Every effect algebra can be made into a total algebra

Ivan Chajda

coauthors: R. Halaš, J. Kühr

Ivan Chajda, Radomír Halaš and Jan Kühr Department of Algebra and Geometry Faculty of Science Palacký University Olomouc Czech Republic e-mail: {chajda, halas, kuhr}@inf.upol.cz

Sac

In our previous paper [2] we introduced the concept of a basic algebra. The name 'basic algebra' is used because these algebras capture common features of many known structures such as Boolean algebras, orthomodular lattices, MV-algebras or lattice effect algebras. In [2] we paid special attention to lattice effect algebras, which were originally defined as partial algebras (E, +, 0, 1), but the presence of the join operation allows one to replace partial + by total \oplus . The intent of the present paper is to establish similar results for general effect algebras in the context of commutative directoids.

A **commutative directoid** [6] is a commutative, idempotent groupoid (A, \sqcup) satisfying the equation $x \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z$. For instance, every semilattice is a commutative directoid. It can easily be seen that the stipulation

$$x \le y$$
 if and only if $x \sqcup y = y$ (1)

defines a partial order on *A* such that, for every $x, y \in A$, $x \sqcup y$ is an upper bound of $\{x, y\}$. Thus the poset (A, \leq) is upwards directed. Conversely, we may associate a commutative directoid to an arbitrary upwards directed set by letting $x \sqcup y = y \sqcup x$ be some upper bound of $\{x, y\}$, such that whenever x, y are comparable, then $x \sqcup y = y \sqcup x$ is the greater of x, y. A **commutative directoid** [6] is a commutative, idempotent groupoid (A, \sqcup) satisfying the equation $x \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z$. For instance, every semilattice is a commutative directoid. It can easily be seen that the stipulation

$$x \le y$$
 if and only if $x \sqcup y = y$ (1)

defines a partial order on *A* such that, for every $x, y \in A$, $x \sqcup y$ is an upper bound of $\{x, y\}$. Thus the poset (A, \leq) is upwards directed. Conversely, we may associate a commutative directoid to an arbitrary upwards directed set by letting $x \sqcup y = y \sqcup x$ be some upper bound of $\{x, y\}$, such that whenever x, y are comparable, then $x \sqcup y = y \sqcup x$ is the greater of x, y. An **antitone involution** on a poset (P, \leq) is a mapping $\beta : P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x)) = x$.

By a **commutative directoid with sectional antitone involutions** we shall mean a system $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ where (i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1, and (ii) every section [*a*) is equipped with an antitone involution β_a .

In particular, if (A, \sqcup) is a semilattice, then the underlying poset is a lattice in which $\beta_0(\beta_0(x) \sqcup \beta_0(y))$ is the infimum of $\{x, y\}$, and hence we may say that $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a **lattice with sectional antitone involutions**. An **antitone involution** on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x)) = x$.

By a commutative directoid with sectional antitone

involutions we shall mean a system $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ where (i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1, and (ii) every section [*a*) is equipped with an antitone involution β_a .

In particular, if (A, \sqcup) is a semilattice, then the underlying poset is a lattice in which $\beta_0(\beta_0(x) \sqcup \beta_0(y))$ is the infimum of $\{x, y\}$, and hence we may say that $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a **lattice with sectional antitone involutions**. An **antitone involution** on a poset (P, \leq) is a mapping $\beta: P \rightarrow P$ such that, for all $x, y \in P$, (i) $x \leq y \Rightarrow \beta(y) \leq \beta(x)$, and (ii) $\beta(\beta(x)) = x$.

By a commutative directoid with sectional antitone

involutions we shall mean a system $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ where (i) (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1, and (ii) every section [*a*) is equipped with an antitone involution β_a .

