Every effect algebra can be made into a total algebra

Ivan Chajda

coauthors: R. Halaš, J. Kühr

Ivan Chajda, Radomír Halaš and Jan Kühr Department of Algebra and Geometry
Faculty of Science
Palacký University Olomouc
Czech Republic
e-mail: \{chajda, halas, kuhr\}@inf.upol.cz

In our previous paper [2] we introduced the concept of a basic algebra. The name 'basic algebra' is used because these algebras capture common features of many known structures such as Boolean algebras, orthomodular lattices, MV-algebras or lattice effect algebras. In [2] we paid special attention to lattice effect algebras, which were originally defined as partial algebras ($E,+, 0,1$), but the presence of the join operation allows one to replace partial + by total \oplus. The intent of the present paper is to establish similar results for general effect algebras in the context of commutative directoids.

A commutative directoid [6] is a commutative, idempotent groupoid (A, \sqcup) satisfying the equation
$x \sqcup((x \sqcup y) \sqcup z)=(x \sqcup y) \sqcup z$. For instance, every semilattice is a commutative directoid. It can easily be seen that the stipulation

$$
\begin{equation*}
x \leq y \quad \text { if and only if } \quad x \sqcup y=y \tag{1}
\end{equation*}
$$

defines a partial order on A such that, for every $x, y \in A, x \sqcup y$ is an upper bound of $\{x, y\}$. Thus the poset (A, \leq) is upwards directed. Conversely, we may associate a commutative
directoid to an arbitrary upwards directed set by letting $x \sqcup y=y \sqcup x$ be some upper bound of $\{x, y\}$, such that whenever x, y are comparable, then $x \sqcup y=y \sqcup x$ is the greater

A commutative directoid [6] is a commutative, idempotent groupoid (A, \sqcup) satisfying the equation
$x \sqcup((x \sqcup y) \sqcup z)=(x \sqcup y) \sqcup z$. For instance, every semilattice is a commutative directoid. It can easily be seen that the stipulation

$$
\begin{equation*}
x \leq y \quad \text { if and only if } \quad x \sqcup y=y \tag{1}
\end{equation*}
$$

defines a partial order on A such that, for every $x, y \in A, x \sqcup y$ is an upper bound of $\{x, y\}$. Thus the poset (A, \leq) is upwards directed. Conversely, we may associate a commutative directoid to an arbitrary upwards directed set by letting $x \sqcup y=y \sqcup x$ be some upper bound of $\{x, y\}$, such that whenever x, y are comparable, then $x \sqcup y=y \sqcup x$ is the greater of x, y.

An antitone involution on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x))=x$.

By a commutative directoid with sectional antitone
involutions we shall mean a system $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ where
(i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1, and (ii) every section [a) is equipped with an antitone involution β_{a}.
In particular, if (A, \sqcup) is a semilattice, then the underlying poset
is a lattice in which $\beta_{0}\left(\beta_{0}(x) \sqcup \beta_{0}(y)\right)$ is the infimum of $\{x, y\}$,
and hence we may say that $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a lattice with sectional antitone involutions.

An antitone involution on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x))=x$.

By a commutative directoid with sectional antitone involutions we shall mean a system $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ where (i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1 , and (ii) every section [a) is equipped with an antitone involution β_{a}.
and hence we may say that $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a lattice with
sectional antitone involutions.

An antitone involution on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x))=x$.

By a commutative directoid with sectional antitone involutions we shall mean a system $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ where (i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1 , and (ii) every section [a) is equipped with an antitone involution β_{a}. In particular, if (A, \sqcup) is a semilattice, then the underlying poset is a lattice in which $\beta_{0}\left(\beta_{0}(x) \sqcup \beta_{0}(y)\right)$ is the infimum of $\{x, y\}$, and hence we may say that $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a lattice with sectional antitone involutions.

