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In our previous paper [2] we introduced the concept of a basic
algebra. The name ‘basic algebra’ is used because these
algebras capture common features of many known structures
such as Boolean algebras, orthomodular lattices, MV-algebras
or lattice effect algebras. In [2] we paid special attention to
lattice effect algebras, which were originally defined as partial
algebras (E,+,0,1), but the presence of the join operation
allows one to replace partial 4 by total ©. The intent of the
present paper is to establish similar results for general effect
algebras in the context of commutative directoids.
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A commutative directoid [6] is a commutative, idempotent
groupoid (A,L) satisfying the equation
xU((xUy)uz)=(xUy)Uz. Forinstance, every semilattice is a
commutative directoid. It can easily be seen that the stipulation

x <y ifandonlyif xUy=y Q)
defines a partial order on A such that, for every x,y € A, xUy is

an upper bound of {x,y}. Thus the poset (A, <) is upwards
directed.
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A commutative directoid [6] is a commutative, idempotent
groupoid (A,L) satisfying the equation
xU((xUy)uz)=(xUy)Uz. Forinstance, every semilattice is a
commutative directoid. It can easily be seen that the stipulation

x <y ifandonlyif xUy=y Q)

defines a partial order on A such that, for every x,y € A, xUy is
an upper bound of {x,y}. Thus the poset (A, <) is upwards
directed. Conversely, we may associate a commutative
directoid to an arbitrary upwards directed set by letting

XLy =y LIx be some upper bound of {x,y}, such that
whenever x,y are comparable, then x Ly =y LIX is the greater
of x,y.
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and (i) B(B(x)) = x

An antitone involution on a poset (P, <) is a mapping

B: P — P such that, for all x,y € P, (i) x <y = B(y) < B(x),
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An antitone involution on a poset (P, <) is a mapping

B: P — P suchthat, forall x,y € P, (i) x <y = B(y) < B(x),
and (i) B(B(x)) =x.

By a commutative directoid with sectional antitone
involutions we shall mean a system (A,U, (Ba)aca,0,1) where

(i) (A,1)) is a commutative directoid with a least element 0 and a

greatest element 1, and (ii) every section [a) is equipped with
an antitone involution ;.
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An antitone involution on a poset (P, <) is a mapping
B: P — P suchthat, forall x,y € P, (i) x <y = B(y) < B(x),
and (i) B(B(x)) = x.

By a commutative directoid with sectional antitone
involutions we shall mean a system (A,U, (Ba)aca,0,1) where
(i) (A,1)) is a commutative directoid with a least element 0 and a
greatest element 1, and (ii) every section [a) is equipped with
an antitone involution ;.

In particular, if (A,L) is a semilattice, then the underlying poset
is a lattice in which Bo(Bo(X) L Bo(y)) is the infimum of {x,y},

and hence we may say that (A,L, (Ba)aca,0,1) is a lattice with
sectional antitone involutions.
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A weak basic algebra is an algebra (A, ®,—,0) of type (2,1,0)
satisfying the following identities and quasi-identity (where 1 is
an abbreviation for —0):

XP0=x, (W1)
——X =X, (WZ)
(-x®y)Dy = (7Y &X) DX, (W3)
X®((-(-(xey)py)®z)d2z)=1, (W4)
XDy ®x) =1, (W5)

XOYy=1& - y®z=1= ~(-zox)o(-ydx)=1. (W6)
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If (A,®,—,0) is a weak basic algebra and if we put

xuy =-(-xay)ay,
then (A,U) is a commutative directoid with a least element 0
and a greatest element 1, such that the underlying order < is
given by
x <y ifandonlyif xUy =y ifandonly if
[@a)={xeA|a<x}.

and for each a € A, x — —x @ a is an antitone involution on

—Xay =1,
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Conversely, if (A,L,(Ba)aea,0,1) is a commutative directoid with
sectional antitone involutions, then we can define @ and — as