In particular, if (A, \sqcup) is a semilattice, then the underlying poset is a lattice in which $\beta_0(\beta_0(x) \sqcup \beta_0(y))$ is the infimum of $\{x, y\}$, and hence we may say that $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a **lattice with sectional antitone involutions**. A weak basic algebra is an algebra $(A, \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the following identities and quasi-identity (where 1 is an abbreviation for $\neg 0$):

$$\boldsymbol{x} \oplus \boldsymbol{0} = \boldsymbol{x}, \tag{W1}$$

$$\neg \neg x = x, \tag{W2}$$

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x, \tag{W3}$$

$$x \oplus (\neg (\neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus z) = 1,$$
 (W4)

$$\neg x \oplus (y \oplus x) = 1, \tag{W5}$$

$$\neg x \oplus y = 1 \& \neg y \oplus z = 1 \Rightarrow \neg (\neg z \oplus x) \oplus (\neg y \oplus x) = 1.$$
 (W6)

If $(A, \oplus, \neg, 0)$ is a weak basic algebra and if we put

$$\boldsymbol{x} \sqcup \boldsymbol{y} = \neg (\neg \boldsymbol{x} \oplus \boldsymbol{y}) \oplus \boldsymbol{y},$$

then (A, \sqcup) is a commutative directoid with a least element 0 and a greatest element 1, such that the underlying order \leq is given by

 $x \le y$ if and only if $x \sqcup y = y$ if and only if $\neg x \oplus y = 1$,

< ロ > < 同 > < 三 > < 三 > 三 9 9 9 9

and for each $a \in A$, $x \mapsto \neg x \oplus a$ is an antitone involution on $[a) = \{x \in A \mid a \le x\}.$

Conversely, if $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a commutative directoid with sectional antitone involutions, then we can define \oplus and \neg as $x \oplus y = \beta_y(\beta_0(x) \sqcup y)$ and $\neg x = \beta_0(x)$, respectively, and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y = \neg(\neg x \oplus y) \oplus y$ and $\beta_a(x) = \neg x \oplus a$. In every weak basic algebra, in addition to the 'join-like' operation \sqcup , we can introduce the dual 'meet-like' operation \sqcap by

$$x \sqcap y = \neg(\neg x \sqcup \neg y).$$

Then we have $x \le y$ if and only if $x \sqcap y = x$, and the structure (A, \sqcup, \sqcap) is a λ -lattice in the sense of [8], i.e., both (A, \sqcup) and (A, \sqcap) are commutative directoids and the absorption laws $x \sqcup (x \sqcap y) = x = x \sqcap (x \sqcup y)$ are satisfied.

Conversely, if $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a commutative directoid with sectional antitone involutions, then we can define \oplus and \neg as $x \oplus y = \beta_y(\beta_0(x) \sqcup y)$ and $\neg x = \beta_0(x)$, respectively, and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y = \neg(\neg x \oplus y) \oplus y$ and $\beta_a(x) = \neg x \oplus a$. In every weak basic algebra, in addition to the 'join-like' operation \sqcup , we can introduce the dual 'meet-like' operation \sqcap by

$$x \sqcap y = \neg (\neg x \sqcup \neg y).$$

Then we have $x \le y$ if and only if $x \sqcap y = x$, and the structure (A, \sqcup, \sqcap) is a λ -lattice in the sense of [8], i.e., both (A, \sqcup) and (A, \sqcap) are commutative directoids and the absorption laws $x \sqcup (x \sqcap y) = x = x \sqcap (x \sqcup y)$ are satisfied.

Conversely, if $(A, \sqcup, (\beta_a)_{a \in A}, 0, 1)$ is a commutative directoid with sectional antitone involutions, then we can define \oplus and \neg as $x \oplus y = \beta_y(\beta_0(x) \sqcup y)$ and $\neg x = \beta_0(x)$, respectively, and $(A, \oplus, \neg, 0)$ becomes a weak basic algebra in which $x \sqcup y = \neg(\neg x \oplus y) \oplus y$ and $\beta_a(x) = \neg x \oplus a$. In every weak basic algebra, in addition to the 'join-like' operation \square , we can introduce the dual 'meet-like' operation \square by

$$x \sqcap y = \neg (\neg x \sqcup \neg y).$$

Then we have $x \le y$ if and only if $x \sqcap y = x$, and the structure (A, \sqcup, \sqcap) is a λ -lattice in the sense of [8], i.e., both (A, \sqcup) and (A, \sqcap) are commutative directoids and the absorption laws $x \sqcup (x \sqcap y) = x = x \sqcap (x \sqcup y)$ are satisfied.

