

Universal inverse monoids with the F -inverse property

Ganna Kudryavtseva

University of Ljubljana
Department of Mathematics
IMFM, Ljubljana

Joint work with Igor Dolinka
University of Novi Sad

AAA108
Vienna
February 6, 2026

E -unitary and F -inverse monoids

- ▶ S – inverse semigroup; $E(S)$ – semilattice of idempotents of S .
- ▶ σ - **minimum group congruence** on S : $a \sigma b$ if and only if there is $e \in E(S)$ such that $ae = be$.
- ▶ S is called **E -unitary** if σ is **idempotent pure**, that is, satisfies

$$a \sigma e \text{ for some } e \in E(S) \Rightarrow a \in E(S).$$

- ▶ If each σ -class contains a maximum element, S is called **F -inverse**.
- ▶ Each F -inverse semigroup is a monoid.
- ▶ Each F -inverse monoid is E -unitary but the converse is not true.
- ▶ Example: the free X -generated inverse monoid is F -inverse.

F -inverse monoids in enriched signature

- ▶ S – F -inverse monoid.
- ▶ $a^m := \max\{b \in S : b \sigma a\}$, for each $a \in S$.
- ▶ $a \mapsto a^m$ is a unary operation on S .
- ▶ We add the operation m to the type $(\cdot, {}^{-1}, 1)$ of S and get the algebra $(S; \cdot, {}^{-1}, {}^m, 1)$ of signature $(2, 1, 1, 0)$.
- ▶ **Proposition.** An algebra $(S; \cdot, {}^{-1}, {}^m, 1)$ is an F -inverse monoid if and only if $(S; \cdot, {}^{-1}, 1)$ is an inverse monoid and:
 - 1) $a^m \geq a$ for all $a \in S$,
 - 2) $a^m = (ae)^m$ for all $a \in S$ and $e \in E(S)$.
- ▶ **Corollary.** F -inverse monoids form a variety of algebras (Kynion, 2018).

$M(G, X)$

- ▶ G – an X -generated group
- ▶ $M(G, X)$ – all pairs (Γ, g) where Γ is a finite connected subgraph of $\text{Cay}(G, X)$ containing the vertices 1 and g . It is an inverse monoid with the operations

$$(\Delta, g)(\Xi, h) = (\Delta \cup g\Xi, gh)$$

and

$$(\Delta, g)^{-1} = (g^{-1}\Delta, g^{-1}).$$

- ▶ $M(G, X)$ is an X -generated inverse monoid with respect to $x \mapsto (\Gamma_x, [x])$, $x \in X$. It is the universal X -generated E -unitary inverse monoid with maximum group image G (Margolis, Meakin, 1989).
- ▶ Defining relations for $M(G, X)$: $w^2 = w$ for all $w \in \overline{X}^*$ such that $w = 1$ holds in G .
- ▶ When $G = FG(X)$ then $w = 1$ in G if and only if $\text{red}(w)$ is the empty word (such words are called **Dyck words**). It follows that $FIM(X) \cong M(FG(X), X)$.

$F(G, X)$

- ▶ $F(G, X)$ – all pairs (Γ, g) where Γ is a finite (not necessarily connected) subgraph of $\text{Cay}(G, X)$ containing the vertices 1 and g
- ▶ $F(G, X)$ is an X -generated F -inverse monoid; operations are defined similarly as on $M(G, X)$ and additionally

$$(\Delta, g)^m = (\{1, g\}, g),$$

where $\{1, g\}$ is the graph with no edges and two vertices $1, g$. It is the universal X -generated F -inverse monoid with maximum group image G (Auinger, GK, Szendrei, 2021).

- ▶ Defining relations for $F(G, X)$: $w^m = w$ for all terms w such that $w = 1$ holds in G .
- ▶ When $G = FG(X)$ then the free F -inverse monoid $FFM(X)$ is isomorphic to $F(FG(X), X)$.
- ▶ In both $M(G, X)$ and $F(F, X)$ we have $(\Delta, g) \leq (\Xi, h)$ if and only if $\Xi \subseteq \Delta$ and $g = h$, and $(\Delta, g) \sigma (\Xi, h)$ if and only if $g = h$.

The universal F -inverse monoid $M_F(G, X)$

- ▶ For every σ -class of $M(G, X)$ we identify any two maximal elements of this σ -class.
- ▶ Denote the quotient by $M_F(G, X)$.
- ▶ $M_F(G, X)$ is an F -inverse monoid and is the universal F -inverse quotient of $M(G, X)$ such that the quotient map preserves maximal elements of σ -classes.
- ▶ $\overline{X} = X \cup X^{-1}$.
- ▶ $G = \text{Gp}\langle X \mid w_i = 1 \ (i \in I) \rangle$ where $w_i \in \overline{X}^*$ are cyclically reduced words.
- ▶ $w \in \overline{X}^*$ is **cyclic** with respect to (G, X) if w labels a simple cycle in the Cayley graph $\text{Cay}(G, X)$.