A weak basic algebra is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the following identities and quasi-identity (where 1 is an abbreviation for $\neg 0$):

$$
\begin{align*}
& x \oplus 0=x, \tag{W1}\\
& \neg \neg x=x, \tag{W2}\\
& \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x, \tag{W3}\\
& x \oplus(\neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus z)=1, \tag{W4}\\
& \neg x \oplus(y \oplus x)=1, \tag{W5}\\
& \neg x \oplus y=1 \& \neg y \oplus z=1 \Rightarrow \neg(\neg z \oplus x) \oplus(\neg y \oplus x)=1 . \tag{W6}
\end{align*}
$$

If $(A, \oplus, \neg, 0)$ is a weak basic algebra and if we put

$$
x \sqcup y=\neg(\neg x \oplus y) \oplus y
$$

then (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1 , such that the underlying order \leq is given by
$x \leq y$ if and only if $\quad x \sqcup y=y \quad$ if and only if $\quad \neg x \oplus y=1$, and for each $a \in A, x \mapsto \neg x \oplus a$ is an antitone involution on $[a)=\{x \in A \mid a \leq x\}$.

Conversely，if $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a commutative directoid with sectional antitone involutions，then we can define \oplus and \neg as $x \oplus y=\beta_{y}\left(\beta_{0}(x) \sqcup y\right)$ and $\neg x=\beta_{0}(x)$ ，respectively，and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y=\neg(\neg x \oplus y) \oplus y$ and $\beta_{a}(x)=\neg x \oplus a$ ．
In every weak basic algebra，in addition to the＇join－like＇
operation \sqcup ，we can introduce the dual＇meet－like＇operation Γ

Then we have $x \leq y$ if and only if $x \sqcap y=x$ ，and the structure (A, \sqcup, \sqcap) is a λ－lattice in the sense of［8］，i．e．，both (A, \sqcup) and (A, \square) are commutative directoid＇s and the absorption laws $x \sqcup(x \sqcap y)=x=x \sqcap(x \sqcup y)$ are satisfied．

$$
\square \text { 向 } \quad \text { 三 ミ }
$$

Conversely, if $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a commutative directoid with sectional antitone involutions, then we can define \oplus and \neg as $x \oplus y=\beta_{y}\left(\beta_{0}(x) \sqcup y\right)$ and $\neg x=\beta_{0}(x)$, respectively, and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y=\neg(\neg x \oplus y) \oplus y$ and $\beta_{a}(x)=\neg x \oplus a$. In every weak basic algebra, in addition to the 'join-like' operation \sqcup, we can introduce the dual 'meet-like' operation \sqcap by

$$
x \sqcap y=\neg(\neg x \sqcup \neg y) .
$$

\square (A, \sqcap) are commutative directoids and the absorption laws $x \sqcup(x \sqcap y)=x=x \sqcap(x \sqcup y)$ are satisfied.

Conversely, if $\left(A, \sqcup,\left(\beta_{a}\right)_{a \in A}, 0,1\right)$ is a commutative directoid with sectional antitone involutions, then we can define \oplus and \neg as $x \oplus y=\beta_{y}\left(\beta_{0}(x) \sqcup y\right)$ and $\neg x=\beta_{0}(x)$, respectively, and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y=\neg(\neg x \oplus y) \oplus y$ and $\beta_{a}(x)=\neg x \oplus a$. In every weak basic algebra, in addition to the 'join-like' operation \sqcup, we can introduce the dual 'meet-like' operation \sqcap by

$$
x \sqcap y=\neg(\neg x \sqcup \neg y) .
$$

Then we have $x \leq y$ if and only if $x \sqcap y=x$, and the structure (A, \sqcup, \sqcap) is a λ-lattice in the sense of [8], i.e., both (A, \sqcup) and (A, \sqcap) are commutative directoids and the absorption laws $x \sqcup(x \sqcap y)=x=x \sqcap(x \sqcup y)$ are satisfied.

A basic algebra［2］is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the identities（again， $1=\neg 0$ ）

$$
\begin{align*}
& x \oplus 0=x, \tag{B1}\\
& \neg \neg x=x, \tag{B2}\\
& \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x, \\
& \neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus(x \oplus z)=1 .
\end{align*}
$$

（B4）
Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions，restricted to basic alge＇bras，furnishes a one－to－one correspond＇ence between basic algebras and lattices with sectional antitone involutions．

We know that weak basic algebras form a variety．

A basic algebra [2] is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the identities (again, $1=\neg 0$)

$$
\begin{align*}
& x \oplus 0=x, \tag{B1}\\
& \neg \neg x=x, \tag{B2}\\
& \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x, \tag{B3}\\
& \neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus(x \oplus z)=1 . \tag{B4}
\end{align*}
$$

Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions, restricted to basic algebras, furnishes a one-to-one correspondence between basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.