A **basic algebra** [2] is an algebra $(A, \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the identities (again, $1 = \neg 0$)

$$\boldsymbol{x} \oplus \boldsymbol{0} = \boldsymbol{x}, \tag{B1}$$

$$\neg \neg x = x, \tag{B2}$$

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x, \tag{B3}$$

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z)=1.$$
 (B4)

Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions, restricted to basic algebras, furnishes a one-to-one correspondence between basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.

A **basic algebra** [2] is an algebra $(A, \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the identities (again, $1 = \neg 0$)

$$\boldsymbol{x} \oplus \boldsymbol{0} = \boldsymbol{x}, \tag{B1}$$

$$\neg \neg x = x, \tag{B2}$$

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x, \tag{B3}$$

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z)=1.$$
 (B4)

Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions, restricted to basic algebras, furnishes a one-to-one correspondence between basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.

A **basic algebra** [2] is an algebra $(A, \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the identities (again, $1 = \neg 0$)

$$\boldsymbol{x} \oplus \boldsymbol{0} = \boldsymbol{x}, \tag{B1}$$

$$\neg \neg x = x, \tag{B2}$$

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x, \tag{B3}$$

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z)=1.$$
 (B4)

Every basic algebra is a weak basic algebra and the above assignment between weak basic algebras and commutative directoids with sectional antitone involutions, restricted to basic algebras, furnishes a one-to-one correspondence between basic algebras and lattices with sectional antitone involutions.

We know that weak basic algebras form a variety.

Proposition 1

An algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ satisfying (W1)—(W4) is a weak basic algebra if and only if it satisfies the identity

$$\neg(\neg((x \sqcup y) \sqcup z) \oplus x) \oplus (\neg y \oplus x) = 1.$$
(2)

Sac

Another central concept is that of an effect algebra, introduced by Foulis and Bennett [4]. We recall that an **effect algebra** is a system (E, +, 0, 1) where 0, 1 are distinguished elements of *E* and + is a partial binary operation on *E* such that (EA1) x + y = y + x if one side is defined, (EA2) (x + y) + z = x + (y + z) if one side is defined, (EA3) for every $x \in E$ there exists a unique $x' \in E$ with x' + x = 1,

(EA4) if x + 1 is defined then x = 0.

Every effect algebra bears a natural partial order given by

 $x \le y$ if and only if y = x + z for some $z \in E$.

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. If, moreover, (E, \leq) is a lattice, then (E, +, 0, 1) is called a **lattice effect algebra**.

In every effect algebra, a partial subtraction – can be defined as follows:

x - y exists and equals z if and only if x = y + z.

Jac.

Another central concept is that of an effect algebra, introduced by Foulis and Bennett [4]. We recall that an **effect algebra** is a system (E, +, 0, 1) where 0, 1 are distinguished elements of *E* and + is a partial binary operation on *E* such that (EA1) x + y = y + x if one side is defined, (EA2) (x + y) + z = x + (y + z) if one side is defined, (EA3) for every $x \in E$ there exists a unique $x' \in E$ with x' + x = 1, (EA4) if x + 1 is defined then x = 0.

Every effect algebra bears a natural partial order given by

 $x \le y$ if and only if y = x + z for some $z \in E$.

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. If, moreover, (E, \leq) is a lattice, then (E, +, 0, 1) is called a **lattice effect algebra**.

In every effect algebra, a partial subtraction – can be defined as follows:

x - y exists and equals z if and only if x = y + z.

Another central concept is that of an effect algebra, introduced by Foulis and Bennett [4]. We recall that an **effect algebra** is a system (E, +, 0, 1) where 0, 1 are distinguished elements of *E* and + is a partial binary operation on *E* such that (EA1) x + y = y + x if one side is defined, (EA2) (x + y) + z = x + (y + z) if one side is defined, (EA3) for every $x \in E$ there exists a unique $x' \in E$ with x' + x = 1, (EA4) if x + 1 is defined then x = 0.

Every effect algebra bears a natural partial order given by

 $x \le y$ if and only if y = x + z for some $z \in E$.

