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Recursive Trees

Combinatorial Description

• labeled rooted tree

• labels are strictly increasing

• no left-to-right order (non-planar)



Recursive Trees

Number of recursive trees

yn = number of recursive trees of size n

= (n− 1)!

The node with label j has exactly j − 1 possibilities to be inserted

=⇒ yn = 1 · 2 · · · (n− 1).



Recursive Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

xn

n
= log

1

1− x

y′(x) = 1 + y(x) +
y(x)2

2!
+

y(x)3

3!
+ · · · = ey(x)

R
RRR RR R

= + + + + ...

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Recursive Trees

Probability Model:

Wachstumsprozess:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node with probability 1/(j − 1).

After n steps every tree (of size n) has equal probability 1/(n− 1)!.
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Recursive Trees

Remark: left-to-right order is irrelevant

1 1

2 23 3
=



Recursive Trees

Height Hn

[Devroye 1987, Pittel 1994]

Hn

logn
→ e (a.s.)
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Plane Oriented Trees

Remark: left-to-right order is relevant

1 1

2 23 3
=



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n

= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!

=
(2n− 2)!

2n−1(n− 1)!

The node with label j has exactly 2j − 3 possibilities to be inserted

=⇒yn = 1 · 3 · · · (2n− 3).



Plane Oriented Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

1

2n−1

(2(n− 1)

n− 1

)xn

n
= 1−

√
1− 2x

y′(x) = 1 + y(x) + y(x)2 + y(x)3 + · · · =
1

1− y(x)

R
RRR RR R

= + + + + ...

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Plane Oriented Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability (d + 1)/(2j − 3).

After n steps every tree (of size n) has equal probability 1/(2n− 3)!!.



Plane Oriented Trees

Height Hn

[Pittel 1994]

Hn

logn
→

1

2s
= 1.79556 . . . (a.s.)

where s = 0.27846 . . . is the positive solution of ses+1 = 1.



General Increasing Trees

[Bergeron & Flajolet & Salvy 1992]

Pn: set of all plane oriented trees of size n

φ0, φ1, . . .: weight sequence (φ0 > 0, φj > 0 for some j ≥ 2)

φ(t) = φ0 + φ1t + φ2t2 + · · ·

Weight of a tree T ∈ Pn:

ω(T ) =
∏
j≥0

φ
Nj(T )
j ,

where Nj(T ) = the number of nodes in T with outdegree j.
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General Increasing Trees

Generating Functions:

yn =
∑

T∈Pn

ω(T )

y(x) =
∑
n≥1

yn
xn

n!

y′(x) = φ0 + φ1 y(x) + φ2 y(x)2 + · · · = φ(y(x))

R
RRR RR R

= + + + + ...



General Increasing Trees

Probability distribution on Pn

For T ∈ Pn set:

πn(T ) :=
ω(T )

yn

Remark. In general it is not clear whether πn is induced by a tree

evolution process. It is just a sequence of probability measures.



General Increasing Trees

Examples

• Recursive Trees: φ(t) =
∑
j≥0

tj

j!
= et, φj =

1

j!

The factor 1/j! “reduces” planar trees to non-planar ones.

• Plane Oriented Trees: φ(t) = 1 + t + t2 + · · · =
1

1− t
, φj = 1

• Binary Search Trees: φ(t) = (1 + t)2, φ0 = 1, φ1 = 2, φ2 = 1.

For all these three examples, πn is induced by a tree evolution process.



General Increasing Trees

Theorem [Panholzer & Prodinger]

The sequence πn of probability measures on Pn is induced by a tree

evolution process if and only if φ(t) has one of the three forms:

• φ(t) = φ0e
φ1
φ0

t
with φ0 > 0, φ1 > 0.

Recursive trees

• φ(t) =
φ0(

1− φ1
rφ0

t
)r for some r > 0 and φ0 > 0, φ1 > 0.

Scale free trees

• φ(t) = φ0

(
1 +

φ1

Dφ0
t

)D

for some D ∈ {2,3, . . .} and φ0 > 0, φ1 > 0.

