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E-unitary and F-inverse monoids

> S — inverse semigroup; E(S) — semilattice of idempotents of S.

» o - minimum group congruence on S: a ¢ b if and only if there is
e € E(S) such that ae = be.

» S is called E-unitary if o is idempotent pure, that is, satisfies

a o e for some e € E(S) = a € E(S).
» If each o-class contains a maximum element, S is called F-inverse.
» Each F-inverse semigroup is a monoid.

» Each F-inverse monoid is E-unitary but the converse is not true.

» Example: the free X-generated inverse monoid is F-inverse.
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F-inverse monoids in enriched signature

vV v . v v

S — F-inverse monoid.
a™ :=max{be S: bo a}, foreach a € S.
a > a™ is a unary operation on S.

We add the operation ™ to the type (-,71,1) of S and get the
algebra (S;-,71,™, 1) of signature (2,1, 1,0).

Proposition. An algebra (S;-,~1,™ 1) is an F-inverse monoid if and
only if (S;+,71,1) is an inverse monoid and:
1)a™>aforallaes,

2) a™ = (ae)™ for all a€ S and e € E(S).

Corollary. F-inverse monoids form a variety of algebras (Kynion,
2018).
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M(G, X)

>

>

G — an X-generated group

M(G, X) — all pairs (I', g) where I is a finite connected subgraph of
Cay(G, X) containing the vertices 1 and g. It is an inverse monoid
with the operations

(A, g)(=,h) = (AUg=,gh)
and
(A g)t=(g'Ag7Y).

M(G, X) is an X-generated inverse monoid with respect to

x = (Mx, [x]), x € X. It is the universal X-generated E-unitary
inverse monoid with maximum group image G (Margolis, Meakin,
1989).

Defining relations for M(G, X): w2 = w for all w € X such that
w =1 holds in G.

When G = FG(X) then w =1 in G if and only if red(w) is the
empty word (such words are called Dyck words). It follows that
FIM(X) = M(FG(X), X).
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F(G,X)

> F(G,X) — all pairs (I', g) where I is a finite (not necessarily
connected) subgraph of Cay(G, X) containing the vertices 1 and g

> F(G,X) is an X-generated F-inverse monoid; operations are
defined similarly as on M(G, X) and additionally

(A g)" =({1.&}.8),

where {1, g} is the graph with no edges and two vertices 1, g. It is
the universal X-generated F-inverse monoid with maximum group
image G (Auinger, GK, Szendrei, 2021).

» Defining relations for F(G, X): w™ = w for all terms w such that
w =1 holds in G.

» When G = FG(X) then the free F-inverse monoid FFM(X) is
isomorphic to F(FG(X), X).

» In both M(G, X) and F(F, X) we have (A, g) < (Z, h) if and only
if =C Aand g =h, and (A, g) o (=, h) if and only if g = h.
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The universal F-inverse monoid Mg(G, X)

» For every o-class of M(G, X) we identify any two maximal elements
of this o-class.

» Denote the quotient by Mg(G, X).

» Mg(G,X) is an F-inverse monoid and is the universal F-inverse
quotient of M(G, X) such that the quotient map preserves maximal
elements of o-classes.

> X =XUX1L

> G =Gp(X|w=1(i€l)) where w; € X" are cyclically reduced
words.

> we X is cyclic with respect to (G, X) if w labels a simple cycle in
the Cayley graph Cay(G, X).
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Presentation for Mg(G, X)

> ¢ — the set of all pairs of words (u, v), where u,v € X are
non-empty, such that uv is cyclic with respect to (G, X).

> GﬂG — the congruence on M(G, X) generated by the set
{((Tu [u]), (Tyt, vTD) = (u,v) € b6}

Theorem 1. Mg(G,X) = M(G, X)/0%. Therefore, Me(G, X) is
presented, as an X-generated inverse monoid, by the relations:

(i) w2 =w for all w € X~ such that w = 1 holds in G,

(i) u=vforall u,veX such that (u,v) € bg.
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Sketch of the proof of Theorem 1

» The maximal elements in the o/ﬁﬂG—class corresponding to g € G

are of the form (FI.,g)Hé where 1 is a simple path in Cay(G, X)
connecting the vertices 1 and g

> we need to show that (M, g) and (M5, g) must be Gﬁ—related for all
simple paths Ny and I, from 1 to g we must have that .

» The cycle I'Ill'lg1 does not need to be simple. We carefully analyse
how 1y and I, interweave:

Yo g 20 Y1 =Zj Yk—1 = &y

O
O
7

“_‘-a"(
0
e

Figure: The full line represents the path Ny and the dotted line represents the
path .
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Model for Mg (G, X)

» A subgraph A C Cay(G, X) will be called cyclic if for every its edge
e it contains all edges of any simple cycle containing e.

» A° be the smallest cyclic subgraph of Cay(G, X) containing A.

» The map A — A° is a G-invariant, finitary closure operator on the
family of all connected subgraphs of Cay(G, X).

» The subgraphs of the form A = F° for a finite connected subgraph
F C Cay(G, X) are called compact.

» S, — the set of all pairs (A, g) where g € G and A is a compact
connected subgraph of Cay(G, X) containing 1 and g. It is an
X-generated inverse monoid (follows from Szakacs, 2024).