The poset (E, \leq) is bounded, 0 is the bottom element and 1 is the top element. If, moreover, (E, \leq) is a lattice, then (E, +, 0, 1) is called a **lattice effect algebra**.

In every effect algebra, a partial subtraction - can be defined as follows:

x - y exists and equals z if and only if x = y + z.

Now, we focus on the relationships between effect algebras and weak basic algebras.

Theorem [·]

Let $\mathbf{A} = (A, \oplus, \neg, 0)$ be a weak basic algebra. Define the partial addition + on *A* as follows: x + y is defined if and only if $x \le \neg y$, and in this case $x + y = x \oplus y$. Then $\mathcal{E}(\mathbf{A}) = (A, +, 0, 1)$ is an effect algebra if and only if **A** satisfies the quasi-identity

$$x \le \neg y \& x \oplus y \le \neg z \implies (x \oplus y) \oplus z = x \oplus (z \oplus y).$$
(3)

Moreover, over weak basic algebras, (3) is equivalent to the identity

 $(x \oplus y) \oplus (\neg (x \oplus y) \sqcap z) = (x \sqcap \neg y) \oplus ((\neg (x \oplus y) \sqcap z) \oplus y).$ (4)

Now, we focus on the relationships between effect algebras and weak basic algebras.

Theorem 1

Let $\mathbf{A} = (A, \oplus, \neg, 0)$ be a weak basic algebra. Define the partial addition + on *A* as follows: x + y is defined if and only if $x \le \neg y$, and in this case $x + y = x \oplus y$. Then $\mathcal{E}(\mathbf{A}) = (A, +, 0, 1)$ is an effect algebra if and only if **A** satisfies the quasi-identity

$$x \leq \neg y \& x \oplus y \leq \neg z \Rightarrow (x \oplus y) \oplus z = x \oplus (z \oplus y).$$
(3)

Moreover, over weak basic algebras, (3) is equivalent to the identity

$$(x \oplus y) \oplus (\neg (x \oplus y) \sqcap z) = (x \sqcap \neg y) \oplus ((\neg (x \oplus y) \sqcap z) \oplus y).$$
(4)

Corollary 1

[2] Let $\mathbf{A} = (A, \oplus, \neg, 0)$ be a basic algebra and let $\mathcal{E}(\mathbf{A}) = (A, +, 0, 1)$ be as in Theorem 1. Then $\mathcal{E}(\mathbf{A})$ is a lattice effect algebra if and only if **A** satisfies the quasi-identity (3).

In case of basic algebras, **A** can be retrieved from $\mathcal{E}(\mathbf{A})$ ([2], see below). However, as the following example shows, this is not true for weak basic algebras.

< ロ > < 四 > < 三 > < 三 > < 三 > < 四 > < 四 > <

Corollary 1

[2] Let $\mathbf{A} = (A, \oplus, \neg, 0)$ be a basic algebra and let $\mathcal{E}(\mathbf{A}) = (A, +, 0, 1)$ be as in Theorem 1. Then $\mathcal{E}(\mathbf{A})$ is a lattice effect algebra if and only if **A** satisfies the quasi-identity (3).

In case of basic algebras, **A** can be retrieved from $\mathcal{E}(\mathbf{A})$ ([2], see below). However, as the following example shows, this is not true for weak basic algebras.

Example 1 (1/5)

Example

Let (A, \leq) be the poset

and let the sections [0) = A, [a) and [b) be equipped with the following antitone involutions:

the other sections admit unique antitone involutions.

