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Introduction

Let L = (L,∨,∧, 0, 1) be a bounded lattice and a ∈ L. An element
b of L is called a complement of a if a ∨ b = 1 and a ∧ b = 0. The
lattice L is called complemented if any of its elements has a
complement.
Often lattices with an additional unary operation, usually denoted
by ′, are studied where for each a ∈ L the element a′ denotes its
complement. In such a case this unary operation is called a
complementation. However, in complemented lattices we do not
assume the complement being unique. This is the case with our
present paper.
It is worth noticing that in a distributive complemented lattice the
complement is unique. However, this need not be the case in
modular complemented lattices. For example, consider the lattice
Mn = (Mn,∨,∧, 0, 1) (for n > 1) depicted in Figure 1:
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Fig. 1

The lattice Mn

Then for every i , j ∈ {1, . . . , n} with i 6= j , the element aj is a
complement of ai .
Sometimes, for lattices with complementation, we ask if this
complementation is antitone, i.e. if x ≤ y implies y ′ ≤ x ′, or if it is
an involution, i.e. x ′′ = x . In distributive complemented lattices
the complementation turns out to be unique, antitone and an
involution. In such a case the lattice is a Boolean algebra.
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Within modular lattices the situation may be different. Consider
the complemented modular lattice L = (L,∨,∧, 0, 1) visualized in
Figure 2:
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Fig. 2

Complemented modular lattice
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Evidently; L is a complemented lattice. We have several choices for
defining a complementation ′. If we define ′ by

x 0 a b c d e f g h i j 1

x ′ 1 h i j g f e b c d a 0

then it is not an involution. If we define ′ by

x 0 a b c d e f g h i j 1

x ′ 1 h i j g f e d a b c 0

then it is an antitone involution and hence L = (L,∨,∧, ′, 0, 1) is a
so-called orthomodular lattice (see e.g. [1] for the definition).
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Hence, not every modular lattice endowed with a complementation
must be orthomodular. Of course, not every orthomodular lattice
is modular (see [1]).
If L = (L,∨,∧, 0, 1) is a complemented lattice in which the
complementation is not introduced in form of a unary operation
then we need not distinguish between the complements of a given
element a of L. Hence we will work with the whole set of
complements of a. Within this paper we will use this approach.
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We start by introducing some lattice-theoretical concepts.
All complemented lattices considered within this paper are
assumed to be non-trivial, i.e. to have a bottom element 0 and a
top element 1 with 0 6= 1.
Let (L,∨,∧, 0, 1) be a complemented lattice and A,B ⊆ L. We
define:

A ∨ B := {x ∨ y | x ∈ A and y ∈ B},
A ∧ B := {x ∧ y | x ∈ A and y ∈ B},
A ≤ B if x ≤ y for all x ∈ A and all y ∈ B,

A ≤1 B if for every x ∈ A there exists some y ∈ B with x ≤ y ,

A ≤2 B if for every y ∈ B there exists some x ∈ A with x ≤ y .
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The operator +

Let L = (L,∨,∧, 0, 1) be a complemented lattice. For a ∈ L we
define

a+ := {x ∈ L | a ∨ x = 1 and a ∧ x = 0},

i.e. a+ is the set of all complements of a. Since L is complemented,
we have a+ 6= ∅ for all a ∈ L. For every subset A of L we put

A+ := {x ∈ L | a ∨ x = 1 and a ∧ x = 0 for all a ∈ A}.

Observe that A+ may be empty, e.g. L+ = ∅ (and ∅+ = L). In the
following we often identify singletons with their unique element.
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Example

For the lattice N5 depicted in Figure 3:

u

u u
u

u

B
B
B
B
B
B

�
�
�
�

�
�
�
�
�
�

A
A
A
A

0

a

b

c

1

Fig. 3

Non-modular lattice N5
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we have
x 0 a b c 1

x+ 1 b ac b 0

x++ 0 ac b ac 1

Here and in the following within tables we sometimes write abc
instead of {a, b, c}. For the lattice M3 visualized in Figure 4
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Modular lattice M3
we have

x 0 a b c 1

x+ 1 bc ac ab 0

x++ 0 a b c 1

Let us note that M3 satisfies the identity x++ ≈ x .

11/39



Example

For the example from Figure 2 we have

x 0 a b c d e f g h i j 1

x+ 1 hij gij ghj ghi f e bcd acd abd abc 0

x++ 0 a b c d e f g h i j 1
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Recall the concept of a Galois connection which is often used in
lattices. The pair (+,+ ) is the Galois connection between (2L,⊆)
and (2L,⊆) induced by the relation

{(x , y) ∈ L2 | x ∨ y = 1 and x ∧ y = 0}.