X @y = By (Bo(x)Ly) and —x = By(x), respectively, and
(A,®,—,0) becomes a weak basic algebra in which

xUy ==(—-x@y)dy and Ba(X) = -xda.
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Conversely, if (A,L,(Ba)aea,0,1) is a commutative directoid with
sectional antitone involutions, then we can define @ and — as
X @y = By (Bo(x)Ly) and —x = By(x), respectively, and
(A,®,—,0) becomes a weak basic algebra in which
xUy ==(—-x@y)dy and Ba(X) = -xda.
In every weak basic algebra, in addition to the ‘join-like’
operation LI, we can introduce the dual ‘meet-like’ operation M
by

Xy =—=(=xU-y).
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Conversely, if (A,L,(Ba)aea,0,1) is a commutative directoid with
sectional antitone involutions, then we can define @ and — as
X @y = By (Bo(x)Ly) and —x = By(x), respectively, and
(A,®,—,0) becomes a weak basic algebra in which
xUy ==(—-x@y)dy and Ba(X) = -xda.
In every weak basic algebra, in addition to the ‘join-like’
operation LI, we can introduce the dual ‘meet-like’ operation M
by

Xy =—=(=xU-y).

Then we have x <y if and only if x My = X, and the structure
(A,U,1) is a A-lattice in the sense of [8], i.e., both (A,L!) and
(A,r) are commutative directoids and the absorption laws
XU (xMy)=x=xnM(xLy) are satisfied.
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A basic algebra [2] is an algebra (A, ®,—,0) of type (2,1,0)
satisfying the identities (again, 1 = —-0)

Xd0=x,

=X :X7

(B1)

(B2)
(x®@y)Dy =-(-y ®X) DX, (B3)
(-(-(xey)ey)dz)e(Xxdz)=1. (B4)
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A basic algebra [2] is an algebra (A, ®,—,0) of type (2,1,0)
satisfying the identities (again, 1 = —-0)

X®0=x, (B1)
==X =X, (B2)
(xDy)BYy =(-y DX) DX, (B3)
(-(-(xey)ey)dz)e(Xxdz)=1. (B4)

Every basic algebra is a weak basic algebra and the above
assignment between weak basic algebras and commutative
directoids with sectional antitone involutions, restricted to basic
algebras, furnishes a one-to-one correspondence between
basic algebras and lattices with sectional antitone involutions.
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A basic algebra [2] is an algebra (A, ®,—,0) of type (2,1,0)
satisfying the identities (again, 1 = —-0)

X®0=x, (B1)
==X =X, (B2)
(xDy)BYy =(-y DX) DX, (B3)
(-(-(xey)ey)dz)e(Xxdz)=1. (B4)

Every basic algebra is a weak basic algebra and the above
assignment between weak basic algebras and commutative
directoids with sectional antitone involutions, restricted to basic
algebras, furnishes a one-to-one correspondence between
basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.
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Proposition 1

An algebra A = (A, ®,—,0) satisfying (W1)—(W4) is a weak
basic algebra if and only if it satisfies the identity

~(=((xuy)uz)ox) @ (7y ©x) = 1.

(2)
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Another central concept is that of an effect algebra, introduced
by Foulis and Bennett [4]. We recall that an effect algebrais a
system (E,+,0,1) where 0,1 are distinguished elements of E
and + is a partial binary operation on E such that
(EA1) x +y =y +x if one side is defined,
(EA2) (x+Yy)+z=x+(y+2z)if one side is defined,
(EA3) for every x € E there exists a unique x’ € E with

X' +x =1,
(EA4) if x +1 is defined then x = 0.
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Another central concept is that of an effect algebra, introduced
by Foulis and Bennett [4]. We recall that an effect algebrais a
system (E,+,0,1) where 0,1 are distinguished elements of E
and + is a partial binary operation on E such that
(EA1) x +y =y +x if one side is defined,
(EA2) (x+Yy)+z=x+(y+2z)if one side is defined,
(EA3) for every x € E there exists a unique x’ € E with

X' +x =1,
(EA4) if x +1 is defined then x = 0.
Every effect algebra bears a natural partial order given by

x <y ifandonlyif y=x+2zforsomezcE.

