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Ivan Chajda, Radomı́r Halaš and Jan Kühr
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In our previous paper [2] we introduced the concept of a basic
algebra. The name ‘basic algebra’ is used because these
algebras capture common features of many known structures
such as Boolean algebras, orthomodular lattices, MV-algebras
or lattice effect algebras. In [2] we paid special attention to
lattice effect algebras, which were originally defined as partial
algebras (E ,+,0,1), but the presence of the join operation
allows one to replace partial + by total ⊕. The intent of the
present paper is to establish similar results for general effect
algebras in the context of commutative directoids.



A commutative directoid [6] is a commutative, idempotent
groupoid (A,⊔) satisfying the equation
x ⊔ ((x ⊔y)⊔z) = (x ⊔y)⊔z. For instance, every semilattice is a
commutative directoid. It can easily be seen that the stipulation

x ≤ y if and only if x ⊔y = y (1)

defines a partial order on A such that, for every x ,y ∈ A, x ⊔y is
an upper bound of {x ,y}. Thus the poset (A,≤) is upwards
directed. Conversely, we may associate a commutative
directoid to an arbitrary upwards directed set by letting
x ⊔y = y ⊔x be some upper bound of {x ,y}, such that
whenever x ,y are comparable, then x ⊔y = y ⊔x is the greater
of x ,y .
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An antitone involution on a poset (P,≤) is a mapping
β : P → P such that, for all x ,y ∈ P, (i) x ≤ y ⇒ β (y) ≤ β (x),
and (ii) β (β (x)) = x .

By a commutative directoid with sectional antitone
involutions we shall mean a system (A,⊔,(βa)a∈A,0,1) where
(i) (A,⊔) is a commutative directoid with a least element 0 and a
greatest element 1, and (ii) every section [a) is equipped with
an antitone involution βa.
In particular, if (A,⊔) is a semilattice, then the underlying poset
is a lattice in which β0(β0(x)⊔β0(y)) is the infimum of {x ,y},
and hence we may say that (A,⊔,(βa)a∈A,0,1) is a lattice with
sectional antitone involutions.
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A weak basic algebra is an algebra (A,⊕,¬,0) of type (2,1,0)
satisfying the following identities and quasi-identity (where 1 is
an abbreviation for ¬0):

x ⊕0 = x , (W1)

¬¬x = x , (W2)

¬(¬x ⊕y)⊕y = ¬(¬y ⊕x)⊕x , (W3)

x ⊕ (¬(¬(¬(x ⊕y)⊕y)⊕z)⊕z) = 1, (W4)

¬x ⊕ (y ⊕x) = 1, (W5)

¬x ⊕y = 1 & ¬y ⊕z = 1 ⇒ ¬(¬z ⊕x)⊕ (¬y ⊕x) = 1. (W6)



If (A,⊕,¬,0) is a weak basic algebra and if we put

x ⊔y = ¬(¬x ⊕y)⊕y ,

then (A,⊔) is a commutative directoid with a least element 0
and a greatest element 1, such that the underlying order ≤ is
given by

x ≤ y if and only if x ⊔y = y if and only if ¬x ⊕y = 1,

and for each a ∈ A, x 7→ ¬x ⊕a is an antitone involution on
[a) = {x ∈ A | a ≤ x}.



Conversely, if (A,⊔,(βa)a∈A,0,1) is a commutative directoid with
sectional antitone involutions, then we can define ⊕ and ¬ as
x ⊕y = βy (β0(x)⊔y) and ¬x = β0(x), respectively, and
(A,⊕,¬,0) becomes a weak basic algebra in which
x ⊔y = ¬(¬x ⊕y)⊕y and βa(x) = ¬x ⊕a.
In every weak basic algebra, in addition to the ‘join-like’
operation ⊔, we can introduce the dual ‘meet-like’ operation ⊓
by

x ⊓y = ¬(¬x ⊔¬y).