A basic algebra [2] is an algebra $(A, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the identities (again, $1=\neg 0$)

$$
\begin{align*}
& x \oplus 0=x, \tag{B1}\\
& \neg \neg x=x, \tag{B2}\\
& \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x, \tag{B3}\\
& \neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus(x \oplus z)=1 . \tag{B4}
\end{align*}
$$

Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions, restricted to basic algebras, furnishes a one-to-one correspondence between basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.

Proposition 1

An algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ satisfying (W1)-(W4) is a weak basic algebra if and only if it satisfies the identity

$$
\begin{equation*}
\neg(\neg((x \sqcup y) \sqcup z) \oplus x) \oplus(\neg y \oplus x)=1 \tag{2}
\end{equation*}
$$

Another central concept is that of an effect algebra, introduced by Foulis and Bennett [4]. We recall that an effect algebra is a system ($E,+, 0,1$) where 0,1 are distinguished elements of E and + is a partial binary operation on E such that
(EA1) $x+y=y+x$ if one side is defined,
(EA2) $(x+y)+z=x+(y+z)$ if one side is defined,
(EA3) for every $x \in E$ there exists a unique $x^{\prime} \in E$ with

$$
x^{\prime}+x=1,
$$

(EA4) if $x+1$ is defined then $x=0$.
Every effect algebra bears a natural partial order given by

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is is called a lattice effect algebra.
In every effect algebra, a partial subtraction - can be defined as follows:

$$
x-y \text { exists and equals } z \text { if and only if }
$$

Another central concept is that of an effect algebra，introduced by Foulis and Bennett［4］．We recall that an effect algebra is a system（ $E,+, 0,1$ ）where 0,1 are distinguished elements of E and + is a partial binary operation on E such that
（EA1）$x+y=y+x$ if one side is defined，
（EA2）$(x+y)+z=x+(y+z)$ if one side is defined，
（EA3）for every $x \in E$ there exists a unique $x^{\prime} \in E$ with

$$
x^{\prime}+x=1,
$$

（EA4）if $x+1$ is defined then $x=0$ ．
Every effect algebra bears a natural partial order given by

$$
x \leq y \text { if and only if } y=x+z \text { for some } z \in E .
$$

The poset (E, \leq) is bounded， 0 is the bottom element and 1 is the top element．If，moreover，(E, \leq) is a lattice，then $(E,+, 0,1)$ is called a lattice effect algebra．
as follows：

$$
x-y \text { exists and equals } z
$$

Another central concept is that of an effect algebra, introduced by Foulis and Bennett [4]. We recall that an effect algebra is a system ($E,+, 0,1$) where 0,1 are distinguished elements of E and + is a partial binary operation on E such that
(EA1) $x+y=y+x$ if one side is defined,
(EA2) $(x+y)+z=x+(y+z)$ if one side is defined,
(EA3) for every $x \in E$ there exists a unique $x^{\prime} \in E$ with

$$
x^{\prime}+x=1,
$$

(EA4) if $x+1$ is defined then $x=0$.
Every effect algebra bears a natural partial order given by

$$
x \leq y \text { if and only if } y=x+z \text { for some } z \in E \text {. }
$$

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. If, moreover, (E, \leq) is a lattice, then $(E,+, 0,1)$ is called a lattice effect algebra.
In every effect algebra, a partial subtraction - can be defined as follows:
$x-y$ exists and equals z if and only if $x=y+z$.

Now, we focus on the relationships between effect algebras and weak basic algebras.

Theorem 1
Let $\mathbf{A}=(A, \oplus, \neg, 0)$ be a weak basic algebra. Define the partial addition + on A as follows: $x+y$ is defined if and only if $x \leq \neg y$,
and in this case $x+y=x \oplus y$. Then $\mathcal{E}(\mathbf{A})=(A,+, 0,1)$ is an effect algebra if and only if \mathbf{A} satisfies the quasi-identity

$$
\begin{equation*}
x \leq \neg y \& x \oplus y \leq \neg z \Rightarrow(x \oplus y) \oplus z=x \oplus(z \oplus y) \tag{3}
\end{equation*}
$$

Moreover, over weak basic algebras, (3) is equivalent to the identity

$$
\begin{equation*}
(x \oplus y) \oplus(\neg(x \oplus y) \sqcap z)=(x \sqcap \neg y) \oplus((\neg(x \oplus y) \sqcap z) \oplus y) \tag{4}
\end{equation*}
$$

Now, we focus on the relationships between effect algebras and weak basic algebras.