The poset (E, <) is bounded, 0 is the bottom element and 1 is
the top element. If, moreover, (E,<) is a lattice, then (E,+,0,1)
is called a lattice effect algebra.
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Another central concept is that of an effect algebra, introduced
by Foulis and Bennett [4]. We recall that an effect algebrais a
system (E,+,0,1) where 0,1 are distinguished elements of E
and + is a partial binary operation on E such that
(EA1) x +y =y +x if one side is defined,
(EA2) (x+Yy)+z=x+(y+2z)if one side is defined,
(EA3) for every x € E there exists a unique x’ € E with

X' +x =1,
(EA4) if x +1 is defined then x = 0.
Every effect algebra bears a natural partial order given by

x <y ifandonlyif y=x+2zforsomezcE.

The poset (E, <) is bounded, 0 is the bottom element and 1 is

the top element. If, moreover, (E,<) is a lattice, then (E,+,0,1)

is called a lattice effect algebra.

In every effect algebra, a partial subtraction — can be defined
as follows:

X —y existsand equalsz ifandonlyif x=y+z.

=] = = =
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weak basic algebras.

Now, we focus on the relationships between effect algebras and
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Now, we focus on the relationships between effect algebras and
weak basic algebras.

Theorem 1

Let A = (A,®,—,0) be a weak basic algebra. Define the partial
addition + on A as follows: x +y is defined if and only if x < -y,
and in this case x +y =x@y. Then E(A) = (A,+,0,1) is an
effect algebra if and only if A satisfies the quasi-identity

X<y &Xey<-z = (X®y)Bz=xE(zaY). (3)

Moreover, over weak basic algebras, (3) is equivalent to the
identity

(xey)o(-(xey)nz)=(xn-y)e((-(xey)nz)ey). (4)
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[2] Let A = (A,®,—,0) be a basic algebra and let

E(A) =(A,+,0,1) be as in Theorem 1. Then E(A) is a lattice

effect algebra if and only if A satisfies the quasi-identity (3).
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[2] Let A = (A,®,—,0) be a basic algebra and let

E(A) =(A,+,0,1) be as in Theorem 1. Then E(A) is a lattice

effect algebra if and only if A satisfies the quasi-identity (3).

In case of basic algebras, A can be retrieved from £(A) ([2],
see below). However, as the following example shows, this is
not true for weak basic algebras.
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Example 1 (1/5)

Example

Let (A, <) be the poset

and let the sections [0) = A, [a) and [b) be equipped with the
following antitone involutions:

Bo:0—1,1—0,ar—~d,d—ab+—c,c—b,
Ba:a—1,1—ac—c,d—d,
By:b—1,1—b,c—d,d—c;

the other sections admit unique antitone involutions. pac



Example 1 (2/5)

Example

There are three possible ways in which we can associate a
commutative directoid to (A, <) and, consequently, there are
three weak basic algebras with the underlying poset (A, <):
(i) Foral; b =c we get A; = (A,®1,—,0) where

110 a b ¢ d 1|~

0|0 a b c d 1|1

alad cc 1 1d

b|b ¢c d 1 d 1|c

c|c c 1 1 1 1|b

d|d 1 d 1 1 1]|a

171 1 1 1 1 1|0

=} =2 = E E DA



Example 1 (3/5)

(i) Forall, b =d we get A, = (A,@3,—,0) where
|0 a b ¢ d 1|~
0|0 a b cd 1|1
alad c c 1 1|d
b |b ¢c d 1 d 1|c
c|lc d 1 1 1 1|b
d|ld 1 ¢c 1 1 1]|a
1 /1 1 1 1 1 1|0
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(A, ®3,—,0) where

=1wegetAz =

(iii) For aligb
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Example 1 (5/5)

All these weak basic algebras induce the same effect algebra
E(A1) = E(A2) = E(A3) = (A, +,0,1) where

C
C

0o olw
QO T T

1
1

= Q|lQ

1

Qo 0T O+
PO O T® OO0

= -
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Let E = (E,+,0,1) be an effect algebra. Since the underlying
poset (E, <) is bounded, it can be organized into a commutative
directoid (E,L!). We shall simply say that the pair (E,U) is an
effect algebra with an associated commutative directoid.
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Let E = (E,+,0,1) be an effect algebra. Since the underlying
poset (E, <) is bounded, it can be organized into a commutative
directoid (E,L!). We shall simply say that the pair (E,U) is an
effect algebra with an associated commutative directoid.