Then we have x ≤ y if and only if x ⊓y = x , and the structure
(A,⊔,⊓) is a λ -lattice in the sense of [8], i.e., both (A,⊔) and
(A,⊓) are commutative directoids and the absorption laws
x ⊔ (x ⊓y) = x = x ⊓ (x ⊔y) are satisfied.
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A basic algebra [2] is an algebra (A,⊕,¬,0) of type (2,1,0)
satisfying the identities (again, 1 = ¬0)

x ⊕0 = x , (B1)

¬¬x = x , (B2)

¬(¬x ⊕y)⊕y = ¬(¬y ⊕x)⊕x , (B3)

¬(¬(¬(x ⊕y)⊕y)⊕z)⊕ (x ⊕z) = 1. (B4)

Every basic algebra is a weak basic algebra and the above
assignment between weak basic algebras and commutative
directoids with sectional antitone involutions, restricted to basic
algebras, furnishes a one-to-one correspondence between
basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.
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Proposition 1

An algebra A = (A,⊕,¬,0) satisfying (W1)—(W4) is a weak
basic algebra if and only if it satisfies the identity

¬(¬((x ⊔y)⊔z)⊕x)⊕ (¬y ⊕x) = 1. (2)



Another central concept is that of an effect algebra, introduced
by Foulis and Bennett [4]. We recall that an effect algebra is a
system (E ,+,0,1) where 0,1 are distinguished elements of E
and + is a partial binary operation on E such that
(EA1) x +y = y +x if one side is defined,
(EA2) (x +y)+z = x +(y +z) if one side is defined,
(EA3) for every x ∈ E there exists a unique x ′ ∈ E with

x ′ +x = 1,
(EA4) if x +1 is defined then x = 0.
Every effect algebra bears a natural partial order given by

x ≤ y if and only if y = x +z for some z ∈ E .

The poset (E ,≤) is bounded, 0 is the bottom element and 1 is
the top element. If, moreover, (E ,≤) is a lattice, then (E ,+,0,1)
is called a lattice effect algebra.
In every effect algebra, a partial subtraction − can be defined
as follows:

x −y exists and equals z if and only if x = y +z.
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Now, we focus on the relationships between effect algebras and
weak basic algebras.

Theorem 1

Let A = (A,⊕,¬,0) be a weak basic algebra. Define the partial
addition + on A as follows: x +y is defined if and only if x ≤¬y ,
and in this case x +y = x ⊕y . Then E(A) = (A,+,0,1) is an
effect algebra if and only if A satisfies the quasi-identity

x ≤ ¬y & x ⊕y ≤ ¬z ⇒ (x ⊕y)⊕z = x ⊕ (z ⊕y). (3)

Moreover, over weak basic algebras, (3) is equivalent to the
identity

(x ⊕y)⊕ (¬(x ⊕y)⊓z) = (x ⊓¬y)⊕ ((¬(x ⊕y)⊓z)⊕y). (4)
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Corollary 1

[2] Let A = (A,⊕,¬,0) be a basic algebra and let
E(A) = (A,+,0,1) be as in Theorem 1. Then E(A) is a lattice
effect algebra if and only if A satisfies the quasi-identity (3).

In case of basic algebras, A can be retrieved from E(A) ([2],
see below). However, as the following example shows, this is
not true for weak basic algebras.
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Example 1 (1/5)

Example

Let (A,≤) be the poset

0

1

a

c

b

d

and let the sections [0) = A, [a) and [b) be equipped with the
following antitone involutions:

β0 : 0 7→ 1,1 7→ 0,a 7→ d ,d 7→ a,b 7→ c,c 7→ b,

βa : a 7→ 1,1 7→ a,c 7→ c,d 7→ d ,

βb : b 7→ 1,1 7→ b,c 7→ d ,d 7→ c;

the other sections admit unique antitone involutions.