Presentation for $M_F(G, X)$

- ▶ θ_G – the set of all pairs of words (u, v) , where $u, v \in \overline{X}^*$ are non-empty, such that uv is cyclic with respect to (G, X) .
- ▶ θ_G^\sharp – the congruence on $M(G, X)$ generated by the set

$$\{((\Gamma_u, [u]), (\Gamma_{v^{-1}}, [v^{-1}])) : (u, v) \in \theta_G\}.$$

Theorem 1. $M_F(G, X) = M(G, X)/\theta_G^\sharp$. Therefore, $M_F(G, X)$ is presented, as an X -generated inverse monoid, by the relations:

- $w^2 = w$ for all $w \in \overline{X}^*$ such that $w = 1$ holds in G ,
- $u = v^{-1}$ for all $u, v \in \overline{X}^*$ such that $(u, v) \in \theta_G$.

Sketch of the proof of Theorem 1

- ▶ The maximal elements in the σ/θ_G^\sharp -class corresponding to $g \in G$ are of the form $(\Pi, g)\theta_G^\sharp$ where Π is a simple path in $\text{Cay}(G, X)$ connecting the vertices 1 and g
- ▶ we need to show that (Π_1, g) and (Π_2, g) must be θ_G^\sharp -related for all simple paths Π_1 and Π_2 from 1 to g we must have that .
- ▶ The cycle $\Pi_1\Pi_2^{-1}$ does not need to be simple. We carefully analyse how Π_1 and Π_2 interweave:

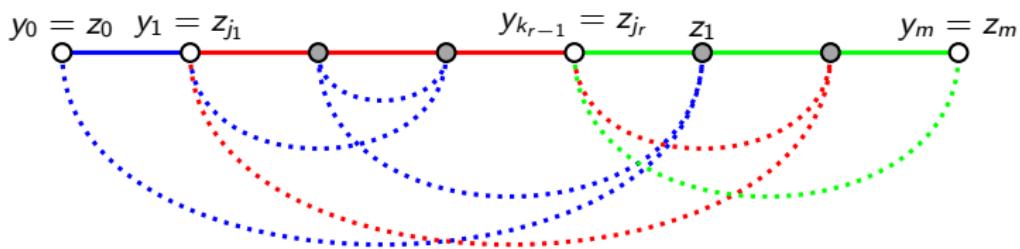


Figure: The full line represents the path Π_1 and the dotted line represents the path Π_2 .

Model for $M_F(G, X)$

- ▶ A subgraph $\Delta \subseteq \text{Cay}(G, X)$ will be called **cyclic** if for every its edge e it contains all edges of any simple cycle containing e .
- ▶ Δ° be the smallest cyclic subgraph of $\text{Cay}(G, X)$ containing Δ .
- ▶ The map $\Delta \mapsto \Delta^\circ$ is a G -invariant, finitary closure operator on the family of all connected subgraphs of $\text{Cay}(G, X)$.
- ▶ The subgraphs of the form $\Delta = F^\circ$ for a finite connected subgraph $F \subseteq \text{Cay}(G, X)$ are called **compact**.
- ▶ S_\circ – the set of all pairs (Δ, g) where $g \in G$ and Δ is a compact connected subgraph of $\text{Cay}(G, X)$ containing 1 and g . It is an X -generated inverse monoid (follows from Szakács, 2024).
- ▶ The generators of S_\circ are the pairs $(\Gamma_x^\circ, [x])$, $x \in X$.

Proposition Let G be an X -generated group. Then $M_F(G, X) \cong S_\circ$.

Simplifying the presentation of $M_F(G, X)$

- ▶ G has the **property (†)** if it admits a presentation $G = \text{Gp}\langle X \mid w_i = 1 \ (i \in I) \rangle$ such that all the w_i are cyclic.
- ▶ All one-relator groups have this property (Weinbaum, 1972), and this is witnessed by any of their presentations by one defining relation involving a cyclically reduced word.

Theorem 2 Let G be an X -generated group with the property (†) and let

$$G = \text{Gp}\langle X \mid w_i = 1 \ (i \in I) \rangle$$

be a of its presentations witnessing this property. Then the inverse monoid $M_F(G, X)$ is presented by the relations

$$u = v^{-1}$$

for all non-empty words $u, v \in \overline{X}^*$ such that uv is a cyclic conjugate of w_i for some $i \in I$.

Van Kampen diagrams

- ▶ Let $G = \text{Gp}\langle X \mid w_i = 1 \ (i \in I) \rangle$ where all words w_i are cyclically reduced. A **van Kampen diagram** D over G is a cell 2-complex along with its embedding into \mathbb{R}^2 such that the following properties hold:
 - ▶ there is a vertex (a 0-cell) called the **base vertex**;
 - ▶ the 1-skeleton of D is a directed \overline{X} -labelled graph closed under $^{-1}$.
 - ▶ D is connected and simply connected (i.e., if every cycle in the underlying graph is 'filled' with 2-cells);
 - ▶ for every region (2-cell) R of D , every vertex in the cycle formed by its boundary ∂R and every choice of the two possible directions, the word labeling the cycle based at the chosen vertex is a cyclic conjugate of either w_i or w_i^{-1} for some $i \in I$.
- ▶ The **area** of D is the number of its regions.
- ▶ The **boundary word** $w \in \overline{X}^*$ of D is the label of the path that can be read clockwise around the boundary ∂D (start at the base vertex).
- ▶ w is a boundary word for $D \Leftrightarrow D$ is a van Kampen diagram for w .
- ▶ **van Kampen Lemma** Let $w \in \overline{X}^*$ be a reduced word. Then $w = 1$ holds in G if and only if w has a van Kampen diagram over G .

