

Operators on complemented lattices

Ivan Chajda and Helmut Länger

Palacký
University
Olomouc

Let $L = (L, \vee, \wedge, 0, 1)$ be a bounded lattice and $a \in L$. An element b of L is called a *complement* of a if $a \vee b = 1$ and $a \wedge b = 0$. The lattice L is called *complemented* if any of its elements has a complement.

Often lattices with an additional unary operation, usually denoted by $'$, are studied where for each $a \in L$ the element a' denotes its complement. In such a case this unary operation is called a *complementation*. However, in complemented lattices we do not assume the complement being unique. This is the case with our present paper.

It is worth noticing that in a distributive complemented lattice the complement is unique. However, this need not be the case in modular complemented lattices. For example, consider the lattice $M_n = (M_n, \vee, \wedge, 0, 1)$ (for $n > 1$) depicted in Figure 1:

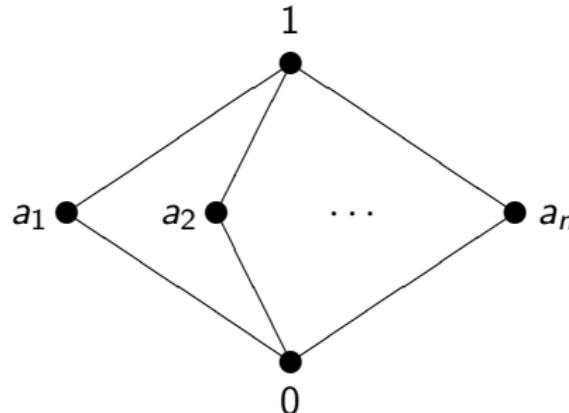


Fig. 1

The lattice M_n

Then for every $i, j \in \{1, \dots, n\}$ with $i \neq j$, the element a_j is a complement of a_i .

Sometimes, for lattices with complementation, we ask if this complementation is *antitone*, i.e. if $x \leq y$ implies $y' \leq x'$, or if it is an *involution*, i.e. $x'' = x$. In distributive complemented lattices the complementation turns out to be unique, antitone and an involution. In such a case the lattice is a Boolean algebra.

Within modular lattices the situation may be different. Consider the complemented modular lattice $L = (L, \vee, \wedge, 0, 1)$ visualized in Figure 2:

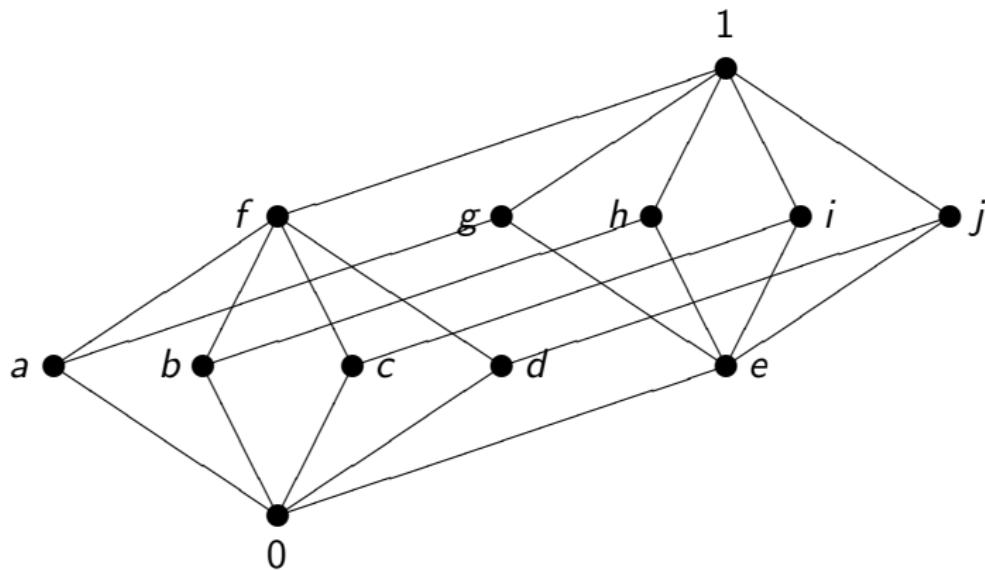


Fig. 2

Complemented modular lattice

Evidently; L is a complemented lattice. We have several choices for defining a complementation $'$. If we define $'$ by

x	0	a	b	c	d	e	f	g	h	i	j	1
x'	1	h	i	j	g	f	e	b	c	d	a	0

then it is not an involution. If we define $'$ by

x	0	a	b	c	d	e	f	g	h	i	j	1
x'	1	h	i	j	g	f	e	d	a	b	c	0

then it is an antitone involution and hence $L = (L, \vee, \wedge, ', 0, 1)$ is a so-called *orthomodular lattice* (see e.g. [1] for the definition).