From this we conclude

A ⊆ A++,

A ⊆ B ⇒ B+ ⊆ A+,

A+++ = A+,

A ⊆ B+ ⇔ B ⊆ A+

for all A,B ⊆ L. Since A ⊆ A++ we have that A++ 6= ∅ whenever
A 6= ∅. A subset A of L is called closed if A++ = A. Let Cl(L)
denote the set of all closed subsets of L. Then clearly
Cl(L) = {A+ | A ⊆ L}. Because of A+ ∩ A++ = ∅ for all A ⊆ L we
have that

(
Cl(L),⊆,+, ∅, L

)
forms a complete ortholattice with
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for all families (Ai ; i ∈ I ) of closed subsets of L.
Next we describe the basic properties of the operator +.
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Proposition

Let L = (L,∨,∧, 0, 1) be a complemented lattice and a ∈ L. Then
the following hold:

(i) a ∈ a++ and a+++ = a+,

(ii) (x+,≤) is an antichain for every x ∈ L if and only if L
does not contain a sublattice isomorphic to N5

containing 0 and 1,

(iii) (a+,≤) is convex,

(iv) if the mapping x 7→ x++ from L to 2L is not injective
then L does not satisfy the identity x++ ≈ x.
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In the lattice N5 from Example 9 the mapping x 7→ x++ is not
injective since a 6= c and a++ = c++. According to Proposition 3
(iv), this lattice does not satisfy the identity x++ ≈ x , e.g.
a++ = {a, c} 6= a.

Corollary

Let (L,∨,∧, 0, 1) be a complemented modular lattice, a ∈ L and A
a non-empty subset of L. According to Proposition 3 (iii), (a+,≤)
is an antichain. Let b ∈ A. Then A+ ⊆ b+ and hence also (A+,≤)
is an antichain. Since a+ is a non-empty subset of L we finally
conclude that (a++,≤) is an antichain, too.
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In case of finite L we can even prove the following.

Proposition

Let (L,∨,∧, 0, 1) be a finite complemented lattice such that
x 7→ x++ is injective and a ∈ L and assume a++ 6= a. Then there
exists some b ∈ a++ with b++ = b.

The relationship between the operator + and the partial order
relation of L is illuminated in the following result.

Proposition

Let (L,∨,∧, 0, 1) be a complemented lattice and consider the
following statements:

(i) x+ ∨ y+ ≤1 (x ∧ y)+ for all x , y ∈ L,

(ii) for all x , y ∈ L, x ≤ y implies y+ ≤1 x
+,

(iii) (x ∨ y)+ ≤1 x
+ ∧ y+ for all x , y ∈ L.

Then (i) ⇒ (ii) ⇔ (iii).
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Our next task is to characterize the property that a complemented
lattice L satisfies the identity x++ ≈ x . From Example 9 we know
that if L is not modular then this identity need not hold. Hence we
restrict ourselves to complemented modular lattices.

Theorem

Let L = (L,∨,∧, 0, 1) be a complemented modular lattice. Then
the following are equivalent:

(i) L satisfies the identity x++ ≈ x,

(ii) for every x ∈ L and each y ∈ x++ there exists some
z ∈ y+ satisfying either (x ∨ y) ∧ z = 0 or
(x ∧ y) ∨ z = 1.
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The operator →
Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice. Recall that the
operation φx defined by φx(y) := x ∧ (x ′ ∨ y) for all x , y ∈ L was
introduced by U. Sasaki in [5] and [6] and is called the Sasaki
projection (see e.g. [1]) or Sasaki hook alias Sasaki operation, see
[3]; its dual, i.e. the operation ψx defined by ψx(y) := x ′ ∨ (x ∧ y)
for all x , y ∈ L is then called the dual Sasaki projection. It was
shown by the authors in [3] that if we use these Sasaki operations
in order to define

x → y := x ′ ∨ (x ∧ y),

x · y := (x ∨ y ′) ∧ y

for all x , y belonging to the base set of the orthomodular lattice L
then the operations → and · form an adjoint pair, i.e.

x · y ≤ z if and only if x ≤ y → z

for all x , y , z ∈ L.
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This motivated us to introduce our next operators in a similar way
where, however, instead of the element x ′ we use the set x+.
Hence, for a complemented lattice (L,∨,∧, 0, 1), a, b ∈ L and
A,B ⊆ L we define

a→ b := a+ ∨ (a ∧ b),

A→ B := A+ ∨ (A ∧ B).

