

Topologizing Endomorphism Monoids

Joint with S. Bardyla

T -Semigroup topology on S

- $*: (S, \tau) \times (S, \tau) \rightarrow (S, \tau)$
is continuous

"A guide to topological reconstruction on endomorphism
monoids and polymorphism clones"

Marimon, Pinsky

Pointwise topology

$$S \subseteq X^X$$

$$\{f \in S \mid f(x) = y\} : x, y \in X$$

$$(f_n)_{n \in \mathbb{N}} \rightarrow f \quad (\Leftarrow) \quad \forall x \in X, f_n(x) \text{ is eventually } f(x).$$

Small topologies

Zariski: $\{x \in S \mid s_0 > s_1, \dots, s_n \neq t_0 > t_1, \dots, t_m\}$
 $s_0, \dots, s_n, t_1, \dots, t_m \in S^1$

Proposition (E, Jónás, Mesyan, Mitchell, Morayne, Péresse)

If X is a set and $S \subseteq X^X$ such that

- S contains the constant maps
- for all $x \in X$, there is $f_x \in S$ with finite image with $f_x^{-1}(x) = \{x\}$

Then the Zariski topology is the pointwise topology

Proposition (E, Jónás, Mitchell, Péresse, Pinsker)

If \mathbb{A} is a countable ω -categorical homogeneous arsfacere relational structure with no algebraicity, then Zariski is pointwise for all S with

$$\text{Emb}(\mathbb{A}) \subseteq S \subseteq \text{End}(\mathbb{A})$$

Theorem (Pinsker, Schindler)

There is an ω -categorical structure G where the Zariski and Pointwise topologies on $\text{End}(G)$ differ.

Theorem (Pinsker, Schindler)

If A is ω -categorical, has no algebraicity, has a mobile core and either

- i) the model-complete core is finite or
- ii) the model-complete core is infinite with no algebraicity

then Zariski on $\text{End}(A)$ is pointwise.

Large topologies

Polish = complete metric + 2nd countable

Semigroups with a finest Polish topology:

$\mathbb{N}^{\mathbb{N}}$, $I_{\mathbb{N}}$, $P_{\mathbb{N}}$, $\text{Inj}(\mathbb{N})$, $C(2^{\mathbb{N}})$, $C([0,1]^{\mathbb{N}})$

- E, Jónás, Mesyan, Mitchell, Morayne, Péresse

$\text{End}(X)$ where X is the random graph, random digraph, random poset, ωK_n , $n K_\omega$.

- E, Jónás, Mitchell, Péresse, Pinsker

$\text{End}(\mathbb{Q}, \leq)$ - Pinsker and Schindler

End(\mathbb{N}, \leq)

- trivial group of units
- Zariski topology is pointwise topology
- infinitely many Polish topology
- has a finest Polish topology

This topology is defined using

$$\text{End}^\infty(\mathbb{N}, \leq) \leq \text{End}(\mathbb{N}, \leq)$$

$\text{End}^\infty(\mathbb{N}, \leq)$

• \mathcal{T} -simple

• Zariski is pointwise

• has unique Polish topology.

Finest Polish topology for $\text{End}(\mathbb{N}, \leq)$:

$\text{End}^\infty(\mathbb{N}, \leq)$ - pointwise
disjoint union

$\text{End}^{<\infty}(\mathbb{N}, \leq)$ - discrete

$\text{End}(\mathbb{Z}, \leq)$

- group of units is \mathbb{Z}
- infinitely many Polish topologies
- has a finest Polish topology

$$\{ f \in \text{End}(\mathbb{Z}, \leq) \mid f(x) = y \} : x, y \in \mathbb{Z}$$

$$\{ f \in \text{End}(\mathbb{Z}, \leq) \mid \min(\text{im}(f)) = x \}, \{ f \in \text{End}(\mathbb{Z}, \leq) \mid \max(\text{im}(f)) = x \} : x \in \mathbb{Z}$$

$$\{ f \in \text{End}(\mathbb{Z}, \leq) \mid f \text{ is unbounded above} \}, \{ f \in \text{End}(\mathbb{Z}, \leq) \mid f \text{ is unbounded below} \}$$

Partial Symmetries

we have a new operation

$x \rightarrow x^{-1}$ which we want to be
continuous and use in Zariski sets.

Partial/so (\mathbb{N}, \leq)

- inverse Zariski topology is \mathcal{I}_4
- unique Polish inverse semigroup topology is \mathcal{I}_4
- finest Polish inverse semigroup topology is \mathcal{I}_4
- infinitely many Polish semigroup topologies

PartialIso(\mathbb{Z}, \leq)

- inverse Zariski topology is \mathbb{I}_4
- non-unique Polish inverse semigroup topology!?
- infinitely many Polish semigroup topologies
- has a finest Polish inverse semigroup topology.

End($\mathbb{N}, <$)

- no maximal 2nd countable
- has 2^{\aleph_0} Polish semigroup topologies
- also $\geq 2^{\aleph_0}$ non-Polish 2nd countable metrizable topologies

fun question to ponder

1) Recall that (in ZFC) each uncountable Polish space has cardinality 2^{\aleph_0} .

2) If we give any Polish space the operation $(a, b) \mapsto b$, then it becomes a Polish semigroup

Thus there is a semigroup with $2^{2^{\aleph_0}}$ Polish topologies.

in ZFC