Hence, not every modular lattice endowed with a complementation must be orthomodular. Of course, not every orthomodular lattice is modular (see [1]).

If $L = (L, \vee, \wedge, 0, 1)$ is a complemented lattice in which the complementation is not introduced in form of a unary operation then we need not distinguish between the complements of a given element a of L . Hence we will work with the whole set of complements of a . Within this paper we will use this approach.

We start by introducing some lattice-theoretical concepts.
All complemented lattices considered within this paper are assumed to be non-trivial, i.e. to have a bottom element 0 and a top element 1 with $0 \neq 1$.

Let $(L, \vee, \wedge, 0, 1)$ be a complemented lattice and $A, B \subseteq L$. We define:

$$A \vee B := \{x \vee y \mid x \in A \text{ and } y \in B\},$$

$$A \wedge B := \{x \wedge y \mid x \in A \text{ and } y \in B\},$$

$$A \leq B \text{ if } x \leq y \text{ for all } x \in A \text{ and all } y \in B,$$

$$A \leq_1 B \text{ if for every } x \in A \text{ there exists some } y \in B \text{ with } x \leq y,$$

$$A \leq_2 B \text{ if for every } y \in B \text{ there exists some } x \in A \text{ with } x \leq y.$$

The operator $+$

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice. For $a \in L$ we define

$$a^+ := \{x \in L \mid a \vee x = 1 \text{ and } a \wedge x = 0\},$$

i.e. a^+ is the set of all complements of a . Since L is complemented, we have $a^+ \neq \emptyset$ for all $a \in L$. For every subset A of L we put

$$A^+ := \{x \in L \mid a \vee x = 1 \text{ and } a \wedge x = 0 \text{ for all } a \in A\}.$$

Observe that A^+ may be empty, e.g. $L^+ = \emptyset$ (and $\emptyset^+ = L$). In the following we often identify singletons with their unique element.

Example

For the lattice N_5 depicted in Figure 3:

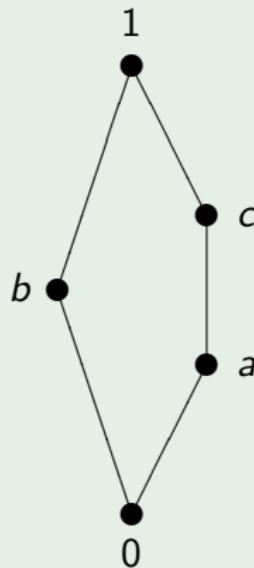


Fig. 3

Non-modular lattice N_5

we have

x	0	a	b	c	1
x^+	1	b	ac	b	0
x^{++}	0	ac	b	ac	1

Here and in the following within tables we sometimes write abc instead of $\{a, b, c\}$. For the lattice M_3 visualized in Figure 4

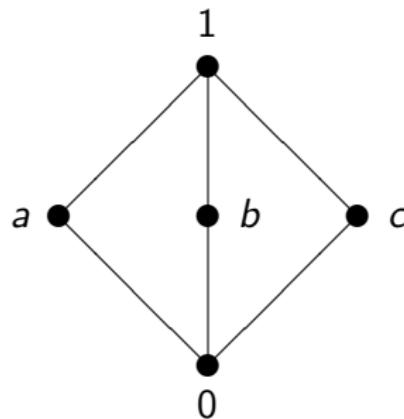


Fig. 4

Modular lattice M_3

we have

x	0	a	b	c	1
x^+	1	bc	ac	ab	0
x^{++}	0	a	b	c	1

Let us note that M_3 satisfies the identity $x^{++} \approx x$.