Theorem 2

Let (E,L) be an effect algebra E = (E,+,0,1) with an
associated commutative directoid. Define

xdy=XUy)+y and -x=x"
Then B(E,U) = (E,®,—,0) is a weak basic algebra satisfying

(3). Moreover, E(B(E,L)), the effect algebra assigned to
B(E,U) by Theorem 1, is just E.
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Example 2

Let E be the effect algebra we have obtained in Example 1. If

we put all; b =c then B(E,U,) is just the weak basic algebra
A, from Example 1. Analogously, if alLl, b =d then

B(E,») =A,, and for alizb =1 we have B(E,Li3) = As.
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There is a one-to-one correspondence between weak basic
algebras satisfying (3) (respectively, (4)) and pairs (E,L) where
E=(E,+,0,1) is an effect algebra with an associated
commutative directoid (E, ). Namely, the assignment
A (E(A),L),
where £(A) isasin Theorem 1 and xLly = —~(—-X®y) DYy, isa
bijection the inverse of which is
(E,U) — B(E,L),

where B(E,L) is defined in Theorem 2.
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Let E = (E,+,0,1) be an effect algebra. When constructing
(E,U), we did not take care of existing suprema so far. This
means that B(E,L!) need not be a basic algebra even though E
is a lattice effect algebra. The situation can be improved if we
define LI in such a way that the following condition holds:

If sup{x,y} exists, thenx Uy =yUx =sup{x,y}. (S)
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Let E = (E,+,0,1) be an effect algebra. When constructing
(E,U), we did not take care of existing suprema so far. This
means that B(E,L!) need not be a basic algebra even though E
is a lattice effect algebra. The situation can be improved if we
define LI in such a way that the following condition holds:

If sup{x,y} exists, thenx Uy =yUx =sup{x,y}. (S)

Let (E,U) be an effect algebra with an associated commutative
directoid that satisfies the condition (S). Then B(E,U) is a weak

basic algebra, and if E is a lattice effect algebra, then B(E, L) is
a basic algebra.
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Let us recall (see [3]) that two elements x,y in an effect algebra
E are said to be compatible (in symbols x < y) if there exist
u,v e E suchthatu <x,y <vandx—u=v-—y. Thisis

equivalent to the existence of z € E with x,y <z,z —-x <y and
Z —y < X. Therefore,

x —Yy ifandonlyif thereisz suchthatx,y<zandz-—-x<y.

(5)
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Let us recall (see [3]) that two elements x,y in an effect algebra
E are said to be compatible (in symbols x < y) if there exist
u,v € E suchthatu <x,y <vandx—-u=v-—y. Thisis
equivalent to the existence of z € E with x,y <z,z —-x <y and
Z —y < X. Therefore,

x —Yy ifandonlyif thereisz suchthatx,y<zandz-—-x<y.

5)
For lattice effect algebras we proved in [2] that X <y if and only
if X &y =y @ x in the derived basic algebra. In general we have:

Proposition 2

Let (E,U) and B(E,L) be as in Theorem 2. For every X,y € E, if
XPYy =y dX,thenx < vy.
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The reverse implication fails to be true. Let E be the effect
algebra from Examples 1 and 2. It can be easily seen that
every two elements are compatible, while the addition in A, and

A3 is not commutative (for instance, a <~ ¢, buta®;c #Ac®ja
fori =2,3).
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The reverse implication fails to be true. Let E be the effect
algebra from Examples 1 and 2. It can be easily seen that
every two elements are compatible, while the addition in A, and
A3 is not commutative (for instance, a <~ ¢, buta®;c #Ac®ja
fori =2,3).