There are three possible ways in which we can associate a commutative directoid to (A, \leq) and, consequently, there are three weak basic algebras with the underlying poset (A, \leq) : (i) For $a \sqcup_1 b = c$ we get $\mathbf{A}_1 = (A, \oplus_1, \neg, 0)$ where

\oplus_1	0	а	b	С	d	1	٢
0	0	а	b	С	d	1	1
а	а	d	С	С	1	1	d
b	b	С	d	1	d	1	С
С	С	С	1	1	1	1	b
d	d	1	d	1	1	1	а
1	1	1	1	1	1	1	0

(ii) For $a \sqcup_2 b = d$ we get $\mathbf{A}_2 = (A, \oplus_2, \neg, 0)$ where

⊕ 2	0	а	b	С	d	1	Γ
0	0	а	b	С	d	1	1
а	а	d	С	С	1	1	d
b	b	С	d	1	d	1	С
С	С	d	1	1	1	1	b
d	d	1	С	1	1	1	а
1	1	1	1	1	1	1	0

< ロ > < 四 > < 三 > < 三 > 、

5990

₹

(iii) For $a \sqcup_3 b = 1$ we get $\mathbf{A}_3 = (A, \oplus_3, \neg, 0)$ where

\oplus_{3}	0	а	b	С	d	1	Γ
0	0	а	b	С	d	1	1
а	а	d	С	С	1	1	d
b	b	С	d	1	d	1	С
С	С	а	1	1	1	1	b
d	d	1	b	1	1	1	а
1	1	1	1	1	1	1	0

5990

₹

All these weak basic algebras induce the same effect algebra $\ell(A_1)=\ell(A_2)=\ell(A_3)=(A,+,0,1)$ where

+	0	а	b	С	d	1
0	0	а	b	С	d	1
а	а	d	С		1	
b	b	С	d	1		
С	С		1			
d	d	1				
1	1					

<ロ> < 四> < 四> < 四> < 三> < 三> < 三> <

Let $\mathbf{E} = (E, +, 0, 1)$ be an effect algebra. Since the underlying poset (E, \leq) is bounded, it can be organized into a commutative directoid (E, \sqcup) . We shall simply say that the pair (\mathbf{E}, \sqcup) is an effect algebra with an associated commutative directoid.

Theorem 2

Let (\mathbf{E}, \sqcup) be an effect algebra $\mathbf{E} = (E, +, 0, 1)$ with an associated commutative directoid. Define

$$x \oplus y = (x' \sqcup y)' + y$$
 and $\neg x = x'$.

Then $\mathcal{B}(\mathbf{E}, \sqcup) = (E, \oplus, \neg, 0)$ is a weak basic algebra satisfying (3). Moreover, $\mathcal{E}(\mathcal{B}(\mathbf{E}, \sqcup))$, the effect algebra assigned to $\mathcal{B}(\mathbf{E}, \sqcup)$ by Theorem 1, is just **E**.

Let $\mathbf{E} = (E, +, 0, 1)$ be an effect algebra. Since the underlying poset (E, \leq) is bounded, it can be organized into a commutative directoid (E, \sqcup) . We shall simply say that the pair (\mathbf{E}, \sqcup) is an effect algebra with an associated commutative directoid.

Theorem 2

Let (\mathbf{E}, \sqcup) be an effect algebra $\mathbf{E} = (E, +, 0, 1)$ with an associated commutative directoid. Define

$$x \oplus y = (x' \sqcup y)' + y$$
 and $\neg x = x'$.

Then $\mathcal{B}(\mathbf{E}, \sqcup) = (\mathbf{E}, \oplus, \neg, 0)$ is a weak basic algebra satisfying (3). Moreover, $\mathcal{E}(\mathcal{B}(\mathbf{E}, \sqcup))$, the effect algebra assigned to $\mathcal{B}(\mathbf{E}, \sqcup)$ by Theorem 1, is just **E**.

Let **E** be the effect algebra we have obtained in Example 1. If we put $a \sqcup_1 b = c$ then $\mathcal{B}(\mathbf{E}, \sqcup_1)$ is just the weak basic algebra \mathbf{A}_1 from Example 1. Analogously, if $a \sqcup_2 b = d$ then $\mathcal{B}(\mathbf{E}, \sqcup_2) = \mathbf{A}_2$, and for $a \sqcup_3 b = 1$ we have $\mathcal{B}(\mathbf{E}, \sqcup_3) = \mathbf{A}_3$.