Example

For the example from Figure 2 we have

x	0	a	b	c	d	e	f	g	h	i	j	1
x^+	1	hij	gij	ghj	ghi	f	e	bcd	acd	abd	abc	0
x^{++}	0	a	b	c	d	e	f	g	h	i	j	1

Recall the concept of a *Galois connection* which is often used in lattices. The pair $(+, +)$ is the Galois connection between $(2^L, \subseteq)$ and $(2^L, \subseteq)$ induced by the relation

$$\{(x, y) \in L^2 \mid x \vee y = 1 \text{ and } x \wedge y = 0\}.$$

From this we conclude

$$\begin{aligned} A &\subseteq A^{++}, \\ A \subseteq B &\Rightarrow B^+ \subseteq A^+, \\ A^{+++} &= A^+, \\ A \subseteq B^+ &\Leftrightarrow B \subseteq A^+ \end{aligned}$$

for all $A, B \subseteq L$. Since $A \subseteq A^{++}$ we have that $A^{++} \neq \emptyset$ whenever $A \neq \emptyset$. A subset A of L is called *closed* if $A^{++} = A$. Let $Cl(L)$ denote the set of all closed subsets of L . Then clearly $Cl(L) = \{A^+ \mid A \subseteq L\}$. Because of $A^+ \cap A^{++} = \emptyset$ for all $A \subseteq L$ we have that $(Cl(L), \subseteq, +, \emptyset, L)$ forms a complete ortholattice with

$$\bigvee_{i \in I} A_i = \left(\bigcup_{i \in I} A_i \right)^{++},$$
$$\bigwedge_{i \in I} A_i = \bigcap_{i \in I} A_i$$

for all families $(A_i; i \in I)$ of closed subsets of L .

Next we describe the basic properties of the operator $^+$.

Proposition

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice and $a \in L$. Then the following hold:

- (i) $a \in a^{++}$ and $a^{+++} = a^+$,
- (ii) (x^+, \leq) is an antichain for every $x \in L$ if and only if L does not contain a sublattice isomorphic to N_5 containing 0 and 1,
- (iii) (a^+, \leq) is convex,
- (iv) if the mapping $x \mapsto x^{++}$ from L to 2^L is not injective then L does not satisfy the identity $x^{++} \approx x$.

In the lattice N_5 from Example 9 the mapping $x \mapsto x^{++}$ is not injective since $a \neq c$ and $a^{++} = c^{++}$. According to Proposition 3 (iv), this lattice does not satisfy the identity $x^{++} \approx x$, e.g. $a^{++} = \{a, c\} \neq a$.

Corollary

Let $(L, \vee, \wedge, 0, 1)$ be a complemented modular lattice, $a \in L$ and A a non-empty subset of L . According to Proposition 3 (iii), (a^+, \leq) is an antichain. Let $b \in A$. Then $A^+ \subseteq b^+$ and hence also (A^+, \leq) is an antichain. Since a^+ is a non-empty subset of L we finally conclude that (a^{++}, \leq) is an antichain, too.

In case of finite L we can even prove the following.

Proposition

Let $(L, \vee, \wedge, 0, 1)$ be a finite complemented lattice such that $x \mapsto x^{++}$ is injective and $a \in L$ and assume $a^{++} \neq a$. Then there exists some $b \in a^{++}$ with $b^{++} = b$.

The relationship between the operator $^+$ and the partial order relation of L is illuminated in the following result.

Proposition

Let $(L, \vee, \wedge, 0, 1)$ be a complemented lattice and consider the following statements:

- (i) $x^+ \vee y^+ \leq_1 (x \wedge y)^+$ for all $x, y \in L$,
- (ii) for all $x, y \in L$, $x \leq y$ implies $y^+ \leq_1 x^+$,
- (iii) $(x \vee y)^+ \leq_1 x^+ \wedge y^+$ for all $x, y \in L$.

Then (i) \Rightarrow (ii) \Leftrightarrow (iii).

Our next task is to characterize the property that a complemented lattice L satisfies the identity $x^{++} \approx x$. From Example 9 we know that if L is not modular then this identity need not hold. Hence we restrict ourselves to complemented modular lattices.

Theorem

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented modular lattice. Then the following are equivalent:

- (i) L satisfies the identity $x^{++} \approx x$,
- (ii) for every $x \in L$ and each $y \in x^{++}$ there exists some $z \in y^+$ satisfying either $(x \vee y) \wedge z = 0$ or $(x \wedge y) \vee z = 1$.

