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Introduction

Let L=(L,V,A,0,1) be a bounded lattice and a € L. An element
b of L is called a complement of aif aVb=1and aAb=0. The
lattice L is called complemented if any of its elements has a
complement.

Often lattices with an additional unary operation, usually denoted
by /, are studied where for each a € L the element a’ denotes its
complement. In such a case this unary operation is called a
complementation. However, in complemented lattices we do not
assume the complement being unique. This is the case with our
present paper.

It is worth noticing that in a distributive complemented lattice the
complement is unique. However, this need not be the case in
modular complemented lattices. For example, consider the lattice
M, = (M,,V,A,0,1) (for n > 1) depicted in Figure 1:
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Fig. 1

The lattice M,

Then for every i,j € {1,...,n} with i # j, the element a; is a
complement of a;.

Sometimes, for lattices with complementation, we ask if this
complementation is antitone, i.e. if x < y implies y' < x, or if it is
an involution, i.e. x” = x. In distributive complemented lattices
the complementation turns out to be unique, antitone and an

involution. In such a case the lattice is a Boolean algebra.
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Within modular lattices the situation may be different. Consider
the complemented modular lattice L = (L, V, A, 0, 1) visualized in
Figure 2:

Fig. 2

Complemented modular lattice
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Evidently; L is a complemented lattice. We have several choices for
defining a complementation ’. If we define ’ by

x|0 a bcdefghijl

x/‘lhijgfebcdao
then it is not an involution. If we define ’ by

x|0 a bcdefghij1l

X1 h i j g f ed abc0

then it is an antitone involution and hence L = (L,V,A,’,0,1) is a
so-called orthomodular lattice (see e.g. [1] for the definition).
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Hence, not every modular lattice endowed with a complementation
must be orthomodular. Of course, not every orthomodular lattice
is modular (see [1]).

If L=(L,V,A,0,1) is a complemented lattice in which the
complementation is not introduced in form of a unary operation
then we need not distinguish between the complements of a given
element a of L. Hence we will work with the whole set of
complements of a. Within this paper we will use this approach.
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We start by introducing some lattice-theoretical concepts.

All complemented lattices considered within this paper are
assumed to be non-trivial, i.e. to have a bottom element 0 and a
top element 1 with 0 # 1.

Let (L,V,A,0,1) be a complemented lattice and A, B C L. We
define:

AVB:={xVy|xeAandy € B},
AANB:={xANy|xe€Aand y € B},
A<Bifx<yforall xec Aandall y € B,

A <q B if for every x € A there exists some y € B with x <y,
A <, B if for every y € B there exists some x € A with x < y.
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The operator *

Let L=(L,V,A,0,1) be a complemented lattice. For a € L we

define
at:={xelLlavx=1and aAx =0},

i.e. a is the set of all complements of a. Since L is complemented,
we have a* # () for all a € L. For every subset A of L we put

At :={xelL|avx=1and aAx =0 forall a € A}.

Observe that AT may be empty, e.g. L™ =0 (and 0" = L). In the
following we often identify singletons with their unique element.
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For the lattice N5 depicted in Figure 3:

1
c
b
a
0
Fig. 3

Non-modular lattice Ns
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we have

X 0| a| b| c|1
xt |1| blac| b|O
xtT10|lac| blac|1l

Here and in the following within tables we sometimes write abc
instead of {a, b, c}. For the lattice M3 visualized in Figure 4
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0
Fig. 4

Modular lattice M3
we have
x|0] a| b| c

1
xt|1|bclac|ab|0
xtt 10| a| b| c|1

+t ~ x

Let us note that M3 satisfies the identity x™
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For the example from Figure 2 we have

X 0| a| b| c| dje g h i J
xT | 1| hij|gij|ghj|ghi bed | acd | abd | abc
xtt 0| a| b| c| d g h i J
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Recall the concept of a Galois connection which is often used in
lattices. The pair (*,T) is the Galois connection between (2%, C)
and (2%, ©) induced by the relation

