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I will first explain, with an example (the commuting graph of a
group), what I mean by graphs on algebraic structures.

The theory is best developed in the case of groups, so I turn to
this next, and describe some of the big questions which have
been considered.

Finally, I observe that many of the easier arguments
immediately extend to arbitrary algebras. In some cases the
results are the same as for groups. More commonly, they raise
questions which may involve considering special kinds of
algebra in order to make progress.

I hope you will consider trying your hand at some of the
questions, either in general or in a variety you are most familiar
with.



Graphs on algebraic structures?

Most people, meeting the phrase “graphs on algebraic
structures”, would think first of Cayley graphs. I have in mind
something different.



Graphs on algebraic structures?

Most people, meeting the phrase “graphs on algebraic
structures”, would think first of Cayley graphs. I have in mind
something different.

The prototype example of what I am talking about was
introduced by Brauer and Fowler in 1955 (although they did
not call it that). Given a group G, we define a graph I'(G) with
vertex set G in which x and y are joined if and only if xy = yx.
This is the commuting graph of G.



Graphs on algebraic structures?

Most people, meeting the phrase “graphs on algebraic
structures”, would think first of Cayley graphs. I have in mind
something different.

The prototype example of what I am talking about was
introduced by Brauer and Fowler in 1955 (although they did
not call it that). Given a group G, we define a graph I'(G) with
vertex set G in which x and y are joined if and only if xy = yx.
This is the commuting graph of G.

They used this graph to prove that, given a group H with a
central involution z, there are only finitely many finite simple
groups G containing an involution whose centraliser is
isomorphic to H.
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The commuting graph of a group

This was arguably the first step on the long journey to the
Classification of Finite Simple Groups (CFSG). Many
subsequent papers took a particular group H and worked out
which simple groups have H as an involution centraliser. One
person who struck gold was Dieter Held: the groups Ls(2), Ma4
and the Held group have isomorphic involution centralisers.

In fact Brauer and Fowler did not use the term graph, though
their methods are recognisably graph-theoretic.

This graph has received a lot of attention since then. But the
property I am interested in here is:

» it is defined on the group G, purely in terms of the group
operation;
» so it is invariant under the automorphism group of G.
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On this basis, one could study relational structures defined on
an algebra in terms purely of the algebraic operations, and so
invariant under the automorphisms (or maybe the
endomorphisms) of the algebra.

But this is much too general!

For example, almost all finite quasigroups have trivial
automorphism group, and so every relational structure is
invariant under automorphisms. Moreover, finite algebras are
Np-categorical, and so every relational structure on such a
quasigroup is first-order definable.

We have to restrict ourselves to interesting graphs or relational
structures. Exactly which ones to choose is a matter of taste.
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For now, let me restrict the algebraic structures to groups, and
the relational structures to graphs. Let us approach the
question a different way:

How can the theories of groups and graphs help one another?
Even this question is too general, since I am going to restrict to
graphs defined on groups (so I exclude important examples
like the constructions of several sporadic simple groups as

automorphism groups of certain graphs).
Here are some things to look for:

» Can we use graphs to prove results about groups?
» Can graphs be used to define interesting classes of groups?
» Can groups be used to discover beautiful graphs?

There is also the possibility that a question of wider interest
will arise. For example,

» What is the complexity of deciding whether a graph is the
commuting graph of a group?
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Once we have a body of theory on these questions, we can
begin to ask more general questions.

So for the next part of the talk I will give some examples under
the four headings defined by these questions. Mostly I will be
quite brief.

On the first question, proving interesting results about groups,
nothing else compares with the Brauer-Fowler theorem. But
here is a small result. It is a generalisation of a theorem of
Landau from 1903.