The operator \rightarrow

Let $L = (L, \vee, \wedge, ', 0, 1)$ be an orthomodular lattice. Recall that the operation ϕ_x defined by $\phi_x(y) := x \wedge (x' \vee y)$ for all $x, y \in L$ was introduced by U. Sasaki in [5] and [6] and is called the *Sasaki projection* (see e.g. [1]) or *Sasaki hook* alias *Sasaki operation*, see [3]; its dual, i.e. the operation ψ_x defined by $\psi_x(y) := x' \vee (x \wedge y)$ for all $x, y \in L$ is then called the *dual Sasaki projection*. It was shown by the authors in [3] that if we use these Sasaki operations in order to define

$$\begin{aligned}x \rightarrow y &:= x' \vee (x \wedge y), \\x \cdot y &:= (x \vee y') \wedge y\end{aligned}$$

for all x, y belonging to the base set of the orthomodular lattice L then the operations \rightarrow and \cdot form an adjoint pair, i.e.

$$x \cdot y \leq z \text{ if and only if } x \leq y \rightarrow z$$

for all $x, y, z \in L$.

This motivated us to introduce our next operators in a similar way where, however, instead of the element x' we use the set x^+ . Hence, for a complemented lattice $(L, \vee, \wedge, 0, 1)$, $a, b \in L$ and $A, B \subseteq L$ we define

$$a \rightarrow b := a^+ \vee (a \wedge b),$$

$$A \rightarrow B := A^+ \vee (A \wedge B).$$

Observe that $A \rightarrow B = \emptyset$ whenever $A^+ = \emptyset$.

Example

For the lattice from Figure 2 we have e.g.

$$a \rightarrow b = \{h, i, j\} \vee (a \wedge b) = \{h, i, j\} \vee 0 = \{h, i, j\} = a^+,$$

$$a \rightarrow f = \{h, i, j\} \vee (a \wedge f) = \{h, i, j\} \vee a = 1,$$

$$a \rightarrow g = \{h, i, j\} \vee (a \wedge g) = \{h, i, j\} \vee a = 1,$$

$$a \rightarrow h = \{h, i, j\} \vee (a \wedge h) = \{h, i, j\} \vee 0 = \{h, i, j\} = a^+,$$

$$f \rightarrow e = e \vee (f \wedge e) = e \vee 0 = e,$$

$$g \rightarrow h = \{b, c, d\} \vee (g \wedge h) = \{b, c, d\} \vee e = \{h, i, j\} = a^+.$$

In the following we study the relationship between \rightarrow and \wedge .

Theorem

Let $(L, \vee, \wedge, 0, 1)$ be a complemented modular lattice and $a, b, c \in L$. Then the following hold:

- (i) If $a \leq_1 b \rightarrow c$ then $a \wedge b \leq c$,
- (ii) $a \wedge b \leq c$ if and only if $a \wedge b \leq_1 b \rightarrow c$.

For complemented lattices, the operator \rightarrow satisfies a lot of properties common in residuated structures.

Theorem

Let $(L, \vee, \wedge, 0, 1)$ be a complemented lattice and $a, b, c \in L$. Then the following hold:

- (i) $a \rightarrow 0 = a^+$ and $1 \rightarrow a = a$,
- (ii) If $a \leq b$ then $a \rightarrow b = 1$,
- (iii) $a \rightarrow b = 1$ if and only if $a \wedge b \in a^{++}$,
- (iv) if $b \in a^+$ then $a \rightarrow b = a^+$,
- (v) if $b \leq c$ then $a \rightarrow b \leq_i a \rightarrow c$ for $i = 1, 2$,
- (vi) if $a \rightarrow b = a \rightarrow c = 1$ and a^{++} is closed with respect to \wedge then $a \rightarrow (b \wedge c) = 1$,
- (vii) if $a^{++} \subseteq b^{++}$ and $a \rightarrow b = 1$ then $b \rightarrow a = 1$.

Let us note that the converse of Theorem 10 (ii) does not hold in general. For example, consider the lattice N_5 from Example 9.

Then $c \rightarrow a = c^+ \vee (c \wedge a) = b \vee a = 1$, contrary to the fact that $c > a$. However, if x is a minimal element of x^{++} , then we can prove the following.