Theorem 1

Let $\mathbf{A}=(A, \oplus, \neg, 0)$ be a weak basic algebra. Define the partial addition + on A as follows: $x+y$ is defined if and only if $x \leq \neg y$, and in this case $x+y=x \oplus y$. Then $\mathcal{E}(\mathbf{A})=(A,+, 0,1)$ is an effect algebra if and only if \mathbf{A} satisfies the quasi-identity

$$
\begin{equation*}
x \leq \neg y \& x \oplus y \leq \neg z \Rightarrow(x \oplus y) \oplus z=x \oplus(z \oplus y) \tag{3}
\end{equation*}
$$

Moreover, over weak basic algebras, (3) is equivalent to the identity

$$
\begin{equation*}
(x \oplus y) \oplus(\neg(x \oplus y) \sqcap z)=(x \sqcap \neg y) \oplus((\neg(x \oplus y) \sqcap z) \oplus y) . \tag{4}
\end{equation*}
$$

Corollary 1

［2］Let $\mathbf{A}=(A, \oplus, \neg, 0)$ be a basic algebra and let $\mathcal{E}(\mathbf{A})=(A,+, 0,1)$ be as in Theorem 1．Then $\mathcal{E}(\mathbf{A})$ is a lattice effect algebra if and only if \mathbf{A} satisfies the quasi－identity（3）．

In case of basic algebras， \mathbf{A} can be retrieved from $\mathcal{E}(\mathbf{A})$（［2］， see below）．However，as the following example shows，this is not true for weak basic algebras．
ロ 回 三 ミ 引 ŋのく

Corollary 1

[2] Let $\mathbf{A}=(A, \oplus, \neg, 0)$ be a basic algebra and let $\mathcal{E}(\mathbf{A})=(A,+, 0,1)$ be as in Theorem 1. Then $\mathcal{E}(\mathbf{A})$ is a lattice effect algebra if and only if \mathbf{A} satisfies the quasi-identity (3).

In case of basic algebras, \mathbf{A} can be retrieved from $\mathcal{E}(\mathbf{A})$ ([2], see below). However, as the following example shows, this is not true for weak basic algebras.

Example

Let (A, \leq) be the poset

and let the sections $[0)=A,[a)$ and $[b]$ be equipped with the following antitone involutions:

$$
\begin{aligned}
& \beta_{0}: 0 \mapsto 1,1 \mapsto 0, a \mapsto d, d \mapsto a, b \mapsto c, c \mapsto b, \\
& \beta_{a}: a \mapsto 1,1 \mapsto a, c \mapsto c, d \mapsto d \\
& \beta_{b}: b \mapsto 1,1 \mapsto b, c \mapsto d, d \mapsto c
\end{aligned}
$$

the other sections admit unique antitone involutions.

Example

There are three possible ways in which we can associate a commutative directoid to (A, \leq) and, consequently, there are three weak basic algebras with the underlying poset (A, \leq) :
(i) For $a \sqcup_{1} b=c$ we get $\mathbf{A}_{1}=\left(A, \oplus_{1}, \neg, 0\right)$ where

\oplus_{1}	0	a	b	c	d	1	\neg
0	0	a	b	c	d	1	1
a	a	d	c	c	1	1	d
b	b	c	d	1	d	1	c
c	c	c	1	1	1	1	b
d	d	1	d	1	1	1	a
1	1	1	1	1	1	1	0

Example

（ii）For $a \sqcup_{2} b=d$ we get $\mathbf{A}_{2}=\left(A, \oplus_{2}, \neg, 0\right)$ where

\oplus_{2}	0	a	b	c	d	1	\neg
0	0	a	b	c	d	1	1
a	a	d	c	c	1	1	d
b	b	c	d	1	d	1	c
c	c	d	1	1	1	1	b
d	d	1	c	1	1	1	a
1	1	1	1	1	1	1	0

口 可 三 ミ 引 ЭQく

Example

（iii）For $a \sqcup_{3} b=1$ we get $\mathbf{A}_{3}=\left(A, \oplus_{3}, \neg, 0\right)$ where

\oplus_{3}	0	a	b	c	d	1	\neg
0	0	a	b	c	d	1	1
a	a	d	c	c	1	1	d
b	b	c	d	1	d	1	c
c	c	a	1	1	1	1	b
d	d	1	b	1	1	1	a
1	1	1	1	1	1	1	0