Example 1 (2/5)

Example

There are three possible ways in which we can associate a
commutative directoid to (A,≤) and, consequently, there are
three weak basic algebras with the underlying poset (A,≤):
(i) For a⊔1 b = c we get A1 = (A,⊕1,¬,0) where

⊕1 0 a b c d 1 ¬

0 0 a b c d 1 1
a a d c c 1 1 d
b b c d 1 d 1 c
c c c 1 1 1 1 b
d d 1 d 1 1 1 a
1 1 1 1 1 1 1 0



Example 1 (3/5)

Example

(ii) For a⊔2 b = d we get A2 = (A,⊕2,¬,0) where

⊕2 0 a b c d 1 ¬

0 0 a b c d 1 1
a a d c c 1 1 d
b b c d 1 d 1 c
c c d 1 1 1 1 b
d d 1 c 1 1 1 a
1 1 1 1 1 1 1 0



Example 1 (4/5)

Example

(iii) For a⊔3 b = 1 we get A3 = (A,⊕3,¬,0) where

⊕3 0 a b c d 1 ¬

0 0 a b c d 1 1
a a d c c 1 1 d
b b c d 1 d 1 c
c c a 1 1 1 1 b
d d 1 b 1 1 1 a
1 1 1 1 1 1 1 0



Example 1 (5/5)

Example

All these weak basic algebras induce the same effect algebra
E(A1) = E(A2) = E(A3) = (A,+,0,1) where

+ 0 a b c d 1
0 0 a b c d 1
a a d c . 1 .

b b c d 1 . .

c c . 1 . . .

d d 1 . . . .

1 1 . . . . .



Let E = (E ,+,0,1) be an effect algebra. Since the underlying
poset (E ,≤) is bounded, it can be organized into a commutative
directoid (E ,⊔). We shall simply say that the pair (E,⊔) is an
effect algebra with an associated commutative directoid.

Theorem 2

Let (E,⊔) be an effect algebra E = (E ,+,0,1) with an
associated commutative directoid. Define

x ⊕y = (x ′⊔y)′ +y and ¬x = x ′
.

Then B(E,⊔) = (E ,⊕,¬,0) is a weak basic algebra satisfying
(3). Moreover, E(B(E,⊔)), the effect algebra assigned to
B(E,⊔) by Theorem 1, is just E.
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Example 2

Example

Let E be the effect algebra we have obtained in Example 1. If
we put a⊔1 b = c then B(E,⊔1) is just the weak basic algebra
A1 from Example 1. Analogously, if a⊔2 b = d then
B(E,⊔2) = A2, and for a⊔3 b = 1 we have B(E,⊔3) = A3.



There is a one-to-one correspondence between weak basic
algebras satisfying (3) (respectively, (4)) and pairs (E,⊔) where
E = (E ,+,0,1) is an effect algebra with an associated
commutative directoid (E ,⊔). Namely, the assignment

A 7→ (E(A),⊔),

where E(A) is as in Theorem 1 and x ⊔y = ¬(¬x ⊕y)⊕y , is a
bijection the inverse of which is

(E,⊔) 7→ B(E,⊔),

where B(E,⊔) is defined in Theorem 2.



Let E = (E ,+,0,1) be an effect algebra. When constructing
(E,⊔), we did not take care of existing suprema so far. This
means that B(E,⊔) need not be a basic algebra even though E
is a lattice effect algebra. The situation can be improved if we
define ⊔ in such a way that the following condition holds:

If sup{x ,y} exists, then x ⊔y = y ⊔x = sup{x ,y}. (S)

Corollary 2

Let (E,⊔) be an effect algebra with an associated commutative
directoid that satisfies the condition (S). Then B(E,⊔) is a weak
basic algebra, and if E is a lattice effect algebra, then B(E,⊔) is
a basic algebra.
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Let us recall (see [3]) that two elements x ,y in an effect algebra
E are said to be compatible (in symbols x ↔ y) if there exist
u,v ∈ E such that u ≤ x ,y ≤ v and x −u = v −y . This is
equivalent to the existence of z ∈ E with x ,y ≤ z, z −x ≤ y and
z −y ≤ x . Therefore,

x ↔ y if and only if there is z such that x ,y ≤ z and z−x ≤ y .