Proposition

Let $(L, \vee, \wedge, 0, 1)$ be a complemented lattice and $a \in L$. Then the following are equivalent:

- (i) *For all $x \in L$, $a \rightarrow x = 1$ is equivalent to $a \leq x$,*
- (ii) *a is a minimal element of a^{++} .*

We are going to show how the operator \rightarrow is related to the connective implication in a propositional calculus.

Theorem

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented modular lattice and $a, b \in L$. Then the following hold:

- (i) $a \wedge (a \rightarrow b) = a \wedge b \leq b$ (Modus Ponens),
- (ii) if $a^+ \leq b^+$ then $(a \rightarrow b) \wedge b^+ = a^+$ (Modus Tollens),
- (iii) if $c \in a \rightarrow b$ then $a \rightarrow c = a \rightarrow b$,
- (iv) $a \rightarrow (a \rightarrow b) = a \rightarrow b$,
- (v) if $a^+ \leq b$ then $a \rightarrow b = b$,

Proposition

Let $n > 1$ and $a, b, c \in M_n$. Then

$$a \wedge b \leq c \text{ if and only if } a \leq_1 b \rightarrow c.$$

The operator \odot

Similarly as it was done in Section 3 concerning the operator \rightarrow , also here we define the new operator \odot by means of the generalized Sasaki projection.

For a complemented lattice $(L, \vee, \wedge, 0, 1)$, $a, b \in L$ and $A, B \subseteq L$ we define

$$\begin{aligned} a \odot b &:= b \wedge (a \vee b^+), \\ A \odot B &:= B \wedge (A \vee B^+). \end{aligned}$$

It is evident that \odot need neither be commutative nor associative, but it is idempotent, i.e. it satisfies the identity $x \odot x \approx x$ (cf. Proposition 14 (iii)).

We list some basic properties of the operator \odot .

Proposition

Let $L = (L, \vee, \wedge, 0, 1)$ a complemented lattice and $a, b, c \in L$.
Then the following hold:

- (i) $0 \odot a = a \odot 0 = 0$,
- (ii) $1 \odot a = a \odot 1 = a$,
- (iii) $a \wedge b \leq a \odot b \leq b$ and if $b \leq a$ then $a \odot b = b$,
- (iv) if $a \leq b$ then $a \odot c \leq_i b \odot c$ for $i = 1, 2$,
- (v) if L is modular then $a \leq b$ if and only if $a \odot b = a$ and, moreover, $(a \odot b) \odot b = a \odot b$.

Example

The “operation tables” for \odot for the lattices N_5 and M_3 (see Example 9) are as follows:

\odot	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0	c	a
b	0	0	b	0	b
c	0	a	0	c	c
1	0	a	b	c	1

\odot	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0b	0c	a
b	0	0a	b	0c	b
c	0	0a	0b	c	c
1	0	a	b	c	1

N_5

M_3

Contrary to the relatively weak relationship between \rightarrow and \wedge , for \odot and \rightarrow we can prove here a kind of adjointness.

Theorem

Let $(L, \vee, \wedge, 0, 1)$ be a complemented modular lattice and $a, b, c \in L$. Then

$$a \odot b \leq c \text{ if and only if } a \leq b \rightarrow c.$$

Deductive systems

Deductive systems are often introduced in algebras forming an algebraic formalization of a non-classical propositional calculus. These are subsets of the algebra in question containing the logical constant 1 and representing the derivation rule Modus Ponens. Since our operator \rightarrow shares a number of properties with the non-classical logical connective implication, we define this concept also for complemented lattices.

Definition

A *deductive system* of a complemented lattice $L = (L, \vee, \wedge, 0, 1)$ is a subset D of L satisfying the following conditions:

$$1 \in D,$$

if $a \in D$, $b \in L$ and $a \rightarrow b \subseteq D$ then $b \in D$.

Since the intersection of deductive systems of L is again a deductive system of L , the set of all deductive systems of L forms a complete lattice $\text{Ded } L$ with respect to inclusion with bottom element $\{1\}$ and top element L .

The relationship between deductive systems and filters is described in the following results.

Lemma

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice and D a deductive system of L . Then the following hold:

- (i) D is an order filter of L ,
- (ii) if $x \rightarrow y \subseteq D$ for all $x, y \in D$ then D is a filter of L .