Observe that A→ B = ∅ whenever A+ = ∅.
Example

For the lattice from Figure 2 we have e.g.

a→ b = {h, i , j} ∨ (a ∧ b) = {h, i , j} ∨ 0 = {h, i , j} = a+,

a→ f = {h, i , j} ∨ (a ∧ f ) = {h, i , j} ∨ a = 1,

a→ g = {h, i , j} ∨ (a ∧ g) = {h, i , j} ∨ a = 1,

a→ h = {h, i , j} ∨ (a ∧ h) = {h, i , j} ∨ 0 = {h, i , j} = a+,

f → e = e ∨ (f ∧ e) = e ∨ 0 = e,

g → h = {b, c, d} ∨ (g ∧ h) = {b, c, d} ∨ e = {h, i , j} = a+.
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In the following we study the relationship between → and ∧.

Theorem

Let (L,∨,∧, 0, 1) be a complemented modular lattice and
a, b, c ∈ L. Then the following hold:

(i) If a ≤1 b → c then a ∧ b ≤ c,

(ii) a ∧ b ≤ c if and only if a ∧ b ≤1 b → c.
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For complemented lattices, the operator → satisfies a lot of
properties common in residuated structures.

Theorem

Let (L,∨,∧, 0, 1) be a complemented lattice and a, b, c ∈ L. Then
the following hold:

(i) a→ 0 = a+ and 1→ a = a,

(ii) If a ≤ b then a→ b = 1,

(iii) a→ b = 1 if and only if a ∧ b ∈ a++,

(iv) if b ∈ a+ then a→ b = a+,

(v) if b ≤ c then a→ b ≤i a→ c for i = 1, 2,

(vi) if a→ b = a→ c = 1 and a++ is closed with respect
to ∧ then a→ (b ∧ c) = 1,

(vii) if a++ ⊆ b++ and a→ b = 1 then b → a = 1.
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Let us note that the converse of Theorem 10 (ii) does not hold in
general. For example, consider the lattice N5 from Example 9.
Then c → a = c+ ∨ (c ∧ a) = b ∨ a = 1, contrary to the fact that
c > a. However, if x is a minimal element of x++, then we can
prove the following.

Proposition

Let (L,∨,∧, 0, 1) be a complemented lattice and a ∈ L. Then the
following are equivalent:

(i) For all x ∈ L, a→ x = 1 is equivalent to a ≤ x,

(ii) a is a minimal element of a++.
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We are going to show how the operator → is related to the
connective implication in a propositional calculus.

Theorem

Let L = (L,∨,∧, 0, 1) be a complemented modular lattice and
a, b ∈ L. Then the following hold:

(i) a ∧ (a→ b) = a ∧ b ≤ b (Modus Ponens),

(ii) if a+ ≤ b+ then (a→ b) ∧ b+ = a+ (Modus Tollens),

(iii) if c ∈ a→ b then a→ c = a→ b,

(iv) a→ (a→ b) = a→ b,

(v) if a+ ≤ b then a→ b = b,

Proposition

Let n > 1 and a, b, c ∈ Mn. Then

a ∧ b ≤ c if and only if a ≤1 b → c .
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The operator �

Similarly as it was done in Section 3 concerning the operator →,
also here we define the new operator � by means of the
generalized Sasaki projection.
For a complemented lattice (L,∨,∧, 0, 1), a, b ∈ L and A,B ⊆ L
we define

a� b := b ∧ (a ∨ b+),

A� B := B ∧ (A ∨ B+).

It is evident that � need neither be commutative nor associative,
but it is idempotent, i.e. it satisfies the identity x � x ≈ x (cf.
Proposition 14 (iii)).
We list some basic properties of the operator �.
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Proposition

Let L = (L,∨,∧, 0, 1) a complemented lattice and a, b, c ∈ L.
Then the following hold:

(i) 0� a = a� 0 = 0,

(ii) 1� a = a� 1 = a,

(iii) a ∧ b ≤ a� b ≤ b and if b ≤ a then a� b = b,

(iv) if a ≤ b then a� c ≤i b � c for i = 1, 2,

(v) if L is modular then a ≤ b if and only if a� b = a
and, moreover, (a� b)� b = a� b.
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Example

The “operation tables” for � for the lattices N5 and M3 (see
Example 9) are as follows:

� 0 a b c 1

0 0 0 0 0 0
a 0 a 0 c a
b 0 0 b 0 b
c 0 a 0 c c
1 0 a b c 1

� 0 a b c 1

0 0 0 0 0 0
a 0 a 0b 0c a
b 0 0a b 0c b
c 0 0a 0b c c
1 0 a b c 1

N5 M3
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Contrary to the relatively week relationship between → and ∧, for
� and → we can prove here a kind of adjointness.