(5)
For lattice effect algebras we proved in [2] that x ↔ y if and only
if x ⊕y = y ⊕x in the derived basic algebra. In general we have:

Proposition 2

Let (E,⊔) and B(E,⊔) be as in Theorem 2. For every x ,y ∈ E , if
x ⊕y = y ⊕x , then x ↔ y .
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The reverse implication fails to be true. Let E be the effect
algebra from Examples 1 and 2. It can be easily seen that
every two elements are compatible, while the addition in A2 and
A3 is not commutative (for instance, a ↔ c, but a⊕i c 6= c⊕i a
for i = 2,3).

In order to overcome this disadvantage, we define the ‘join-like’
operation ⊔ in an effect algebra E = (E ,+,0,1) in the following
way:

If x ↔ y , then x ⊔y = y ⊔x = z where z ≥ x ,y and z −x ≤ y .

(C)

We can prove that in every effect algebra E = (E ,+,0,1), the
operation ⊔ can always be defined in such a way that it obeys
the requirements of the condition (C).
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Theorem 3

Let (E,⊔) be an effect algebra with an associated commutative
directoid satisfying condition (C). Then B(E,⊔) is a weak basic
algebra such that, for all x ,y ∈ E , the following are equivalent:

(i) x ↔ y ,

(ii) (x ⊔y)−y = x − (x ⊓y),

(iii) x ⊕y = y ⊕x .



By a block of a weak basic algebra (A,⊕,¬,0) we mean a
subset B of A which is maximal with respect to the property that
x ⊕y = y ⊕x for all x ,y ∈ B. It is evident that every element of
A is contained in a block.

Theorem 4

Let (E,⊔) be an effect algebra with an associated commutative
directoid satisfying the condition (C). Assume that for all
x ,y ,z ∈ E , if x ↔ y , x ↔ z and y +z is defined, then x ↔ y +z.
Then a block B of B(E,⊔) is a subalgebra of B(E,⊔) if and only
if x ⊔y ∈ B for all x ,y ∈ B.

The condition that x ↔ y and x ↔ z together yield x ↔ y +z (if
y +z exists) holds in lattice effect algebras, however, the next
example shows that this additional assumption in Theorem 4
cannot be omitted:
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Example

Let E be the set consisting of the following pairs of integers:
0 = (0,0), a = (1,2), b = (1,1), c = (2,1), d = (2,3), e = (3,3),
f = (3,2), g = (2,2) and 1 = (4,4). If we equip E with + defined
as the restriction to E of the usual pointwise addition, then
E = (E ,+,0) becomes an effect algebra in which
(x ,y)′ = (4−x ,4−y). The underlying poset of E is as follows
(notice that (x ,y) ≤ (u,v) if and only if (x ,y) = (u,v), or
x < u & y < v):

0

1

a

d

b

g

e

c

f
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Example

It is obvious that f ↔ b, but f is not compatible with g = b+b.
Indeed, the only common upper bound of f,g is 1, and
1− f = a � g as well as 1−g = g � f, thus f 6↔ g by (5).
In accordance with the conditions (S) and (C), we put
a⊔b = d(= a+b) and b⊔ c = f(= b+ c); in the other cases ⊔
coincides with sup. A direct inspection shows that E \{g} is a
block of the assigned weak basic algebra B(E,⊔) (see the table
below) which is closed under ⊔, but it is not closed under ⊕ as
b+b = g. On the other hand, {0,b,e,g,1} is both a block and a
subalgebra of B(E,⊔).
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Example

⊕ 0 a b c d e f g 1 ¬

0 0 a b c d e f g 1 1

a a a d e d e 1 g 1 f

b b d g f d 1 f e 1 e

c c e f c 1 e f g 1 d

d d d d 1 d 1 1 e 1 c

e e e 1 e 1 1 1 1 1 b

f f 1 f f 1 1 f e 1 a

g g d e f d 1 f 1 1 g

1 1 1 1 1 1 1 1 1 1 0
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