If L is, moreover, modular then we can prove also the following.

Proposition

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented modular lattice and F a filter of L . Then F is a deductive system of L .

In the remaining part of this section we investigate when a given deductive system D may induce an equivalence relation Φ such that $D = [1]\Phi$, i.e. D being its kernel. We start with the following definition.

Definition

For every complemented lattice $(L, \vee, \wedge, 0, 1)$ and every deductive system D of L put

$$\Theta(D) := \{(x, y) \in L^2 \mid x \rightarrow y, y \rightarrow x \subseteq D\}.$$

From Theorem 10 (ii) we get that $\Theta(D)$ is reflexive and, by definition, it is symmetric.

It is easy to see that every congruence on a complemented modular lattice induces a deductive system.

Proposition

Let $(L, \vee, \wedge, 0, 1)$ be a complemented modular lattice and $\Phi \in \text{Con}(L, \wedge)$. Then the following hold:

- (i) $[1]\Phi$ is a deductive system of L ,
- (ii) $\Theta([1]\Phi) \subseteq \Phi$.

The previous proposition shows that we need a certain compatibility of the induced relation $\Theta(D)$ with the lattice operations in order to show D to be the kernel of $\Theta(D)$. For this sake, we define the following properties.

Definition

Let $(L, \vee, \wedge, 0, 1)$ be a complemented lattice and Φ an equivalence relation on L . We say that Φ has the *Substitution Property with respect to $+$* if

$$(a, b) \in \Phi \text{ implies } a^+ \times b^+ \subseteq \Phi,$$

and the *Substitution Property with respect to \rightarrow* if

$$(a, b) \in \Phi \text{ implies } (a \rightarrow c) \times (b \rightarrow c) \subseteq \Phi \text{ for all } c \in L.$$

Such an equivalence relation Φ can be related with the equivalence relation induced by its kernel $[1]\Phi$ and, moreover, this kernel is a deductive system.

Theorem

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice and Φ an equivalence relation on L having the Substitution Property with respect to \rightarrow . Then the following hold:

- (i) Φ has the Substitution Property with respect to $^+$,
- (ii) $[1]\Phi$ is a deductive system of L ,
- (iii) $\Phi \subseteq \Theta([1]\Phi)$.

Now we are able to relate deductive systems with equivalence relations induced by them provided these deductive systems satisfy a certain compatibility condition defined as follows.

Definition

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice and D a deductive system of L . We call D a *compatible deductive system* of L if it satisfies the following two additional conditions for all $a, b, c, d \in L$:

If $a \rightarrow b \subseteq D$ and $x \rightarrow (c \rightarrow d) \subseteq D$ for all $x \in a \rightarrow b$ then $c \rightarrow d \subseteq D$,

if $a \rightarrow b, b \rightarrow a \subseteq D$ then $x \rightarrow (b \rightarrow c) \subseteq D$ for all $x \in a \rightarrow c$.

Now we show that also conversely as in previous Theorem, a compatible deductive system induces an equivalence relation having the Substitution Property with respect to \rightarrow .

Theorem

Let $L = (L, \vee, \wedge, 0, 1)$ be a complemented lattice and D a compatible deductive system of L . Then the following hold:

- (i) $\Theta(D)$ is an equivalence relation on L having the Substitution Property with respect to \rightarrow ,
- (ii) $[1](\Theta(D)) = D$.

References I

- L. Beran, Orthomodular Lattices. D. Reidel, Dordrecht 1985. ISBN 90-277-1715-X.
- G. Birkhoff, Lattice Theory. AMS, Providence, RI, 1979. ISBN 0-8218-1025-1.
- I. Chajda and H. Länger, Orthomodular lattices can be converted into left residuated I-groupoids . *Miskolc Math. Notes* **18** (2017), 685–689.
- R. P. Dilworth, On complemented lattices. *Tôhoku Math. J.* **47** (1940), 18–23.
- U. Sasaki, On an axiom of continuous geometry. *J. Sci. Hiroshima Univ. Ser. A* **14** (1950), 100–101.

References II

- U. Sasaki, Lattice theoretic characterization of an affine geometry of arbitrary dimensions. *J. Sci. Hiroshima Univ. Ser. A* **16** (1952), 223–238.

The end!

Thanks for your attention!!