Landau proved that, given a positive integer k, there are only
finitely many finite groups having just k conjugacy classes.
Most subsequent research concentrated on the question of
finding good bounds for the order of a group with k conjugacy
classes. But here is a different direction. We define a graph
whose vertices are the conjugacy classes of the group. Landau
bounds the group order by a function of the number of vertices.
Can we bound it by a function of some graph parameter?
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An extension of Landau’s theorem

The solvable conjugacy class graph of a finite group G is the
graph whose vertices are the conjugacy classes of G, classes C;
and C; joined if there exist g; € C; (for i = 1, 2) such that the
group (g1,92) is solvable.

The clique number of a graph is the size of the largest set of
vertices containing all edges between pairs of vertices.

Theorem

Given a positive integer k, there are only finitely many finite groups
for which the solvable conjugacy class graph has clique number k.
This was proved by Parthajit Bhowal, Rajat Kanti Nath,
Benjamin Sambale and me. We used CFSG in the proof, but
only in a “light-touch” way, and we conjecture that its use can
be avoided. Also, we do not have any bounds!
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A few more graphs on groups

We have seem the power graph; here are some more which
have been considered.

» The power graph: join x and y if one is a power of the
other.

» The enhanced power graph: join x and y if both are powers
of an element z (equivalently, (x,y) is cyclic).

» The nilpotency graph: join x and y if (x,y) is nilpotent; the
solvability graph is defined similarly.

» The generating graph: join x and y if (x,y) = G.

The last of these is empty if G is not 2-generated; but we know

that all finite simple groups are 2-generated, so it is particularly
useful for these.
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An induced subgraph of a graph I' on a set S of vertices has
vertex set S and as edges all those edges of I' contained in S.
Several important classes of graphs are closed under taking
induced subgraphs: these include the perfect graphs (every
induced subgraph has clique number equal to chromatic
number), cographs (every induced subgraph is either
disconnected or has disconnected complelent) and chordal
graphs (every cycle of length greater than 3 has a chord).
These classes can be defined by forbidden induced subgraphs:
for example, cographs forbid 4-vertex paths, while chordal
graphs forbid induced cycles of length greater than 3.

So we can ask: for which groups G is I'(G) perfect, or a cograph,
or chordal (these classes are subgroup-closed)? Also, for which
groups Gis I'1 (G) = I';(G), for two of these graph types?
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Despite a lot of work, few definitive results are known, though
some partial results have been proved. Here are three:

Theorem
» The power graph is perfect.
» If the enhanced power graph is a cograph, then it is chordal.

» Groups whose power graph and enhanced power graph are equal
are known.

The first holds because the directed power graph (with x — v if
y € (x), and a loop at each vertex) is a partial preorder (i.e.
reflexive and transitive); it can be extended to a partial order by
putting a total order on each indifference class.

The second is a recent result of Bubboloni, Fumagalli and
Praeger (arXiv 2510.18073). More on this (and the third) later.
See also the talk by Samir Zahirovi¢ coming up next.
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Finding beautiful graphs is a hit-and-miss affair. Here is just
one example, from a paper by Sucharita Biswas, Angsuman
Das, Hiranya Kishore Dey and me.

Take the smallest Mathieu simple group M;;, with order 7920.
Form the difference of the power graph and enhanced power
graph (whose edges are those in the latter but not the former).
Perform twin reduction (identify two vertices if they have the
same open or closed neighbourhood) until no such pairs
remain.

The resulting graph is semiregular bipartite, with blocks of
sizes 165 and 220, and valencies 4 and 3 for the two blocks; it
has diameter 10, girth 10 (surprisingly large), and
automorphism group M.
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The recognition problem

Given a graph I', what is the complexity of the decision
problem: is I' the commuting graph (or power graph, or
whatever) of a group? One could also add: If yes, then find an
example of such a group.

In a recent paper by V. Arvind, Xuanlong Ma, Natalia Maslova
and me, we give a quasi-polynomial algorithm (running time
the exponential of a polynomial in log 1, where n is the input
size) for this problem for the commuting graph.