{(x,y)€L?|xVy=1and xAy =0}
From this we conclude

AC A++,
ACB= BT CA",
AT = At

ACBT < BCA"

for all A/B C L. Since AC AT we have that AT # () whenever
A # (). A subset A of L is called closed if At = A. Let CI(L)
denote the set of all closed subsets of L. Then clearly

CI(L) = {AT | AC L}. Because of At NATT =0 forall AC L we
have that (CI(L), c, 0, L) forms a complete ortholattice with
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" (UA>

iel iel
NA=A
iel iel

for all families (A;; i € I) of closed subsets of L.
Next we describe the basic properties of the operator T.
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Let L= (L,V,A,0,1) be a complemented lattice and a € L. Then
the following hold:

(i) aeat™ and at ™t = at,
(ii) (x*,<) is an antichain for every x € L if and only if L

does not contain a sublattice isomorphic to N5
containing 0 and 1,

(iii) (a™, <) is convex,
(iv) if the mapping x — x*F from L to 2L is not injective
then L does not satisfy the identity x*+ ~ x.
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In the lattice N5 from Example 9 the mapping x — x™ T is not
injective since a # ¢ and a™ ™ = ¢™T. According to Proposition 3
(iv), this lattice does not satisfy the identity xT1 ~ x, e.g.

att ={a,c} #a.

Corollary

Let (L,V,N,0,1) be a complemented modular lattice, a € L and A
a non-empty subset of L. According to Proposition 3 (iii), (a*t, <)
is an antichain. Let b € A. Then AT C b™ and hence also (A", <)
is an antichain. Since a™ is a non-empty subset of L we finally
conclude that (a*+, <) is an antichain, too.
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In case of finite L we can even prove the following.

Proposition

Let (L,V,A,0,1) be a finite complemented lattice such that
x +— xTT js injective and a € L and assume a*" # a. Then there
exists some b € att with b*+ = b.

The relationship between the operator T and the partial order
relation of L is illuminated in the following result.

Proposition

Let (L,V,A,0,1) be a complemented lattice and consider the
following statements:

(i) xtVyT <y (xAy)T forall x,y €L,
(i) for all x,y € L, x <y implies y* <y xT,
(iii) (xVy)" <1 xT Ay™T forall x,y € L.
T () = (6) <= ().
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Our next task is to characterize the property that a complemented
lattice L satisfies the identity x*+ ~ x. From Example 9 we know
that if L is not modular then this identity need not hold. Hence we
restrict ourselves to complemented modular lattices.

Theorem

Let L =(L,Vv,A,0,1) be a complemented modular lattice. Then
the following are equivalent:

(i) L satisfies the identity x™* ~ x,

(ii) for every x € L and each y € x™ there exists some
z € y satisfying either (xVy) Az =0 or
(xAy)vz=1
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The operator —

Let L=(L,V,A,’,0,1) be an orthomodular lattice. Recall that the
operation ¢, defined by ¢x(y) := x A (X V y) for all x,y € L was
introduced by U. Sasaki in [5] and [6] and is called the Sasaki
projection (see e.g. [1]) or Sasaki hook alias Sasaki operation, see
[3]; its dual, i.e. the operation 1) defined by 14 (y) :=x" V (x A y)
for all x,y € L is then called the dual Sasaki projection. It was
shown by the authors in [3] that if we use these Sasaki operations
in order to define

x—=y:=xV(xAy),
x-yi=(xVy)Ay

for all x,y belonging to the base set of the orthomodular lattice L
then the operations — and - form an adjoint pair, i.e.

x-y<zifandonlyifx<y —z

for all x,y,z € L.
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This motivated us to introduce our next operators in a similar way
where, however, instead of the element x’ we use the set x™.
Hence, for a complemented lattice (L,V,A,0,1), a,b € L and
A, B C L we define

a—b:=a"Vv(aAb),

A— B:=A"V(AAB).
Observe that A — B = () whenever AT = ().