> The generators of S, are the pairs (I'g, [x]), x € X.

Proposition Let G be an X-generated group. Then Mg(G, X) = S,.
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Simplifying the presentation of Mg(G, X)

» G has the property (1) if it admits a presentation
G = Gp(X |w; =1 (i € 1)) such that all the w; are cyclic.

» All one-relator groups have this property (Weinbaum, 1972), and
this is witnessed by any of their presentations by one defining
relation involving a cyclically reduced word.

Theorem 2 Let G be an X-generated group with the property () and
let
G=Gp(X|w;=1(iel))

be a of its presentations witnessing this property. Then the inverse
monoid Mg (G, X) is presented by the relations

u=yv

for all non-empty words u, v € X" such that uv is a cyclic conjugate of
w; for some i € |.
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Van Kampen diagrams

» Let G = Gp(X|w; =1 (i €)) where all words w; are cyclically
reduced. A van Kampen diagram D over G is a cell 2-complex along
with its embedding into R? such that the following properties hold:

>
>
>

>

» The
» The

there is a vertex (a O-cell) called the base vertex;
1

the 1-skeleton of D is a directed X-labelled graph closed under ~*.
D is connected and simply connected (i.e., if every cycle in the
underlying graph is ‘filled” with 2-cells);

for every region (2-cell) R of D, every vertex in the cycle formed by
its boundary OR and every choice of the two possible directions, the
word labeling the cycle based at the chosen vertex is a cyclic
conjugate of either w; of Wfl for some i € [.

area of D is the number of its regions.

boundary word w € X" of D is the label of the path that can be

read clockwise around the boundary 0D (start at the base vertex).

» w is a boundary word for D < D is a van Kampen diagram for w.

> van Kampen Lemma Let w € X be a reduced word. Then w =1
holds in G if and only if w has a van Kampen diagram over G.
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(Part of) proof of Theorem 2.

» (Part of proof) Let w = 1 holds in G. We show that w? = w
follows from the relations in the formulation.

» Induction on the area of the van Kampen diagram D for w.

» If the area is 0 then the diagram in question is in fact a tree and so
the word read at the boundary dD is a Dyck word. So w? = w.

> Assume that the area of D is positive. Pick any region R,
containing at least one edge e from 0D. Let x € X be its label.

» Let u be the word labelling the remainder of the boundary of R.
Then x = u~! is one of the relations from the formulation.

> Now delete the edge e from D. We get a new diagram D’ of
smaller area whose boundary word w’ is obtained from w by
replacing the occurrence of the letter x by u=!. Hence, w = w’ is a
consequence of the relations given in the formulation.

» By IH: (w')? = w’ follows from the given relations. Thus w? = w.
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Special inverse monoids which are quotients of Mg(G, X).

> Let M =Inv(X|w; =1 (i el)).

» The word w is linked with respect to M if every pair of its adjacent
letters is matching with respect to M.

» Let G =Gp(X|w; =1 (i €l)) be a presentation of the group G
with the property that each of its relator words w; is cyclic.

» M satisfies all the relations from Theorem 2 if and only if each word
w;, i € I, is linked with respect to M.

» A one-relator special inverse monoid M = Inv(X |w = 1), where w
is cyclically reduced, is a quotient of Mg(G, X) if and only if w is
linked with respect to M.

> Let w e X be a cyclically reduced word and M = Inv(X |w = 1).
The special inverse monoid M is a quotient of Mg(X) if and only if
every piece w; in the decomposition w = wj - - - wy of w into
minimal invertible pieces has length at most two.
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F-inverse quotients of M(G, X)

> To obtain a maximal F-inverse canonical quotient of M(G, X)
whose maximal group quotient is G we must impose the following
relations, for every g € G:

> Let g€ G, g #1, and let M;, i € I be all simple paths from 1 to g
in Cay(G, X). Then (;, g) are the maximal elements of M(G, X)
over g. Pick one of these elements (I, g) and impose relations
(Ni,g) <(M,g) foralliel.

> This way we obtain a maximal F-inverse quotient of M(G, X).
> Mge(G, X) is a quotient of any of these F-inverse monoids.
» Can these quotients be different from Mg(G, X)?
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Example

>

Take X = G\ {1}. Let g € G. Pick I, to be the path from 1 to g
with one edge, (1, g, g). Impose the relations (Ig,g) > (A, g)
where A is a any other path from 1 to g.

> (Mg, g) is the maximum element of its o-class in the quotient.

» The associated closure operator A — A€ takes a finite subgraph A

of Cay(G, X) and adds to it all the missing edges of Cay(G, X)
between pairs of vertices of A. That is, A€ is an induced subgraph
of Cay(G, X) and is thus determined by its vertices V(A€) = V(A)
only (which is a finite subset of G).

It now easily follows that the quotient F inverse monoid is
isomorphic to the Birget-Rhodes expansion BR(G) of G.

Since, for distinct non-identical g, h € G we have g = h- h™1g, it
follows that hh=! > gg~! whence gg=! = hh~1. Since
gg t # hh~!in BR(G), Mg(G, X) is a proper quotient of BR(G).

Work in progress. Describe all one-relator special X-generated
F-inverse monoids.
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