Note that for a graph with n vertices, the input size is
polynomial in n; we take advantage of the fact that groups of
order n have short descriptions (of size polynomial in log n).
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Digraphs

A few words about digraphs on groups. Two have been
studied:

» the power digraph, with an arc x — y if y is a power of x;

» the endomorphism digraph, x — y if some endomorphism
maps x to y.

In each case, there is an undirected graph, obtained by ignoring
directions and collapsing double edges into single edges.

Both graphs are comparability graphs of posets, and hence are
perfect.

Theorem

For a finite group G, the following are equivalent:
» the power and endomorphism digraphs of G are equal;
» the power and endomorphism graphs of G are equal;
» G is cyclic.
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I would like to move towards looking more generally at graphs
on algebras. We begin by asking, what is special about groups?
First, every finite group of order greater than 2 has nontrivial
automorphism group. (This is also true for infinite groups,
assuming the Axiom of Choice.) These automorphisms act on
the graphs we construct. So, unlike random graphs, all the
graphs we construct will have nontrivial automorphism group.
Indeed, if G is not abelian, then its inner automorphism group
is isomorphic to G/Z(G); so G itself acts on the graph, with
Z(G) as the kernel of the action.

Second, the theory of groups is well-developed with a very
wide range of models. Indeed, no part of algebra apart from
linear algebra has a comparable theory, and vector spaces are
not so interesting from this point of view. (Some researchers
have looked at graphs on vector spaces, but usually they
include a basis as part of the structure.)
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There are several examples of graphs on other algebraic
structures.

The power graph was first defined for semigroups, by Kelarev
and Quinn, before being studied for groups by Chakrabarty,
Ghosh and Sen.

Graphs from Rings is the subject of a book by D. F. Anderson,

T. Asir, A. Badawi and T. Tamizh Chelvam. One of the most
popular graphs on rings is the zero-divisor graph, in which two
elements x and y are joined if they are non-zero and xy = 0.
(Zero and the elements which are not zero-divisors are isolated
and can be deleted; the graph is directed if the ring is not
commutative.)

I will make a few remarks on more general definitions.
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Graphs defined by subalgebras

For any algebra A, we have the notion of the subalgebra (S)
generated by a subset S (the intersection of all subalgebras
containing S). So if the definition of a graph only involves
subalgebras, it will work in any algebra. As usual we write
{{x}) as (x).
Note that any algebra A has a unique mimimal subalgebra
E(A), the intersection of all the subalgebras; it can be defined as
the subalgebras generated by the constants (the values of the
0-ary operations).
Here are some examples. I give the rule for joining x to y.

» Power graph: x € (y) ory € (x)

» Enhanced power graph: (3z)(x,y € (z)).

» Intersection power graph: (3z)(z € ({(x) N (y)) \ E(A).

» Generating graph: (x,y) = G.
The names may be inappropriate in general algebras!
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Power graph and enhanced power graph

» The power graph of any algebra is a perfect graph.

» If either the enhanced power graph or the intersection
power graph of an algebra is a cograph, then it is a chordal
graph.

The proofs are just as for groups:
» The directed power graph is a partial preorder.

» The proof by Bubboloni et al. works in the more general
context. (Proof coming up.)

Suppose that the enhanced power graph I' of an algebra A is a
cograph, but fails to be chordal.

It cannot contain an induced cycle of length greater than 4
(since this contains a 4-vertex path). Assume that (a,b,¢,d) is a
4-cycle, Then there exists z such thata,b € Z = (z). Choose z
such that Z is maximal. Then z # c; for if z ~ ¢, then by
maximality ¢ € Z, and a ~ ¢, which is not so. Similarly z % d.
So (z,b,¢c,d) is an induced path, a contradiction.

A “dual” argument handles the intersection power graph.
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When do power graph and enhanced power graph
coimcide?

Theorem

The power graph and enhanced power graph of A coincide if and only
if the rank 1 subalgebras of any rank 1 subalgebra are totally ordered
by inclusion.