In order to overcome this disadvantage, we define the ‘join-like’

operation L in an effect algebra E = (E,+,0,1) in the following
way:

IfX vy, thenxuUy=yLUx=zwherez>x,yandz—x <y.

(©
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The reverse implication fails to be true. Let E be the effect
algebra from Examples 1 and 2. It can be easily seen that
every two elements are compatible, while the addition in A, and
A3 is not commutative (for instance, a <~ ¢, buta®;c #Ac®ja
fori =2,3).

In order to overcome this disadvantage, we define the ‘join-like’

operation L in an effect algebra E = (E,+,0,1) in the following
way:

IfX vy, thenxuUy=yLUx=zwherez>x,yandz—x <y.

(©

We can prove that in every effect algebra E = (E,+,0,1), the
operation LI can always be defined in such a way that it obeys
the requirements of the condition (C).
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Theorem 3

Let (E,L!) be an effect algebra with an associated commutative
directoid satisfying condition (C). Then B(E,U) is a weak basic
algebra such that, for all x,y € E, the following are equivalent:

(i) x<vy,
(i) (xuy)—y=x—(xny),
(i) x®y =y ®X.
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By a block of a weak basic algebra (A,®,—,0) we mean a
subset B of A which is maximal with respect to the property that

xdy =y ®x forall x,y € B. It is evident that every element of
A is contained in a block.
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By a block of a weak basic algebra (A,®,—,0) we mean a
subset B of A which is maximal with respect to the property that
xdy =y ®x forall x,y € B. It is evident that every element of
A is contained in a block.

Theorem 4

Let (E,U) be an effect algebra with an associated commutative
directoid satisfying the condition (C). Assume that for all
X,y,z€E,ifx -y, X« zandy+z is defined, then x <y +z.
Then a block B of B(E,LU) is a subalgebra of B(E,L) if and only
if x Uy € B for all x,y € B.
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By a block of a weak basic algebra (A,®,—,0) we mean a
subset B of A which is maximal with respect to the property that
xdy =y ®x forall x,y € B. It is evident that every element of
A is contained in a block.

Theorem 4

Let (E,U) be an effect algebra with an associated commutative
directoid satisfying the condition (C). Assume that for all
X,y,z€E,ifx -y, X« zandy+z is defined, then x <y +z.
Then a block B of B(E,LU) is a subalgebra of B(E,L) if and only
if x Uy € B for all x,y € B.

The condition that x <+ y and x < z together yield x <y + z (if
y + z exists) holds in lattice effect algebras, however, the next
example shows that this additional assumption in Theorem 4
cannot be omitted:
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Example 3 (1/3)

Example

Let E be the set consisting of the following pairs of integers:
0=(0,0),a=(1,2), 6=(1,1),c=(2,1),2=(2,3), e =(3,3),
f=(3,2), g=(2,2) and 1 = (4,4). If we equip E with + defined
as the restriction to E of the usual pointwise addition, then

E = (E,+,0) becomes an effect algebra in which

(X,y) = (4—x,4—y). The underlying poset of E is as follows
(notice that (x,y) < (u,v) if and only if (x,y) = (u,v), or
X<U&Y<V): 1

N
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Example 3 (2/3)

Example

It is obvious that f < b, but f is not compatible with g = b+ b.
Indeed, the only common upper bound of f, g is 1, and
1—f=afgaswellas1—g=g%f, thus f + g by (5).

In accordance with the conditions (S) and (C), we put
allb=0(=a+b)and blLic=f(=b+c); in the other cases LI
coincides with sup. A direct inspection shows that E \ {g} is a
block of the assigned weak basic algebra B(E, L) (see the table
below) which is closed under L, but it is not closed under & as
b+ b= g. On the other hand, {o,b,e¢,g,1} is both a block and a
subalgebra of B(E,L!).
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