口 可 三 ミ 引 ЭQく

Example

All these weak basic algebras induce the same effect algebra $\mathcal{E}\left(\mathbf{A}_{1}\right)=\mathcal{E}\left(\mathbf{A}_{2}\right)=\mathcal{E}\left(\mathbf{A}_{3}\right)=(A,+, 0,1)$ where

+	0	a	b	c	d	1
0	0	a	b	c	d	1
a	a	d	c	.	1	.
b	b	c	d	1	.	.
c	c	.	1	.	.	.
d	d	1
1	1

$$
\therefore \text { a } \equiv \text { ミ ワac }
$$

Let $\mathbf{E}=(E,+, 0,1)$ be an effect algebra．Since the underlying poset (E, \leq) is bounded，it can be organized into a commutative directoid (E, \sqcup) ．We shall simply say that the pair (\mathbf{E}, \sqcup) is an effect algebra with an associated commutative directoid．

ロ 包 引 三 ミ 引 引 つのく

Let $\mathbf{E}=(E,+, 0,1)$ be an effect algebra. Since the underlying poset (E, \leq) is bounded, it can be organized into a commutative directoid (E, \sqcup). We shall simply say that the pair (\mathbf{E}, \sqcup) is an effect algebra with an associated commutative directoid.

Theorem 2

Let (\mathbf{E}, \sqcup) be an effect algebra $\mathbf{E}=(E,+, 0,1)$ with an associated commutative directoid. Define

$$
x \oplus y=\left(x^{\prime} \sqcup y\right)^{\prime}+y \quad \text { and } \quad \neg x=x^{\prime}
$$

Then $\mathcal{B}(\mathbf{E}, \sqcup)=(E, \oplus, \neg, 0)$ is a weak basic algebra satisfying (3). Moreover, $\mathcal{E}(\mathcal{B}(\mathbf{E}, \sqcup))$, the effect algebra assigned to $\mathcal{B}(\mathbf{E}, \sqcup)$ by Theorem 1, is just \mathbf{E}.

Example

Let \mathbf{E} be the effect algebra we have obtained in Example 1. If we put $a \sqcup_{1} b=c$ then $\mathcal{B}\left(\mathbf{E}, \sqcup_{1}\right)$ is just the weak basic algebra \mathbf{A}_{1} from Example 1. Analogously, if $a \sqcup_{2} b=d$ then $\mathcal{B}\left(\mathbf{E}, \sqcup_{2}\right)=\mathbf{A}_{2}$, and for $a \sqcup_{3} b=1$ we have $\mathcal{B}\left(\mathbf{E}, \sqcup_{3}\right)=\mathbf{A}_{3}$.

There is a one-to-one correspondence between weak basic algebras satisfying (3) (respectively, (4)) and pairs (E, ப) where $\mathbf{E}=(E,+, 0,1)$ is an effect algebra with an associated commutative directoid (E, \sqcup). Namely, the assignment

$$
\mathbf{A} \mapsto(\mathcal{E}(\mathbf{A}), \sqcup),
$$

where $\mathcal{E}(\mathbf{A})$ is as in Theorem 1 and $x \sqcup y=\neg(\neg x \oplus y) \oplus y$, is a bijection the inverse of which is

$$
(\mathbf{E}, \sqcup) \mapsto \mathcal{B}(\mathbf{E}, \sqcup),
$$

where $\mathcal{B}(\mathbf{E}, \sqcup)$ is defined in Theorem 2.

Let $\mathbf{E}=(E,+, 0,1)$ be an effect algebra. When constructing (E, \sqcup), we did not take care of existing suprema so far. This means that $\mathcal{B}(\mathbf{E}, \sqcup)$ need not be a basic algebra even though \mathbf{E} is a lattice effect algebra. The situation can be improved if we define \sqcup in such a way that the following condition holds:

If $\sup \{x, y\}$ exists, then $x \sqcup y=y \sqcup x=\sup \{x, y\}$.
\square

Let $\mathbf{E}=(E,+, 0,1)$ be an effect algebra. When constructing (E, \sqcup), we did not take care of existing suprema so far. This means that $\mathcal{B}(\mathbf{E}, \sqcup)$ need not be a basic algebra even though \mathbf{E} is a lattice effect algebra. The situation can be improved if we define \sqcup in such a way that the following condition holds:

If $\sup \{x, y\}$ exists, then $x \sqcup y=y \sqcup x=\sup \{x, y\}$.