D-ary recursive trees



General Increasing Trees

Probabilistic tree evolution model

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node (with out-degree d) with probability proportional to

(d + 1)φd+1φ0

φd

In order to obtain all possible probability distributions πn it is sufficient

to work with “normalized versions”:

φ(t) = (1 + t)D, φ(t) = et, φ(t) =
1

(1− t)r



General Increasing Trees

Recursive Trees: φ(t) = et

φd =
1

d!
=⇒

(d + 1)φd+1φ0

φd
= 1

A new node is attached to previous nodes with equal probability.



General Increasing Trees

Scale Free Trees: φ(t) = 1/(1− t)r for some r > 0

φd =
(r + d− 1

d

)
=⇒

(d + 1)φd+1φ0

φd
= d + r

A new node is attached to a previous nodes with probability propor-

tional to d + r , where d is the out-degree (Barabasi-Albert model).

For r = 1 this these are (usual) plane oriented trees.



Scale Free Trees

φ(t) = 1/(1− t)r (r > 0)

Height Hn

[Pittel 1994]

Hn

logn
→

1

(1 + r)s
(a.s.)

where s is the positive solution of rses+1 = 1.



The Degree Distribution

Theorem

Let φ(t) = 1/(1− t)r for some r > 0 and set

λd = lim
n→∞probability that a random node in Pn has out-degree d

= lim
n→∞

expected number of nodes with out-degree d

n

Then

λd =
(r + 1)Γ(2r + 1)Γ(r + d)

Γ(r)Γ(2r + d + 2)

Note that

λd ∼
(r + 1)Γ(2r + 1)

Γ(r)
· d−2−r.



D-ary Recursive Trees
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D-ary Recursive Trees

φ(t) = (1 + t)D

Height Hn

[Devroye et al. 2005+?]

Hn

logn
→ cD (a.s.)

where c = cD > 1 satisfies the equation c log
De

c(D − 1)
=

1

D − 1
.

Special Case: Binary Search Trees (D = 2)

[Pittel, Devroye, Robson, Reed, ...]



Polynomial Increasing Trees

φ(t) = ϕ0 + ϕ1t + · · ·+ ϕDtD (ϕ0 6= 0, ϕD 6= 0)

Height Hn

[Devroye et al. 2005+?]

Hn

logn
→ cD (a.s.)

where c = cD > 1 satisfies the equation c log
De

c(D − 1)
=

1

D − 1
.



Generating Functions

Let y(z) =
∑

n≥0
ynzn/n! be the generating function of yn =

∑
T∈Pn

ω(T ):

y′(z) = φ(y(z)), y(0) = 0.

P{Hn ≤ k} =
1

yn

∑
T∈Pn, H(T )≤k

ω(T )

yk(z) =
∑
n≥0

ynP{Hn ≤ k}
zn

n!
.

=⇒

y′k+1(z) = φ(yk(z))

with initial conditions y0(x) = 0 and yk+1(0) = 0.



Height Distribution

D-ary recursive trees

φ(t) = (1 + t)D, (D ≥ 2 positive integer), y′k+1(z) = (1 + yk(z))
D

ρ = 1/(D − 1) radius of convergence of y(z) = (1− (D − 1)z)1/(D−1) − 1

cD log
De

cD(D − 1)
=

1

D − 1

F (y) solution of integral equation

y
1

D−1F (ye−1/cD) =
Γ
(

D
D−1

)
Γ
(

1
D−1

)d
∫

y1+···+yD=y,yj≥0

D∏
j=1

(
F (yj)y

1
D−1−1
j

)
dy



Height Distribution

D-ary recursive trees

THEOREM 1 φ(t) = (1 + t)D

EHn = cD logn + O
(√

logn (log logn)
)

P{Hn ≤ k} = F
(
(D − 1)n/yk(ρ)

D−1
)
+ o(1)

P{|Hn − EHn| ≥ η} � e−cη (c > 0)



Height Distribution

Remark 1:

VarHn = O(1)

Remark 2:

hn = max{k : yk(ρ)
d−1 ≤ n}

W (x) = F (e−x) “travelling wave”

P{Hn ≤ hn + r} = W

(
log

yhn(ρ)
D−1

(D − 1)n
+

r

cD

)
+ o(1)

(−1/cD ≤ log
yhn(ρ)D−1

(D−1)n ≤ 1/cD is bounded)



Height Distribution

Recursive Trees

φ(t) = et, y′k+1(z) = eyk(z)

y(z) = log 1
1−z

F (z) solution of

y F (y/e1/e) =
∫ y

0
F (z/e1/e)F (y − z) dz



Height Distribution

Recursive Trees

THEOREM 2 φ(t) = et

EHn = e logn + O
(√

logn (log logn)
)
.

P{Hn ≤ k} = F (n/y′k(ρ)) + o(1)

P{|Hn − EHn| ≥ η} � e−cη (c > 0)



Height Distribution

Scale Free Trees

φ(t) = 1/(1− t)r, r = A
B > 0 rational number

ρ = 1/(r + 1) radius of convergence of y(z) = 1− (1− (r + 1)z)1/(r+1)

c′r = 1/((r + 1)s) with r s es+1 = 1

y
1

A+BF (ye−1/c′r) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1
×

×
∫

y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yje

−1/c′r)y
1

A+B−1

j

)

×
A+B+1∏
`=B+2

(
F (y`)y

1
A+B−1

`

)
dy



Height Distribution

Scale Free Trees

G(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A
∫

z1+···+zA=1,zj≥0

A∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz



Height Distribution

Scale Free Trees

THEOREM 3 r = A
B > 0 rational number, φ(t) = 1/(1− t)r

EHn ∼ c′r logn.

P{Hn ≤ k} = G
(
(r + 1)n/(y′k(ρ))

1+1
r

)
+ o(1)

P{|Hn − EHn| ≥ η} � e−cη (c > 0)



Auxiliary Functions

D-ary recursive trees φ(t) = (1 + t)D

ỹk(z) = yk(z)+1 = 1 +
∑
n≥0

P{Hn ≤ k}yn
zn

n!

ỹ′k+1(z) = ỹk(z)
D

with initial conditions ỹ0(z) = 1, ỹk(0) = 1.



Auxiliary Functions

D-ary recursive trees

y
1

D−1F (ye−1/cD) =
Γ
(

D
D−1

)
Γ
(

1
d−1

)d
∫

y1+···+yD=y,yj≥0

D∏
j=1

(
F (yj)y

1
D−1−1
j

)
dy

Ψ(u) =
1

(D − 1)
1

D−1Γ
(

1
D−1

) ∫ ∞
0

F (y) y
1

D−1−1
e−uy dy

yk(z) := ek/(cD(D−1)) ·Ψ
(
ek/cD(ρ− z)

)
(ρ = 1/(D − 1))



Auxiliary Functions

D-ary recursive trees

• 1− yk(0) ∼ Ck
(

D
cD

)k
, yk(ρ) = ek/(cD(D−1)).

•

y′k+1(z) = yk(z)
D

• For every positive integer ` and for every real number k > 0 the

difference

ỹ`(z)− yk(z)

has exactly one zero (“Intersection Property”)



Auxiliary Functions

D-ary recursive trees

• yk(z) =
∑
n≥0

yk,n
zn

n!
is an entire function with coefficients

yk,n =
(D − 1)n

Γ
(

1
D−1

) ∫ ∞
0

F
(
(D − 1)ve−k/cD

)
v

1
D−1−1+n

e−v dv

and asymptotically we have

yk,n

yn
= F

(
(D − 1)ne−k/cD

)
+ o(1)



Auxiliary Functions

D-ary recursive trees

Proof idea

• ỹk(z) = yk(z) + 1 is approximated by the auxiliary function yek
(z):

ỹk(ρ) = yek
(ρ) ⇐⇒ ek = cD(D − 1)(log ỹk(ρ)) ∼ k.

• ỹk(z) ≈ yek
(z) in a neighbourhood of z = ρ

=⇒ P{Hn ≤ k} ≈ yn,ek
= F

(
(D − 1)n/yk(ρ)

d−1
)
+ o(1)



Auxiliary Functions

Recursive Trees φ(t) = et

yk(z) =
∑
n≥0

P{Hn ≤ k}
zn

n

y′k+1(z) = eyk(z)

Yk(z) = y′k(z) =
∑
n≥0

P{Hn+1 ≤ k}zn

Y ′k+1(z) = Yk+1(z)Yk(z)

(Yk+1(0) = 1)



Auxiliary Functions

Recursive Trees

y F (y/e1/e) =
∫ y

0
F (z/e1/e)F (y − z) dz

Ψ(u) =
∫ ∞
0

F (y)e−yu dy

Y k(z) = ek/e ·Ψ
(
ek/e(1− z)

)



Auxiliary Functions

Recursive Trees

• 1− Y k(0) ∼ Ck
(
2
e

)k
, Y k(1) = ek/e.

•

Y
′
k+1(z) = Y k+1(z)Y k(z)

• For every positive integer ` and for every real number k > 0 the

difference

Y`(z)− Y k(z)

has exactly one zero (“Intersection Property”).



Auxiliary Functions

Recursive Trees

• Y k(z) =
∑
n≥0

Y k,nzn is an entire function with coefficients

yk,n =
∫ ∞
0

F
(
ve−k/e

)
vne−v dv

and asymptotically we have

Y k,n = F
(
ne−k/e

)
+ o(1)



Auxiliary Functions

Recursive Trees

Remark:

The functions

yk(z) =
∫ z

0
Y k(t) dt = logY k+1(z)

satisfy the recurrence

yk+1(z) = eyk(z)



Auxiliary Functions

Scale Free Trees φ(t) = (1− t)−r, r = A
B

yk(z) =
∑
n≥0

ynP{Hn ≤ k}zn/n!

y′k+1(z) =
1

(1− yk(z))r

Yk(z) =
(
y′k(z)

)1
A

d.h. y′k(z) = Yk(z)
A =

∑
n≥0

yn+1P{Hn+1 ≤ k}
zn

n!



Y ′k+1(z) =
1

B
Yk+1(z)

B+1Yk(z)
A

(Yk+1(0) = 1)



Auxiliary Functions

Scale Free Trees

y
1

d−1F (ye−1/c′r) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1
×

×
∫

y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yje

−1/c′r)y
1

A+B−1

j

)

×
A+B+1∏
`=B+2

(
F (y`)y

1
A+B−1

`

)
dy



Auxiliary Functions

Scale Free Trees

Ψ(u) =
1

(r + 1)
1

A+BΓ
(

1
A+B

) ∫ ∞
0

F (y) y
1

A+B−1
e−uy dy

Y k(z) = ek/(c′r(A+B)) ·Ψ
(
ek/c′r

(
1

r + 1
− z

))



Auxiliary Functions

Scale Free Trees

G(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A
∫

z1+···+zA=1,zj≥0

A∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz

Ψ(u) = Ψ(u)A =
1

(r + 1)
r

1+rΓ
(

r
1+r

) ∫ ∞
0

G(y)y−
1

1+re−yu dy

yk(z) =
∫ z

0
e

rk
c′r(1+r) ·Ψ

(
ek/c′r

(
1

r + 1
− t

))
dt



Auxiliary Functions

Scale Free Trees

•

Y
′
k+1(z) =

1

B
Y k+1(z)

B+1Y k(z)
A

•

y′k+1(z) =
1

(1− yk(z))r

etc.



“Intersection Property”

Lemma

ỹ0(x) = 1, ỹ′k+1(x) = ỹk(x)
D with ỹk+1(0) = 1.

yk(z) := ek/(cD(D−1)) ·Ψ
(
ek/cD(ρ− z)

)
(k ∈ R)

y′k+1(x) = ỹk(x)
D with 0 < yk+1(0) < 1

=⇒ For every integer ` ≥ 0 and for every real number k > 0 the

difference

ỹ`(z)− yk(z)

has exactly one zero.



“Intersection Property”

Proof

The case ` = 0 is (trivially) true for all k > 0.

` → ` + 1:

ỹ′`+1(x)− y′k+1(x) = (ỹ`(x)− yk(x))
D−1∑
j=0

ỹ`(x)
jyk(x)

D−1−j

︸ ︷︷ ︸
>0

=⇒ ỹ′`+1(x)− y′k+1(x) has exactly one zero.

=⇒ ỹ`+1(x)− yk+1(x) has exactly one zero.
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