(Part of) proof of Theorem 2.

- ▶ (Part of proof) Let $w = 1$ holds in G . We show that $w^2 = w$ follows from the relations in the formulation.
- ▶ Induction on the area of the van Kampen diagram D for w .
- ▶ If the area is 0 then the diagram in question is in fact a tree and so the word read at the boundary ∂D is a Dyck word. So $w^2 = w$.
- ▶ Assume that the area of D is positive. Pick any region R , containing at least one edge e from ∂D . Let $x \in \overline{X}$ be its label.
- ▶ Let u be the word labelling the remainder of the boundary of R . Then $x = u^{-1}$ is one of the relations from the formulation.
- ▶ Now delete the edge e from D . We get a new diagram D' of smaller area whose boundary word w' is obtained from w by replacing the occurrence of the letter x by u^{-1} . Hence, $w = w'$ is a consequence of the relations given in the formulation.
- ▶ By IH: $(w')^2 = w'$ follows from the given relations. Thus $w^2 = w$.

Special inverse monoids which are quotients of $M_F(G, X)$.

- ▶ Let $M = \text{Inv}\langle X \mid w_i = 1 \ (i \in I) \rangle$.
- ▶ The word w is **linked** with respect to M if every pair of its adjacent letters is matching with respect to M .
- ▶ Let $G = \text{Gp}\langle X \mid w_i = 1 \ (i \in I) \rangle$ be a presentation of the group G with the property that each of its relator words w_i is cyclic.
- ▶ M satisfies all the relations from Theorem 2 if and only if each word $w_i, i \in I$, is linked with respect to M .
- ▶ A one-relator special inverse monoid $M = \text{Inv}\langle X \mid w = 1 \rangle$, where w is cyclically reduced, is a quotient of $M_F(G, X)$ if and only if w is linked with respect to M .
- ▶ Let $w \in \overline{X}^*$ be a cyclically reduced word and $M = \text{Inv}\langle X \mid w = 1 \rangle$. The special inverse monoid M is a quotient of $M_F(X)$ if and only if every piece w_i in the decomposition $w = w_1 \cdots w_k$ of w into minimal invertible pieces has length at most two.

F -inverse quotients of $M(G, X)$

- ▶ To obtain a maximal F -inverse canonical quotient of $M(G, X)$ whose maximal group quotient is G we must impose the following relations, for every $g \in G$:
 - ▶ Let $g \in G$, $g \neq 1$, and let Π_i , $i \in I$ be all simple paths from 1 to g in $\text{Cay}(G, X)$. Then (Π_i, g) are the maximal elements of $M(G, X)$ over g . Pick one of these elements (Π, g) and impose relations $(\Pi_i, g) \leq (\Pi, g)$ for all $i \in I$.
 - ▶ This way we obtain a maximal F -inverse quotient of $M(G, X)$.
 - ▶ $M_F(G, X)$ is a quotient of any of these F -inverse monoids.
 - ▶ Can these quotients be different from $M_F(G, X)$?

Example

- ▶ Take $X = G \setminus \{1\}$. Let $g \in G$. Pick Π_g to be the path from 1 to g with one edge, $(1, g, g)$. Impose the relations $(\Pi_g, g) \geq (\Delta, g)$ where Δ is any other path from 1 to g .
- ▶ (Π_g, g) is the maximum element of its σ -class in the quotient.
- ▶ The associated closure operator $\Delta \mapsto \Delta^c$ takes a finite subgraph Δ of $\text{Cay}(G, X)$ and adds to it all the missing edges of $\text{Cay}(G, X)$ between pairs of vertices of Δ . That is, Δ^c is an induced subgraph of $\text{Cay}(G, X)$ and is thus determined by its vertices $V(\Delta^c) = V(\Delta)$ only (which is a finite subset of G).
- ▶ It now easily follows that the quotient F inverse monoid is isomorphic to the Birget-Rhodes expansion $BR(G)$ of G .
- ▶ Since, for distinct non-identical $g, h \in G$ we have $g = h \cdot h^{-1}g$, it follows that $hh^{-1} \geq gg^{-1}$ whence $gg^{-1} = hh^{-1}$. Since $gg^{-1} \neq hh^{-1}$ in $BR(G)$, $M_F(G, X)$ is a proper quotient of $BR(G)$.
- ▶ **Work in progress.** Describe all one-relator special X -generated F -inverse monoids.