Since the subgroups of a cyclic group are totally ordered if and
only if it has prime power order, we obtain the following. An
EPPO group is a group in which every element has prime
power order. The EPPO groups were classified by Rolf Brandl
in 1981, following earlier work by Graham Higman and Michio
Suzuki.

Corollary

The power graph and enhanced power graph of a group G coincide if
and only if G is an EPPO group.
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Graphs defined by generating sets

» Two elements x and y are joined in the generating graph if
(x,y) = A.
The generating graph is edgeless if A is not 2-generated. Two
variants were defined by Andrea Lucchini for groups to get
around this; again the definition works for arbitrary algebras.
» Two elements x and y are joined in the independence
graph if there is a generating set S for A, minimal with
respect to inclusion, containing x and y.
» xand y are joined in the rank graph if there is a generating
set S for A of minimal cardinality containing x and y.

There are links with earlier graphs, to which we now turn.
(These were noted for groups, but they hold in general.)
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Complements of intersection and rank graphs

The power graph is contained in the complement of the
independence graph. (For, if y € (x), then y can be omitted
from any generating set containing x.)

Also, the enhanced power graph is contained in the
complement of the rank graph. (For, if x,y € (z),and a
generating set contains x and y, we can replace them by z and
obtain a smaller generating set.

For groups, the problem of deciding when equality holds in
either of these inclusions was solved by Saul Freedman,
Andrea Lucchini, Daniele Nemmi, and Colva Roney-Dougal.
What, if anything, can be said in general?
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Graphs defined by group classes

» Given a class C of groups, usually assumed
subgroup-closed, we define the C-graph of G by joining x
and y if (x,y) € C.

For C the class of cyclic groups, we obtain the enhanced
power graph; for abelian groups, the commuting graph.
Other classes that have been studied include nilpotent
groups and solvable groups.

These graphs could be defined for arbitrary algebras for which
we have a subalgebra-closed class to take the place of C. The
choice is likely to be dependent on the type of algebra
considered.
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Minimal excluded algebras

Theorem
Let G be a finite group.

» If G is not nilpotent, then the nilpotence graph of G is contained
in the complement of the generating graph; equality holds if and
only if G is a minimal non-nilpotent group.

» If G is not solvable, then the solvability graph of G is contained
in the complement of the generating graph; equality holds if and
only if G is a minimal non-solvable group.

The cases of equality here are highly non-trivial. They depend
on knowing that the minimal non-nilpotent or non-solvable
groups are 2-generated; these depend on the classification of
minimal non-nilpotent groups by Schmidt, and Thompson’s
classification of N-groups.

In general, where such classifications don’t exist, are there
similar results, perhaps involving the independence or rank
graphs?



More detail on some of this is in the surveys

» Peter ]. Cameron, Graphs defined on groups, Internat. |. Group
Theory 11 (2022), 53-107.

> Peter J. Cameron, Graphs defined on algebras, arXiv 2602.00712



More detail on some of this is in the surveys

» Peter ]. Cameron, Graphs defined on groups, Internat. |. Group
Theory 11 (2022), 53-107.

> Peter J. Cameron, Graphs defined on algebras, arXiv 2602.00712

The reason for the large numbers of Indian coauthors is given
in the account

» Peter J. Cameron, Graphs and groups: An Indian adventure,
London Math. Soc. Newsletter 513 (2024), 22-25.



More detail on some of this is in the surveys

» Peter ]. Cameron, Graphs defined on groups, Internat. |. Group
Theory 11 (2022), 53-107.

> Peter J. Cameron, Graphs defined on algebras, arXiv 2602.00712

The reason for the large numbers of Indian coauthors is given
in the account

» Peter ]. Cameron, Graphs and groups: An Indian adventure,
London Math. Soc. Newsletter 513 (2024), 22-25.

... for your attention.