Corollary 2

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid that satisfies the condition (S). Then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a weak basic algebra, and if \mathbf{E} is a lattice effect algebra, then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a basic algebra.

Let us recall (see [3]) that two elements x, y in an effect algebra E are said to be compatible (in symbols $x \leftrightarrow y$) if there exist $u, v \in E$ such that $u \leq x, y \leq v$ and $x-u=v-y$. This is equivalent to the existence of $z \in E$ with $x, y \leq z, z-x \leq y$ and $z-y \leq x$. Therefore,
$x \leftrightarrow y \quad$ if and only if there is z such that $x, y \leq z$ and $z-x \leq y$.

For lattice effect algebras we proved in [2] that $x \leftrightarrow y$ if and only
if $x \oplus y=y \oplus x$ in the derived basic algebra. In general we have:

Proposition 2

Lei (\mathbf{E}, \sqcup) and $\mathbb{B}(E, \sqcup)$ be as in Theorem 2. For every $x, y \in E$, if

Let us recall (see [3]) that two elements x, y in an effect algebra E are said to be compatible (in symbols $x \leftrightarrow y$) if there exist $u, v \in E$ such that $u \leq x, y \leq v$ and $x-u=v-y$. This is equivalent to the existence of $z \in E$ with $x, y \leq z, z-x \leq y$ and $z-y \leq x$. Therefore,
$x \leftrightarrow y$ if and only if there is z such that $x, y \leq z$ and $z-x \leq y$.
For lattice effect algebras we proved in [2] that $x \leftrightarrow y$ if and only if $x \oplus y=y \oplus x$ in the derived basic algebra. In general we have:

Proposition 2

Let (\mathbf{E}, \sqcup) and $\mathcal{B}(\mathbf{E}, \sqcup)$ be as in Theorem 2. For every $x, y \in E$, if $x \oplus y=y \oplus x$, then $x \leftrightarrow y$.

The reverse implication fails to be true. Let \mathbf{E} be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in \mathbf{A}_{2} and A_{3} is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_{i} c \neq c \oplus_{i} a$ for $i=2,3$).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E}=(E,+, 0,1)$ in the following way:

We can prove that in every effect algebra $\mathbf{E}=(E,+, 0,1)$, the operation \sqcup can always be defined in such a way that it obeys the requirements of the condition (C).

The reverse implication fails to be true. Let \mathbf{E} be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in \mathbf{A}_{2} and A_{3} is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_{i} c \neq c \oplus_{i} a$ for $i=2,3$).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E}=(E,+, 0,1)$ in the following way:

If $x \leftrightarrow y$, then $x \sqcup y=y \sqcup x=z$ where $z \geq x, y$ and $z-x \leq y$.

We can prove that in every effect algebra $\mathbf{E}=(E,+, 0,1)$, the operation \sqcup can always be defined in such a way that it obeys the requirements of the condition (C).

The reverse implication fails to be true. Let \mathbf{E} be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in \mathbf{A}_{2} and A_{3} is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_{i} c \neq c \oplus_{i} a$ for $i=2,3$).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E}=(E,+, 0,1)$ in the following way:

$$
\begin{equation*}
\text { If } x \leftrightarrow y \text {, then } x \sqcup y=y \sqcup x=z \text { where } z \geq x, y \text { and } z-x \leq y . \tag{C}
\end{equation*}
$$

We can prove that in every effect algebra $\mathbf{E}=(E,+, 0,1)$, the operation \sqcup can always be defined in such a way that it obeys the requirements of the condition (C).

Theorem 3

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying condition (C). Then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a weak basic algebra such that, for all $x, y \in E$, the following are equivalent:
(i) $x \leftrightarrow y$,
(ii) $(x \sqcup y)-y=x-(x \sqcap y)$,
(iii) $x \oplus y=y \oplus x$.

By a block of a weak basic algebra $(A, \oplus, \neg, 0)$ we mean a subset B of A which is maximal with respect to the property that $x \oplus y=y \oplus x$ for all $x, y \in B$. It is evident that every element of A is contained in a block.

The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y+z$ (if $y+z$ exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omitted:

By a block of a weak basic algebra ($A, \oplus, \neg, 0$) we mean a subset B of A which is maximal with respect to the property that $x \oplus y=y \oplus x$ for all $x, y \in B$. It is evident that every element of A is contained in a block.

