioms.

@ Further Goal: Find alternative sets of axioms for dBas.
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A small subset of Wille’s dBas axioms

e D:=(D;U,M,—, 4, T,1)is called a D-core algebra if it satisfies

Commutative:

Za.xﬂy:yl_lx 2b.xl_ly=yux
Idempotence:

4a. ~(xMx) = —x 4b. J(xUx) =x
Axioms for negations:

7a. ==(xMy) =xMNy 7b. Lu(xUy) =xUy

9a. xM—-x= 1 Ob. xUx =T
Absorption:

4a. xM (xUy) =xMx 4b. xU (xMy) =xUx
Distributive:

6a.xM(yVz) = (xMy)V(xMNz) 6b. xU(yAzZ) = (xUy) A (xU2)

12. xMx) U (xMx) = (xUx) N (xUx).

An algebra (D, U, M, =, 5, T, L) is a dBa if and only if it is a D-core algebra.




D-core [1]

An algebra D := (D; U, M, =, 4, T, L) satisfying the following properties is
called a D-core algebra. For any x,y,z € D,
(la)xMy=yMx (1b)
(2a) =(xMx) =~ (2b)
(Ba) xM(xUy) =xMNx (3b) xU (xMy) =xUx
(4a) xM (yVz) = (xMy) V (xM2) (4b) xU (yAz) = (xUy) A (xU2)
(Sa)ﬂﬁ(xﬂy)—xﬂy (5b)
(6a) xM—x = (6b)
(7) (xMx) U (xl‘lx) (xUx) M (xUx)

In the rest of this presentation, D:=(D, L, M, —, 4, T, L) is a D-core algebra,
and x,y,z,--- € D.
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Elimination of Wille’s 1a., 1b.

Proposition 2

(la) ~—x=xMx (1) six=xUx

(2a) (xMy) M (xNy) =xMy (2b) (xUy)U (xUy) =xUy
(Ba) =(xN(yVz)) =~=(Ny)M=(xMz) (3b) 2(x U (yAz)) =a(xUy)La(x
(4a) xVx=xTx (4b) x N\x=xUx

(5a) =——x = —x (5b) Joox =x

(6a) ~xM—x = —x (6b) xllx =x
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Elimination of Wille’s 1a., 1b.

Proposition 2

(la) ~—x=xMx

1b) sx=xUx

2b) (xUy)U (xUy) =xUy
3b) s(x U (y A2)) =a(x Uy)Ua(x
ANx=xUx

axlox =ax

(2a) (xMy) N (xMy)=xMNy

(3a) ~(xM(yVz)=-(xMNy) N—-(xMz)
(4a) xVx=xTx

(5a) =——x = —x

(6a) ~x M —x = —x

(

(

(

(4b) x
(5b) Joox =x
(6b)
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Elimination of Wille’s 10a., 11a, and 10b., 11b.

(la) (xMx)Ny=xMNy (1b) (xUx)Uy=xUy
(2a) =T =1 (2b) oL =T
(Ba)-L=TNT (B3b) T=1UL

@) -T2 o7 2L o7 P8 (T

AT 2L

(Ba) TAT PZéla) T T3:2a)

DI (6b)

-l
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De Morgan laws

Proposition 4

(la) ~(xMy) =—-xV -y (1b) s(xUy) =1xAly
(2a) ~(xVy) =—-xM=y (2b) s(x Ay) =xliay
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Join and meet with top/bottom

Proposition 5

(la)xMT =xMNx

(1b)
( (2b)
( (3b)
( (4b)
(Sa)xV L =xMNx (5h)x AT =xUx
(6a) xV L =-w (6b) XxNT =ux
(7a) (xMy)V L =xNy (7b) (xUy) AT =xUy
Ba)xN(yVT)=xN(xVy) @b)xU(AL)=xU(xAy)
(9a) LM L=_1 O TUT =T
(10a) (LM —x)Nx= L (10p) (TUX)Ux =T
(I1la) (LMx) I_I x=1 (116) (TUXx)Ux =T
(12a) LNux = (I12) TU—x=T
(13a) LM —x = J_ (136) TUs—x =T
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1 nNx=_1forxe {L, x,~.x}. What about L M x in general?

Proposition 6

(1a) xU (L Uy) =xUy (1b)
(2a) (LNx)uy=_LUy (2b)
Ba) (LMx)N(LUy)=1nNx (3b)
(4a) (4b)

(
(TI_Ix) (TI_Iy) TUx
4a) (LMNx)MN=(xN-y)=(LMNx)My (

T Ux)Us(xlay) = (T Ux) U

Proposition 7

(la) J_ N=(—wMay) = L Nx (1Ib) TU(xU—y) =T Ux
(2a) xM=(—xM=y) =xMN=(-yM—T) (2b) xJa(axliuy) = xo(oylod
(Ba) xM=(—yMN=(xUz) =x0—-(LO=y) (3b) xUa(oyUa(xMz)) = xUa(
(4a)Lﬂx— (4b) TUx=T
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Elimination of Wille’s 6a. and 6b.

(la)xM (xVy)=xMx (1b)xU(xAy)=xUux
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Elimination of Wille’s 6a. and 6b.

(la)xM (xVy)=xMx (1b)xU(xAy)=xUux

bl —|(—|x M —|y) P.7:(2a) (—|—|— M= ) T.3:(2a) xI —|(J_ M —|y)
PTOY e~y = uT) "y A (-yn=T)
)P
P.5 (1
T.3é3a) (T|_|_|_) T3(1a) xAT :(a)xl_lx
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Towards associativity

Proposition 9

(la)xl‘l —(xMy)=xM-y (1b) xUs(x Uy) = xUoy

(2a) xM=(xM—y) =xMy (2b) xUa(uyUx) =xUy

(3a) x —|(—|xl_ly) =xMx (30) J((xUx)Us(—xUy)) =x
(4a) ~xM=(xMy)) = —x (4b) axUa(xUy)) =ax

(5a) xMN=((xNy)Nz) =—-x (5b) xUa((xUy)Uz) =ux
(6a) xM(yM—-x) =1 (6b) xU (yUx) =T

Proposition 10

(la) (kMy)Mz)N—x =1 (1) (xUy)UZ)Ux =T
(2a) ~(xMy) N =(xM—y) = —x (2b) s(x U y)Us(uyUx) =ux
(3a) =(=(xN(yMz)Nz)Nz=xMN(yMNz) (3b) s(u(xU(yUz))Uz)Uz=
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Elimination of Wille’s 3a., 3b

Proposition 11

(1a) 2(xM=(yMz)) = =(x N =y) M =(x 1 —2)
(xs(y U z)) =a(xUay)Ua(xlz)
(~(@xM—y) MM —z)) = (yAx) Nz

(1b) 4
(2a) xN
(2b) x U (u(xluy)Us(xlaz)) = (yUx) Uz,
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Elimination of Wille’s 3a., 3b

Proposition 11

(1a) 2(xM=(yMz)) = =(x N =y) M =(x 1 —2)
(xs(y U z)) =a(xUay)Ua(xlz)
(~(@xM—y) MM —z)) = (yAx) Nz

(1b) 4
(2a) xN
(2b) x U (u(xluy)Us(xlaz)) = (yUx) Uz,

Theorem 12

(@xn(yMNz)=@xNy)MNz (b)xU(yUz)=(xUy)Uz
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) PP 2 m(zmy) ~(=(x M (zMy)) My) My

Py m=(en zmy) my
(=M =x) M=y =(zMy))) My

=y —x) M=y —z)) Ny

P10 (3
xM(yMz LEE)
P11 (la)
P9 (1a)

-
D1 (la)

Yy (=M —x) N =(yM—z))

P11 (2a) (xMy) Mz
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Minimality: D-core’s Sa., 5b.

—=(bMb) = —-=b = —a=a# b= b b, failing (5a).

Ju(alUa) = b # a=ala, failing (5b).

1l =aand T =0b.

({a,b};N, U, =, 5, T, L) = (1a) — (4a), (1b) — (4b), (6a), (6b) and (7)
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Thank You
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