Sac

There is a one-to-one correspondence between weak basic algebras satisfying (3) (respectively, (4)) and pairs (\mathbf{E}, \sqcup) where $\mathbf{E} = (E, +, 0, 1)$ is an effect algebra with an associated commutative directoid (E, \sqcup) . Namely, the assignment

 $\mathbf{A}\mapsto (\mathcal{E}(\mathbf{A}),\sqcup),$

where $\mathcal{E}(\mathbf{A})$ is as in Theorem 1 and $x \sqcup y = \neg(\neg x \oplus y) \oplus y$, is a bijection the inverse of which is

$$(\mathbf{E},\sqcup)\mapsto \mathcal{B}(\mathbf{E},\sqcup),$$

(ロ) (同) (三) (三) (三) (0) (0)

where $\mathcal{B}(\mathbf{E}, \sqcup)$ is defined in Theorem 2.

Let $\mathbf{E} = (E, +, 0, 1)$ be an effect algebra. When constructing (\mathbf{E}, \sqcup) , we did not take care of existing suprema so far. This means that $\mathcal{B}(\mathbf{E}, \sqcup)$ need not be a basic algebra even though \mathbf{E} is a lattice effect algebra. The situation can be improved if we define \sqcup in such a way that the following condition holds:

If sup{x, y} exists, then $x \sqcup y = y \sqcup x = \sup\{x, y\}$. (S)

Corollary 2

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid that satisfies the condition (S). Then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a weak basic algebra, and if \mathbf{E} is a lattice effect algebra, then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a basic algebra.

Let $\mathbf{E} = (E, +, 0, 1)$ be an effect algebra. When constructing (\mathbf{E}, \sqcup) , we did not take care of existing suprema so far. This means that $\mathcal{B}(\mathbf{E}, \sqcup)$ need not be a basic algebra even though \mathbf{E} is a lattice effect algebra. The situation can be improved if we define \sqcup in such a way that the following condition holds:

If sup{x, y} exists, then $x \sqcup y = y \sqcup x = \sup\{x, y\}$. (S)

Corollary 2

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid that satisfies the condition (S). Then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a weak basic algebra, and if \mathbf{E} is a lattice effect algebra, then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a basic algebra.

Let us recall (see [3]) that two elements x, y in an effect algebra **E** are said to be **compatible** (in symbols $x \leftrightarrow y$) if there exist $u, v \in E$ such that $u \leq x, y \leq v$ and x - u = v - y. This is equivalent to the existence of $z \in E$ with $x, y \leq z, z - x \leq y$ and $z - y \leq x$. Therefore,

 $x \leftrightarrow y$ if and only if there is z such that $x, y \leq z$ and $z - x \leq y$. (5)

For *lattice* effect algebras we proved in [2] that $x \leftrightarrow y$ if and only if $x \oplus y = y \oplus x$ in the derived basic algebra. In general we have:

Proposition 2

Let (\mathbf{E}, \sqcup) and $\mathcal{B}(\mathbf{E}, \sqcup)$ be as in Theorem 2. For every $x, y \in E$, if $x \oplus y = y \oplus x$, then $x \leftrightarrow y$.

Let us recall (see [3]) that two elements x, y in an effect algebra **E** are said to be **compatible** (in symbols $x \leftrightarrow y$) if there exist $u, v \in E$ such that $u \leq x, y \leq v$ and x - u = v - y. This is equivalent to the existence of $z \in E$ with $x, y \leq z, z - x \leq y$ and $z - y \leq x$. Therefore,

 $x \leftrightarrow y$ if and only if there is z such that $x, y \leq z$ and $z - x \leq y$. (5)

For *lattice* effect algebras we proved in [2] that $x \leftrightarrow y$ if and only if $x \oplus y = y \oplus x$ in the derived basic algebra. In general we have:

Proposition 2

Let (\mathbf{E}, \sqcup) and $\mathcal{B}(\mathbf{E}, \sqcup)$ be as in Theorem 2. For every $x, y \in E$, if $x \oplus y = y \oplus x$, then $x \leftrightarrow y$.

(ロ) (同) (三) (三) (三) (0) (0)

The reverse implication fails to be true. Let **E** be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in **A**₂ and **A**₃ is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_i c \neq c \oplus_i a$ for i = 2,3).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E} = (E, +, 0, 1)$ in the following way:

If
$$x \leftrightarrow y$$
, then $x \sqcup y = y \sqcup x = z$ where $z \ge x, y$ and $z - x \le y$.
(C)

We can prove that in *every* effect algebra $\mathbf{E} = (E, +, 0, 1)$, the operation \Box can always be defined in such a way that it obeys the requirements of the condition (C).