Theorem 4

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying the condition (C). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and $y+z$ is defined, then $x \leftrightarrow y+z$. Then a block B of $\mathcal{B}(\mathbf{E}, \sqcup)$ is a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$ if and only if $x \sqcup y \in B$ for all $x, y \in B$.

[^0]By a block of a weak basic algebra $(A, \oplus, \neg, 0)$ we mean a subset B of A which is maximal with respect to the property that $x \oplus y=y \oplus x$ for all $x, y \in B$. It is evident that every element of A is contained in a block.

Theorem 4

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying the condition (C). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and $y+z$ is defined, then $x \leftrightarrow y+z$. Then a block B of $\mathcal{B}(\mathbf{E}, \sqcup)$ is a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$ if and only if $x \sqcup y \in B$ for all $x, y \in B$.

The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y+z$ (if $y+z$ exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omitted:

Example

Let E be the set consisting of the following pairs of integers: $\mathfrak{o}=(0,0), \mathfrak{a}=(1,2), \mathfrak{b}=(1,1), \mathfrak{c}=(2,1), \mathfrak{d}=(2,3), \mathfrak{e}=(3,3)$, $\mathfrak{f}=(3,2), \mathfrak{g}=(2,2)$ and $ı=(4,4)$. If we equip E with + defined as the restriction to E of the usual pointwise addition, then $\mathbf{E}=(E,+, 0)$ becomes an effect algebra in which $(x, y)^{\prime}=(4-x, 4-y)$. The underlying poset of \mathbf{E} is as follows (notice that $(x, y) \leq(u, v)$ if and only if $(x, y)=(u, v)$, or $x<u \& y<v)$:

Example

It is obvious that $\mathfrak{f} \leftrightarrow \mathfrak{b}$, but \mathfrak{f} is not compatible with $\mathfrak{g}=\mathfrak{b}+\mathfrak{b}$. Indeed, the only common upper bound of $\mathfrak{f}, \mathfrak{g}$ is 1 , and $1-\mathfrak{f}=\mathfrak{a} \not \leq \mathfrak{g}$ as well as $1-\mathfrak{g}=\mathfrak{g} \not \leq \mathfrak{f}$, thus $\mathfrak{f} \nleftarrow \mathfrak{g}$ by (5). In accordance with the conditions (S) and (C), we put $\mathfrak{a} \sqcup \mathfrak{b}=\mathfrak{d}(=\mathfrak{a}+\mathfrak{b})$ and $\mathfrak{b} \sqcup \mathfrak{c}=\mathfrak{f}(=\mathfrak{b}+\mathfrak{c})$; in the other cases \sqcup coincides with sup. A direct inspection shows that $E \backslash\{\mathfrak{g}\}$ is a block of the assigned weak basic algebra $\mathcal{B}(\mathbf{E}, \sqcup)$ (see the table below) which is closed under \sqcup, but it is not closed under \oplus as $\mathfrak{b}+\mathfrak{b}=\mathfrak{g}$. On the other hand, $\{\mathfrak{o}, \mathfrak{b}, \mathfrak{e}, \mathfrak{g}, \mathfrak{l}\}$ is both a block and a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$.

Example

ロ品 三 ミ 引 ミのく
© I．Chajda，R．Halaš，and J．Kühr：Semilattice Structures， Heldermann Verlag，Lemgo， 2007.
R．I．Chajda，R．Halaš，and J．Kühr：Many－valued quantum algebras，Algebra Univers．，to appear．
击 A．Dvurečenskij and S．Pulmannová：New Trends in Quantum Structures，Kluwer Acad．Publ．，Dordrecht， 2000.
（1）D．J．Foulis and M．K．Bennett：Effect algebras and unsharp quantum logic，Found．Phys． 24 （1994），1325－1346．

R R．Halaš and L．Plojhar：Weak MV－algebras，Math．Slovaca 58 （2008），to appear．

囯 J．Ježek and R．Quackenbush：Directoids：algebraic models of up－directed sets，Algebra Univers． 27 （1990），49－69．

目 F．Kôpka and F．Chovanec：D－posets，Math．Slovaca 44 （1994），21－34．

围 V．Snášel：λ－lattices，Math．Bohem． 122 （1997），267－272．

[^0]: The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y+z$ (if $y+z$ exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omilted:

