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Recursive Trees

Combinatorial Description

e |labeled rooted tree

e |labels are strictly increasing

e no left-to-right order (non-planar)



Recursive Trees

Number of recursive trees

number of recursive trees of size n
(n—1)!

Yn

The node with label 57 has exactly 7 — 1 possibilities to be inserted
— yp=1-2---(n—1).



Recursive Trees

Generating Functions:

" x" 1
y(x) B nz>:1ynF - né:l; - IOg 1 —=x
2 3
J(2) =1+ y(@) + y(;) + y(;’? 4o @)

R:O+?+R+R + ..

R R R RRR

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y/'(z) = X y,+12"/n!)
n>0



Recursive Trees

Probability Model:
Wachstumsprozess:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node with probability 1/(j5 — 1).

After n steps every tree (of size n) has equal probability 1/(n — 1)!.
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Recursive Trees

p=1/2 /@>\
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Recursive Trees



Recursive Trees

Remark: left-to-right order is irrelevant

1



Recursive Trees

Height H,

[Devroye 1987, Pittel 1994]

Hp

logn

> €

(a.s.)
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Plane Oriented Trees

p 1/3



Plane Oriented Trees

N
A

N R %@

p=1/3 p= 1/3 p=1/3



Plane Oriented Trees

Remark: left-to-right order is relevant

1



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n
= 1-3:5.---(2n—-3) = (2n — 3)!!
_ (2n-2)!
 2n—1(p —1)!

The node with label 5 has exactly 27 — 3 possibilities to be inserted
—yp,=1-3---(2n — 3).



Plane Oriented Trees

Generating Functions:

=Yt =Y (T = v
1

n>1 n—1

1
1 —y(x)

R:O+9+R+R + -

R R R RRR

v (2) =14 y(@) +y@)2+y@)3+ - =

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y/'(z) = X y,4+12"/n!)
n>0



Plane Oriented Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node of outdegree d with probability (d+ 1)/(2j — 3).

After n steps every tree (of size n) has equal probability 1/(2n — 3)!I.



Plane Oriented Trees

Height H,

[Pittel 1994]

H 1
- = 1.79556... (a.s.)
logn 2s

where s = 0.27846 ... is the positive solution of seStl = 1.



General Increasing Trees

[Bergeron & Flajolet & Salvy 1992]
Pr: set of all plane oriented trees of size n

¢o0, ¢1,. ... weight sequence (¢g > 0, ¢; > 0 for some j > 2)

o(t) = ¢g + p1t + Pt + -

Weight of a tree T € Py:

~

w(T) = H qb;.\fj(T)

720

where N,;(T) = the number of nodes in T with outdegree j.



General Increasing Trees

VAWAN

w(T) = 3303



General Increasing Trees

Generating Functions:

Yn = Z w(T)
TePn
y(z) = > yn i

n>1 |

y'(z) = ¢g + b1 y(x) + poy(x)? + - - = d(y(x))

O+? R ﬂ

RRR



General Increasing Trees

Probability distribution on P,

For T € P, set:

Remark. In general it is not clear whether m,, is induced by a tree
evolution process. It is just a sequence of probability measures.



General Increasing Trees

Examples

1

: t
e Recursive Trees: ¢(t) = ) — = e, ¢; =
j>07"

The factor 1/5! “reduces” planar trees to non-planar ones.
e Plane Oriented Trees: ¢(t) =1+t+t°+ .= ¢; =1

e Binary Search Trees: &(t) = (1 +1)2, ¢g =1, ¢p1 =2, ¢ = 1.

For all these three examples, m,, iS induced by a tree evolution process.



General Increasing Trees

Theorem [Panholzer & Prodinger]

The sequence m, of probability measures on P, is induced by a tree
evolution process if and only if ¢(¢) has one of the three forms:

¢
o ¢o(t) = qﬁoe%t with ¢g > 0, ¢1 > 0.

Recursive trees

®0
o ¢(t) — T
=

for some » > 0 and ¢g > 0, ¢1 > 0.

Scale free trees

D
o o(t) = ¢p (1 + %t) for some D € {2,3,...} and ¢g > 0, ¢1 > 0.
0
D-ary recursive trees



General Increasing Trees

Probabilistic tree evolution model
e [ he process starts with the root that is labeled with 1.

e At step 5 a new node (with label j) is attached to any previous
node (with out-degree d) with probability proportional to

(d =+ 1)pg4190
®d

In order to obtain all possible probability distributions m, it is sufficient
to work with “normalized versions'’:

o(t) = (L+ )P, o) =€, o) =

(1-¢)"




General Increasing Trees

Recursive Trees: ¢(t) = ¢!

1 d+1
b=t — (d+1)pat100 _

d! Pd

1

A new node is attached to previous nodes with equal probability.



General Increasing Trees

Scale Free Trees: ¢(t) =1/(1—t)" for some r >0

d-+r

r+d—1 (d~+ 1)pg4190
¢d e — i
C ) fy
A new node is attached to a previous nodes with probability propor-
tional to |d + r|, where d is the out-degree (Barabasi-Albert model).