Theorem

Let (L,∨,∧, 0, 1) be a complemented modular lattice and
a, b, c ∈ L. Then

a� b ≤ c if and only if a ≤ b → c .
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Deductive systems

Deductive systems are often introduced in algebras forming an
algebraic formalization of a non-classical propositional calculus.
These are subsets of the algebra in question containing the logical
constant 1 and representing the derivation rule Modus Ponens.
Since our operator → shares a number of properties with the
non-classical logical connective implication, we define this concept
also for complemented lattices.

Definition

A deductive system of a complemented lattice L = (L,∨,∧, 0, 1) is
a subset D of L satisfying the following conditions:

1 ∈ D,

if a ∈ D, b ∈ L and a→ b ⊆ D then b ∈ D.
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Since the intersection of deductive systems of L is again a
deductive system of L, the set of all deductive systems of L forms a
complete lattice Ded L with respect to inclusion with bottom
element {1} and top element L.
The relationship between deductive systems and filters is described
in the following results.

Lemma

Let L = (L,∨,∧, 0, 1) be a complemented lattice and D a
deductive system of L. Then the following hold:

(i) D is an order filter of L,

(ii) if x → y ⊆ D for all x , y ∈ D then D is a filter of L.
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If L is, moreover, modular then we can prove also the following.

Proposition

Let L = (L,∨,∧, 0, 1) be a complemented modular lattice and F a
filter of L. Then F is a deductive system of L.

In the remaining part of this section we investigate when a given
deductive system D may induce an equivalence relation Φ such
that D = [1]Φ, i.e. D being its kernel. We start with the following
definition.
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Definition

For every complemented lattice (L,∨,∧, 0, 1) and every deductive
system D of L put

Θ(D) := {(x , y) ∈ L2 | x → y , y → x ⊆ D}.

From Theorem 10 (ii) we get that Θ(D) is reflexive and, by
definition, it is symmetric.
It is easy to see that every congruence on a complemented
modular lattice induces a deductive system.

Proposition

Let (L,∨,∧, 0, 1) be a complemented modular lattice and
Φ ∈ Con(L,∧). Then the following hold:

(i) [1]Φ is a deductive system of L,

(ii) Θ([1]Φ) ⊆ Φ.
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The previous proposition shows that we need a certain
compatibility of the induced relation Θ(D) with the lattice
operations in order to show D to be the kernel of Θ(D). For this
sake, we define the following properties.

Definition

Let (L,∨,∧, 0, 1) be a complemented lattice and Φ an equivalence
relation on L. We say that Φ has the Substitution Property with
respect to + if

(a, b) ∈ Φ implies a+ × b+ ⊆ Φ,

and the Substitution Property with respect to → if

(a, b) ∈ Φ implies (a→ c)× (b → c) ⊆ Φ for all c ∈ L.

Such an equivalence relation Φ can be related with the equivalence
relation induced by its kernel [1]Φ and, moreover, this kernel is a
deductive system.
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Theorem

Let L = (L,∨,∧, 0, 1) be a complemented lattice and Φ an
equivalence relation on L having the Substitution Property with
respect to →. Then the following hold:

(i) Φ has the Substitution Property with respect to +,

(ii) [1]Φ is a deductive system of L,

(iii) Φ ⊆ Θ([1]Φ).
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Now we are able to relate deductive systems with equivalence
relations induced by them provided these deductive systems satisfy
a certain compatibility condition defined as follows.

Definition

Let L = (L,∨,∧, 0, 1) be a complemented lattice and D a
deductive system of L. We call D a compatible deductive system
of L if it satisfies the following two additional conditions for all
a, b, c, d ∈ L:

If a→ b ⊆ D and x → (c → d) ⊆ D for all x ∈ a→ b
then c → d ⊆ D,

if a→ b, b → a ⊆ D then x → (b → c) ⊆ D for all
x ∈ a→ c .
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Now we show that also conversely as in previous Theorem, a
compatible deductive system induces an equivalence relation
having the Substitution Property with respect to →.

Theorem

Let L = (L,∨,∧, 0, 1) be a complemented lattice and D a
compatible deductive system of L. Then the following hold:

(i) Θ(D) is an equivalence relation on L having the
Substitution Property with respect to →,

(ii) [1]
(
Θ(D)

)
= D.
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The end!

Thanks for your attention!!
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