Example

For the lattice from Figure 2 we have e.g.

a—b={hij}Vv(anb)={hij}Vv0o={hij}=a",
a—f={hijtv(@anf)={hijtva=1,
a—g=1{hijtVv(ang)={hijtva=1,
a—)h:{h,i,j}\/(a/\h):{h,i,j}VO:{h,i,j}:a+,
f—oe=eV(fhe)=eV0=e,

g~ h={b,c,dyVv(gnh)={bc,d}Ve={hijl=a".
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In the following we study the relationship between — and A.

Theorem

Let (L,V,N,0,1) be a complemented modular lattice and
a,b,c € L. Then the following hold:

(i) Ifa<iyb— cthenanb<c,
(i) anb<cifandonlyifanb<ib— c.
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For complemented lattices, the operator — satisfies a lot of
properties common in residuated structures.

Theorem

Let (L,V,N,0,1) be a complemented lattice and a, b,c € L. Then
the following hold:

(i) a—0=atand1l— a=a,

(i) Ifa< b thena— b=1,

(i) a— b=1ifand only ifaAb e at™,
(iv) if b€ a® thena— b= at,

(v) ifb<cthena—b<ja—cfori=1,2,

(vi) ifa— b=a— c=1anda" is closed with respect
to A\ thena — (bAc) =1,

(vii) ifat™ C bt anda— b=1thenb— a=1.
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Let us note that the converse of Theorem 10 (ii) does not hold in
general. For example, consider the lattice N5 from Example 9.
Then ¢ - a=c"V(cAa)=bVa=1, contrary to the fact that
¢ > a. However, if x is a minimal element of x* T, then we can
prove the following.

Proposition

Let (L,V,N,0,1) be a complemented lattice and a € L. Then the
following are equivalent:

(i) Forall x € L, a— x =1 is equivalent to a < x,

(ii) a is a minimal element of a*™+.
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We are going to show how the operator — is related to the
connective implication in a propositional calculus.

Theorem

Let L= (L,V,A,0,1) be a complemented modular lattice and
a,b e L. Then the following hold:

(i) an(a— b)=aAb< b (Modus Ponens),

(ii) if at < b then (a — b) A b™ = a™ (Modus Tollens),
(i) ifc € a— b thena — c=a— b,

(iv) a— (a— b)=a—b,

(v) ifat < b thena— b= b,

Proposition
Let n>1 and a,b,c € M,. Then

aNb<cifandonlyifa<ib— c.
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The operator ®

Similarly as it was done in Section 3 concerning the operator —,
also here we define the new operator ® by means of the
generalized Sasaki projection.

For a complemented lattice (L,V,A,0,1), a,b€ Land A,BC L
we define

a®b:=bA(aVvbh),
A®B:=BA(AVBT).
It is evident that © need neither be commutative nor associative,
but it is idempotent, i.e. it satisfies the identity x ® x ~ x (cf.

Proposition 14 (iii)).
We list some basic properties of the operator ©.
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Proposition
Let L= (L,V,A,0,1) a complemented lattice and a, b,c € L.
Then the following hold:
(i) 0©a=ac0=0,
(i) loa=a01l=a,
(i) anb<a®b<bandifb<athena®b=b,
(iv) ifa<bthena®c<;b®c fori=1,2,

(v) if L is modular then a < b if and only ifa® b= a
and, moreover, (a® b) ®b=a® b.
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The “operation tables” for ® for the lattices N5 and M3 (see
Example 9) are as follows:

®l0 a b c 1 ®l0 a b ¢ 1
00 0 0 0 O 0j0 0 0 0 O
al0 a 0 c a al0 a 0b Oc a
b0 O b 0 b b|0 0a b 0c b
c|0 a 0 ¢ c c|0 O0a 0b ¢ c
1/0 a b c 1 110 a b c 1

N5 M3
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Contrary to the relatively week relationship between — and A, for
® and — we can prove here a kind of adjointness.