For r = 1 this these are (usual) plane oriented trees.



Scale Free Trees

¢(t) =1/(1 )" (r>0)
Height H,

[Pittel 1994]

Hy 1
logn (14 1)s

(a.s.)

where s is the positive solution of rseStl = 1.



The Degree Distribution

T heorem

Let ¢(t) =1/(1 —t)" for some r > 0 and set

Ag = lim probability that a random node in P, has out-degree d

n—aoeo

— m expected number of nodes with out-degree d

n—aoeo n

T hen

_ G+ LM+ DI+ d)
F(r)r(2r+d+ 2)

Ad

Note that

L+ nrer+n o,

A 0



D-ary Recursive Trees




D-ary Recursive Trees

I A
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D-ary Recursive Trees

¢(t) = (L + )"
Height H,

[Devroye et al. 2005+47]

Hp

.S.
ogn P (a.s.)

De . 1
o«(D—-1) D-1

where ¢ = cp > 1 satisfies the equation clog

Special Case: Binary Search Trees (D = 2)
[Pittel, Devroye, Robson, Reed, ...]



Polynomial Increasing Trees

o(t) = oo + 1t + - + opt? (po # O, pp # 0)
Height H,

[Devroye et al. 20054 7]

Hp

.S.
ogn P (a.s.)

De . 1
o«(D—-1) D-1

where ¢ = cp > 1 satisfies the equation clog




Generating Functions

Let y(z) = > ynz"/n! be the generating function of yp, = > w(T):

y'(2) = ¢(y(2)), y(0)=0.

P{H,<k}=— Y  w()

Yn pep,. H(T)<EK

n

z
yp(z) = Z ynP{ Hp < k}—,
n>0 n!

Yrt1(2) = d(yx(2))

with initial conditions yo(xz) = 0 and y;41(0) = 0.



Height Distribution

D-ary recursive trees
¢(t) = (1 + )P, (D > 2 positive integer), y;_ ;(z) = (1 + yp(2))”

p = 1/(D — 1) radius of convergence of y(z) = (1 — (D — 1)2)Y/(P=1) _1

De . 1
cp(D—1) D-1

cp log

F'(y) solution of integral equation

(%> / ﬁ <F(yj)yf-)%1_l> dy

r
1 \d 1
r (D—l) y1+--+yp=y,y;=20 J=1




Height Distribution

D-ary recursive trees

THEOREM 1 ¢(t) = (14 t)?

E H, = cplogn + O(\/Iog n (log log n))

P{Hy < k} = F((D - )n/yp(p)” 1) + o(1)

P{|Hp — EHp| > n} < e (c>0)



Height Distribution

Remark 1:
Var H, = O(1)

Remark 2:
hn = max{k : y(p)¢~1 < n}

W(x) = F(e™ %) “travelling wave”

)D—l

Yh, (P —I—L> 4 o(1)

P{Hnghn‘i‘r}:W(log (D — 1)n h

D-1
(~1/cp < log %uPh s < 1/cp is bounded)




Height Distribution

Recursive Trees

3(t) = et, yjyq(2) = evr(2)

y(z) = log 1£z

F(z) solution of

yF(y/et/*) = [ F(z/et/*)F(y - 2) dz




Height Distribution

Recursive Trees

THEOREM 2 ¢(t) =€

E Hy, = elogn + O(+/logn (log logn)).

P{H, <k} = F(n/y;(p)) + o(1)

P{|Hn — EHp| >2n} <™ (c>0)



Height Distribution

Scale Free Trees
¢(t) =1/(1 —t)", r =4 > 0 rational number
p=1/(r + 1) radius of convergence of y(z) =1 — (1 — (r + 1)2)/r+1)

. =1/((r41)s) with rsestl =1

1 M (1+435)
—1/c, ( A—I—B
yAFBF (ye /) = ( )A—|—B—|-1
B+1 ) . 1
X / H <F(y] o /Cr>y ‘|‘B >
y1+tyatpr1=yy;>0 J71

A+B+1 1
x |1 (F(yz)yA+B )dy

¢=B+42



Height Distribution

Scale Free Trees

. 1
= o B) / ﬁ <F(yzj)zﬁ_l> dz
[ ( > Zl+"'+ZA:1,ZjZO j=1



Height Distribution

Scale Free Trees

THEOREM 3 r = % > 0 rational number, ¢(t) = 1/(1 —1¢)"

E Hy, ~ c.logn.

P{Hy < k} = G((r + Dn/(yh(p))+7) + (1)

P{|Hp —EHp| >n} <e ™ (c>0)



Auxiliary Functions

D-ary recursive trees| ¢(t) = (1 +¢)P

B =+ =1+ T Pl <
n>0 n:

Top1 (2) = Tp(2)”

with initial conditions yp(z) = 1, 4,(0) = 1.