The reverse implication fails to be true. Let **E** be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in **A**₂ and **A**₃ is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_i c \neq c \oplus_i a$ for i = 2,3).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E} = (E, +, 0, 1)$ in the following way:

If
$$x \leftrightarrow y$$
, then $x \sqcup y = y \sqcup x = z$ where $z \ge x, y$ and $z - x \le y$.
(C)

We can prove that in *every* effect algebra $\mathbf{E} = (E, +, 0, 1)$, the operation \Box can always be defined in such a way that it obeys the requirements of the condition (C).

The reverse implication fails to be true. Let **E** be the effect algebra from Examples 1 and 2. It can be easily seen that every two elements are compatible, while the addition in **A**₂ and **A**₃ is not commutative (for instance, $a \leftrightarrow c$, but $a \oplus_i c \neq c \oplus_i a$ for i = 2, 3).

In order to overcome this disadvantage, we define the 'join-like' operation \sqcup in an effect algebra $\mathbf{E} = (E, +, 0, 1)$ in the following way:

If
$$x \leftrightarrow y$$
, then $x \sqcup y = y \sqcup x = z$ where $z \ge x, y$ and $z - x \le y$.
(C)

We can prove that in *every* effect algebra $\mathbf{E} = (E, +, 0, 1)$, the operation \Box can always be defined in such a way that it obeys the requirements of the condition (C).

Theorem 3

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying condition (C). Then $\mathcal{B}(\mathbf{E}, \sqcup)$ is a weak basic algebra such that, for all $x, y \in E$, the following are equivalent:

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(i)
$$x \leftrightarrow y$$
,
(ii) $(x \sqcup y) - y = x - (x \sqcap y)$,
(iii) $x \oplus y = y \oplus x$.

By a **block** of a weak basic algebra $(A, \oplus, \neg, 0)$ we mean a subset *B* of *A* which is maximal with respect to the property that $x \oplus y = y \oplus x$ for all $x, y \in B$. It is evident that every element of *A* is contained in a block.

Theorem 4

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying the condition (C). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and y + z is defined, then $x \leftrightarrow y + z$. Then a block *B* of $\mathcal{B}(\mathbf{E}, \sqcup)$ is a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$ if and only if $x \sqcup y \in B$ for all $x, y \in B$.

The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y + z$ (if y + z exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omitted:

By a **block** of a weak basic algebra $(A, \oplus, \neg, 0)$ we mean a subset *B* of *A* which is maximal with respect to the property that $x \oplus y = y \oplus x$ for all $x, y \in B$. It is evident that every element of *A* is contained in a block.

Theorem 4

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying the condition (C). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and y + z is defined, then $x \leftrightarrow y + z$. Then a block *B* of $\mathcal{B}(\mathbf{E}, \sqcup)$ is a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$ if and only if $x \sqcup y \in B$ for all $x, y \in B$.

The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y + z$ (if y + z exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omitted:

By a **block** of a weak basic algebra $(A, \oplus, \neg, 0)$ we mean a subset *B* of *A* which is maximal with respect to the property that $x \oplus y = y \oplus x$ for all $x, y \in B$. It is evident that every element of *A* is contained in a block.

Theorem 4

Let (\mathbf{E}, \sqcup) be an effect algebra with an associated commutative directoid satisfying the condition (C). Assume that for all $x, y, z \in E$, if $x \leftrightarrow y, x \leftrightarrow z$ and y + z is defined, then $x \leftrightarrow y + z$. Then a block *B* of $\mathcal{B}(\mathbf{E}, \sqcup)$ is a subalgebra of $\mathcal{B}(\mathbf{E}, \sqcup)$ if and only if $x \sqcup y \in B$ for all $x, y \in B$.