Theorem

Let (L,V,N,0,1) be a complemented modular lattice and
a,b,c € L. Then

a@b<cifandonlyifa<b— c.
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Deductive systems

Deductive systems are often introduced in algebras forming an
algebraic formalization of a non-classical propositional calculus.
These are subsets of the algebra in question containing the logical
constant 1 and representing the derivation rule Modus Ponens.
Since our operator — shares a number of properties with the
non-classical logical connective implication, we define this concept
also for complemented lattices.

Definition
A deductive system of a complemented lattice L = (L, V,A,0,1) is
a subset D of L satisfying the following conditions:

1eD,

ifaeD, beland a— bC D then b€ D.
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Since the intersection of deductive systems of L is again a
deductive system of L, the set of all deductive systems of L forms a
complete lattice Ded L with respect to inclusion with bottom
element {1} and top element L.

The relationship between deductive systems and filters is described
in the following results.

Lemma

Let L =(L,Vv,A,0,1) be a complemented lattice and D a
deductive system of L. Then the following hold:

(i) D is an order filter of L,
(ii) if x =y C D for all x,y € D then D is a filter of L.
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If L is, moreover, modular then we can prove also the following.

Proposition
LetL = (L,V,A,0,1) be a complemented modular lattice and F a
filter of L. Then F is a deductive system of L.

In the remaining part of this section we investigate when a given
deductive system D may induce an equivalence relation ® such
that D = [1]®, i.e. D being its kernel. We start with the following
definition.
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Definition

For every complemented lattice (L, V, A, 0,1) and every deductive
system D of L put

O(D) :={(x,y) € L? | x = y,y — x C D}.

From Theorem 10 (ii) we get that ©(D) is reflexive and, by
definition, it is symmetric.

It is easy to see that every congruence on a complemented
modular lattice induces a deductive system.

Proposition
Let (L,V,A,0,1) be a complemented modular lattice and
® € Con(L,\). Then the following hold:

(i) [1]® is a deductive system of L,

(i) ©([1]®) C ¢.
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The previous proposition shows that we need a certain
compatibility of the induced relation ©(D) with the lattice
operations in order to show D to be the kernel of ©(D). For this
sake, we define the following properties.

Definition

Let (L,V,A,0,1) be a complemented lattice and ® an equivalence
relation on L. We say that ® has the Substitution Property with
respect to T if

(a, b) € ® implies a™ x b C O,
and the Substitution Property with respect to — if
(a, b) € ® implies (a — ¢) x (b — ¢) C @ for all c € L.

Such an equivalence relation ® can be related with the equivalence
relation induced by its kernel [1]® and, moreover, this kernel is a
deductive system.
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Theorem

Let L=(L,V,A,0,1) be a complemented lattice and ® an
equivalence relation on L having the Substitution Property with
respect to —. Then the following hold:

(i) ® has the Substitution Property with respect to T,
(i) [1]® is a deductive system of L,
(i) & C O([1]®).
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Now we are able to relate deductive systems with equivalence
relations induced by them provided these deductive systems satisfy
a certain compatibility condition defined as follows.

Definition
Let L=(L,V,A,0,1) be a complemented lattice and D a
deductive system of L. We call D a compatible deductive system
of L if it satisfies the following two additional conditions for all
a,b,c,d e L:
fa—bCDandx—(c—>d)CDforallxea—b
then c — d C D,
ifa— b,b—aC D then x — (b— ¢) C D for all
X E€a—c.
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Now we show that also conversely as in previous Theorem, a
compatible deductive system induces an equivalence relation
having the Substitution Property with respect to —.

Theorem

Let L =(L,Vv,A,0,1) be a complemented lattice and D a
compatible deductive system of L. Then the following hold:

(i) ©(D) is an equivalence relation on L having the
Substitution Property with respect to —,

(ii) [1](6(D)) = D.
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Thanks for your attention!!
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