Algebra Seminar talk
2025-01-24
Benjamin Kattnig
Die Kontinuumshypothese und das Auswahlaxiom
Abstract:
Wir beschäftigen uns mit der verallgemeinerten Kontinuumshypothese, dem Auswahlaxiom und dem Determiniertheitsaxiom. Nach einer Einführung zu allen benötigten Begriffen der Mengenlehre beweisen wir das Theorem von Sierpinski, welches aussagt, dass die verallgemeinerte Kontinuumshypothese (in ihrer Potenzmengenformulierung ohne Kardinalzahlen) in ZF das Auswahlaxiom impliziert. Sofern die Zeit ausreicht, beschäftigen wir uns weiter mit dem Determiniertheitsaxiom und zeigen, dass es in ZF die Potenzmengenform der (nicht-verallgemeinerten) Kontinuumshypothese sowie die Negation des Auswahlaxioms impliziert.