The condition that $x \leftrightarrow y$ and $x \leftrightarrow z$ together yield $x \leftrightarrow y + z$ (if y + z exists) holds in lattice effect algebras, however, the next example shows that this additional assumption in Theorem 4 cannot be omitted:

Example 3 (1/3)

Example

Let *E* be the set consisting of the following pairs of integers: o = (0,0), a = (1,2), b = (1,1), c = (2,1), v = (2,3), e = (3,3), f = (3,2), g = (2,2) and i = (4,4). If we equip *E* with + defined as the restriction to *E* of the usual pointwise addition, then $\mathbf{E} = (E, +, 0)$ becomes an effect algebra in which (x,y)' = (4 - x, 4 - y). The underlying poset of **E** is as follows (notice that $(x,y) \le (u,v)$ if and only if (x,y) = (u,v), or x < u & y < v):

It is obvious that $\mathfrak{f} \leftrightarrow \mathfrak{b}$, but \mathfrak{f} is *not* compatible with $\mathfrak{g} = \mathfrak{b} + \mathfrak{b}$. Indeed, the only common upper bound of $\mathfrak{f}, \mathfrak{g}$ is 1, and $1 - \mathfrak{f} = \mathfrak{a} \leq \mathfrak{g}$ as well as $1 - \mathfrak{g} = \mathfrak{g} \leq \mathfrak{f}$, thus $\mathfrak{f} \not\leftrightarrow \mathfrak{g}$ by (5). In accordance with the conditions (S) and (C), we put $\mathfrak{a} \sqcup \mathfrak{b} = \mathfrak{d} (= \mathfrak{a} + \mathfrak{b})$ and $\mathfrak{b} \sqcup \mathfrak{c} = \mathfrak{f} (= \mathfrak{b} + \mathfrak{c})$; in the other cases \sqcup coincides with sup. A direct inspection shows that $E \setminus \{\mathfrak{g}\}$ is a block of the assigned weak basic algebra $\mathfrak{B}(\mathbf{E}, \sqcup)$ (see the table below) which is closed under \sqcup , but it is not closed under \oplus as $\mathfrak{b} + \mathfrak{b} = \mathfrak{g}$. On the other hand, $\{\mathfrak{o}, \mathfrak{b}, \mathfrak{e}, \mathfrak{g}, \mathfrak{l}\}$ is both a block and a subalgebra of $\mathfrak{B}(\mathbf{E}, \sqcup)$.

\oplus	0	a	\mathfrak{b}	c	ð	e	f	\mathfrak{g}	1	Γ
0	0	a	\mathfrak{b}	c	ð	e	f	\mathfrak{g}	1	1
a	a	a	ð	e	ð	e	1	\mathfrak{g}	1	f
b	\mathfrak{b}	ð	\mathfrak{g}	f	ð	1	f	e	1	e
c	c	e	f	c	1	e	f	\mathfrak{g}	1	ð
б	ð	ð	ð	1	ð	1	1	e	1	c
e	e	e	1	e	1	1	1	1	1	\mathfrak{b}
f	f	1	f	f	1	1	f	e	1	a
g	g	ð	e	f	ð	1	f	1	1	g
1	1	1	1	1	1	1	1	1	1	0

< ロ > < 個 > < 言 > < 言 > こ うへで

- I. Chajda, R. Halaš, and J. Kühr: *Semilattice Structures*, Heldermann Verlag, Lemgo, 2007.
- I. Chajda, R. Halaš, and J. Kühr: *Many-valued quantum algebras*, Algebra Univers., to appear.
- A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000.
- D. J. Foulis and M. K. Bennett: *Effect algebras and unsharp quantum logic*, Found. Phys. **24** (1994), 1325–1346.
- R. Halaš and L. Plojhar: Weak MV-algebras, Math. Slovaca
 58 (2008), to appear.
- J. Ježek and R. Quackenbush: *Directoids: algebraic models of up-directed sets*, Algebra Univers. **27** (1990), 49–69.
- F. Kôpka and F. Chovanec: *D-posets*, Math. Slovaca 44 (1994), 21–34.
- V. Snášel: *λ -lattices*, Math. Bohem. **122** (1997), 267–272.

- ロ > - 4 回 > - 4 回 > - 4 回 > - 9 9 9 9 9