Auxiliary Functions

D-ary recursive trees

- 1 ( ) = pi-1
yD-1F(ye /D) = T\ / 1T (| FQypy;™ dy
(d ) y1+-+yp=y,y; =0 J=1
__ 1 >C ﬁ—l —uy
W(u) = < ), FWy e dy
(D—1)b-1r <m)

7. (2) 1= F/(en(P=1)) (ek/CD(p _ z))

(p=1/(D—1))



Auxiliary Functions

D-ary recursive trees

k
e 1—7,(0) ~Ck (%) . Tu(p) = eF/(en(D-1)),

Tieg1(2) = Gp(2)P

e For every positive integer ¢ and for every real number k£ > 0 the
difference

ye(z) — 7g(2)

has exactly one zero ( “Intersection Property”)



Auxiliary Functions

D-ary recursive trees

e §.(z) = Z yk,nﬁ is an entire function with coefficients
n>0 .

- _ (D=1
Yen — r(ﬁ)

and asymptotically we have

o0 1
/O F ((D — 1)’Ue_k/CD> pD-1 1 T1e=v gy

Yk.n
Un

=F ((D — 1)ne_k/cD) + o(1)




Auxiliary Functions

D-ary recursive trees

Proof idea

e y.(z) = yr(z) + 1 is approximated by the auxiliary function y,, (z):

U(p) =Ye, () <= e =cp(D —1)(logyi(p)) ~ k.

e () =Y., (2) in a neighbourhood of z = p

= |P{Hn <k} R Tpe, = F((D = Dn/yp(p)™ 1) 4+ o(1)




Auxiliary Functions

Recursive Trees| ¢(t) = ¢!

n

ye(z) = 3 P{Hn <k}~
n>0

Vir1(2) = eV (2)

Vi(2) =y (z) = ) P{H, 411 < k}z"
n>0

Vii1(2) = Vi 1(2)Yy(2)

(Yy41(0) =1)



Auxiliary Functions

Recursive Trees

yF(y/et/®) = [ F(z/et/)F(y = 2) d

W) = [ F(y)e dy

Yi(2) = ekle . w (ek/e(l — z))




Auxiliary Functions

Recursive Trees

e 1-Y4(0) ~Ck(2)", V(1) =eble.

Vig1(2) =Y41(2)Y(2)

e For every positive integer ¢ and for every real number k£ > O the
difference

Yy(2) — Yi(2)

has exactly one zero (“Intersection Property” ).



Auxiliary Functions

Recursive Trees

o V. (2) = Z Yk,nz” IS an entire function with coefficients
n>0

Yk = /OOO F (ve_k/€> v"e Y dv

and asymptotically we have

Yin=F (ne_k/e> + o(1)




Auxiliary Functions

Recursive Trees
Remark:

The functions

7 (2) = /0 Y1 (t) dt = 109 Vjp1(2)

satisfy the recurrence

Yot (z) = k()




Auxiliary Functions

Scale Free Trees

yr(2) = D ynP{Hn < k}2"/n!

n>0

1

Yi(2) = (v ()4

s =1 -1 r=4
/ . 1
SR CETN )]

(d.h. y;{:(z) = Yk(z)A = Z Yn4+1P{H 41 < k}%

n>0

1
Viiq1(2) = 5 Yk+1

()T (2)?

(Y,41(0) =1)

n

|



Auxiliary Functions

Scale Free Trees

r(1 1
1 \A+B+1
™ (a%3)
B+1 PR
T e

y1+-+ya+B+1=9,4;=0 j=1
A+B+1 AlB_l
x I] (F(ye)yfr )dy

{=B+42



Auxiliary Functions

Scale Free Trees

_ 1 00 1 __
V(w) = C ey F@yE e ay
(r+ 1)A+BI <A—|——B)

Vi(s) = /G AE) g (b (1))
r+1




Auxiliary Functions

Scale Free Trees

G(y) = r( B) / ﬁ <F(yzj)zﬁ_1> .
[ < ) Z1+"'+zA:1,ZjZO j=1

1

(r41)r (1:-r

> 1
)/O G(y)y THre Y¥ dy

(=) /OZ 8 w( e (r 41 —t)) dt
Uk —- 1




Auxiliary Functions

Scale Free Trees

etc.

_ 1_ —
Yit1(z) = EYk+1(Z>B+1Yk(Z)A

_/ _ 1
AR e )]




“Intersection Property”

Lemma

yo(z) = 1, g;g-|-1(33) — @k(x)D with §k+1(0) = 1.

7, (2) 1= ek/(ep(D=1)) . s (ek/CD(p _ z)) (k € R)

Vi1 (2) = Gp(z)? | with 0 < g41(0) < 1

—> For every integer ¢ > 0 and for every real number k > 0O the
difference

yo(z) — yp(2)

has exactly one zero.



“Intersection Property”

Proof

The case £ = 0 is (trivially) true for all £ > 0.

¢ — 0+ 1:
D-1 | |
Gi41(2) = Thp1 () = @e(@) — (@) Y Ge(@) ()P~
7=0

\ 7
~"

>0

= Yp11(z) — Y341 (@) has exactly one zero.

—> Jp+1(x) — Yp+1(x) has exactly one zero.
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