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Chapter 1

Valuation Theory

In this first chapter, we give an introduction to valuation theory. Understanding valua-
tion theory is a crucial step towards understanding class field theory. Most of the terms
and theorems stated here are needed later on, as we get to local class field theory. Most
parts of this can be found in [Ne2], [Iw] and [FeVo1].

1.1 Introduction

In this section we would like to give a little motivation for the theory we will develop in
this text. Therefore, the definition of the p-adic numbers is essential.

Definition 1.1.1. Fix a prime number p. A p-adic integer is a formal infinite series

a0 + a1p+ a2p
2 + · · · ,

where 0 ≤ ai < p, for all i = 0, 1, 2, . . . . The set of all p-adic integers is denoted by Zp .

This definition seems natural if we consider the fact that every positiv integer n ∈ N can
be represented as

n = a0 + a1p+ · · ·+ anp
n.

We see, that the definition above is just the extension of this to the infinite case. There-
fore the next proposition is quite obvious to see:

Proposition 1.1.2. The residue classes of a ∈ Zp mod pn ∈ Z/pnZ can be uniquely
represented in the form

a ≡ a0 + a1p+ a2p
2 + · · ·+ an−1p

n−1 mod pn

where 0 ≤ ai < p for i = 0, . . . , n− 1.

Idea. The proof is straight forward using induction.

We would now like to define a valuation on the p-adic integers.

4



INTRODUCTION 5

Let a = b
c , b, c ∈ Z, be a nonzero rational number. We extract from b and from c as high

a power of the prime number p as possible:

a = pm
b′

c′
, (b′c′, p) = 1, (1.1)

and we put

|a|p =
1
pm

.

|a|p is called the p-adic absolute value. In these terms, the summands a0+a1p+a2p
2+· · ·

form a sequence converging to 0 with respect to | |p.
The exponent m in the representation (1.1) of the number a is denoted by vp(a), and
we put formally vp(0) =∞. This gives the function

vp : Q→ Z ∪ {∞},

which is easily checked to satisfy the properties

1. vp(a) =∞⇔ a = 0,

2. vp(ab) = vp(a) + vp(b),

3. vp(a+ b) ≥ min (vp(a), vp(b)),

where x+∞ =∞,∞+∞ =∞ and ∞ > x for all x ∈ Z. The function vp is called the
p-adic exponential valuation of Q. The following fact explains the term exponential:

The p-adic absolute value is given by

| |p : Q→ R

a 7→ |a|p = p−vp(a).

Easy observations show that the p-adic absolute value satisfies the conditions of a topo-
logical norm on Q.

Remark 1.1.3. With respect to the redefinition of a valuation in the next section we
will omit the term exponential here.

After this little motivation, we would now like to introduce the p-adic numbers.

If we extend the domain of p-adic integers into that of the formal series

∞∑
v=−m

avp
v = a−mp

−m + · · ·+ a−1p
−1 + a0 + a1p+ · · ·
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where m ∈ Z and 0 ≤ av < p. Such series are simply called p-adic numbers, denoted by
Qp. It is easy to see that we obain a canonical mapping

Q→ Qp

as we had one for the integers into the p-adic integers in an obvious way.
We will see later when we discuss the meaning of completeness, that the p-adic numbers
are complete with respect to the p-adic valuation.

We now give another definition of the p-adic integers, including projective limits. How-
ever, we will not discuss projective limits in detail, but only give enough information
about them to define the p-adic integers. For more detailed information about the con-
struction using the projective limit see [Ne2] or [Wi1] or the Appendix.

As we stated above, the residue classes of a p-adic integer a mod pn ∈ Z/pnZ can
be uniquely represented by finite sums. We therefore consider the p-adic integers as a
sequence of residue classes

sn = sn mod pn ∈ Z/pnZ.

The terms of such a sequence lie in different rings Z/pnZ, but theses are related by the
canonical projections

Z/pZ λ1←− Z/p2Z λ2←− Z/p3Z λ3←− · · ·

and we find
λn(sn+1) = sn.

In the direct product

∞∏
n=1

Z/pZ = {(xn)n∈N | xn ∈ Z/pZ} ,

we now consider all elements (xn)n∈N with the property that

λn(xn+1) = xn for all n = 1, 2, . . .

Definition 1.1.4. This set is called the projective limit of the rings Z/pnZ and is denoted
by lim←−n Z/p

nZ.

In other words we have:

lim←−
n

Z/pnZ =

{
(xn)n∈N ∈

∞∏
n=1

Z/pnZ | λn(xn+1) = xn, n = 1, 2, . . .

}
.

The following proposition shows that the elements in the construction above really are
the p-adic integers as defined in the beginning of this section.
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Proposition 1.1.5. Associating to every p-adic integer

f =
∞∑
v=0

avp
v

the sequence (sn)n∈N of residue classes

sn =
n−1∑
v=0

avp
v mod pn ∈ Z/pnZ,

yields a bijection
Zp→̃ lim←−

n

Z/pnZ.

Proof. The proof immediatly follows from the unique represenation of the residue classes
of a p-adic integer a mod pn.

Due to that proposition, we identify

Zp = lim←−
n

Z/pnZ.

The p-adic integers are a subring of the direct product
∏∞
n=1 Z/pnZ where addition and

multiplication are defined componentwise. In this context, Qp becomes the quotient field
of Zp.
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1.2 Basic Definitions

In this section we will give most of the definitions we will need later and state useful
lemmas and propositions about them.

Let G be an abelian totally ordered group and let F be a field. A map v : F → G with
the following properties

1. v(α) = +∞⇔ α = 0

2. v(α · β) = v(α) + v(β)

3. v(α+ β) ≥ min {v(α), v(β)}

is called a valuation on F . A field F that allows such a map is said to be a valuation
field . It is easy to see that the map v : F ∗ → G induces a group homomorphism and
therefore the image v(F ∗) is a totally ordered subgroup of G.

Remark 1.2.1. In the introduction we saw that this valuation here is an exponential
valuation of an absolute value. However, we could also proceed in the following way:

We start with absolute values, satisfying the conditions:

1. |x| ≥ 0 and |x| = 0 if and only if x = 0

2. |xy| = |x||y|

3. |x+ y| ≤ |x|+ |y|

Using this theory, we can define an absolute value to be non-archimedian if |n| stays
bounded for all n ∈ N. Otherwise it is called archimedian.
We will see later in the theorem of Ostrowski 1.3.5, why we do not use those definitions.

We will now show some really basic properties about valuations which will be used in
proofs in the following sections.

Lemma 1.2.2. If v is a valuation on a field F we have:

1. v(−1) = 0

2. v(−α) = v(α)

3. v(α−1) = −v(α)
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Proof. It is clear from the fact that v is a group homomorphism that v(1) = 0, which is
a commonly known property of group homomorphisms. From that and (−1)−1 = (−1),
which can be shown easily, we get:

v(1) = v ((−1) · (−1)) = v(−1) + v(−1) = 0

which leads to v(−1) = −v(−1) which can only mean either char(F ) = 2 or v(−1) = 0.
But with characteristic 2 we also have −1 = 1 from which we obtain v(−1) = v(1) = 0.

The second property simply follows from (1):

v(−α) = v ((−1) · α) = v(−1) + v(α) = 0 + v(α) = v(α).

The third property follows similar.

It is easy to verify that if v(α) 6= v(β) the last condition on a valuation, the triangle law,
is actually equal to v(α + β) = min (v(α), v(β)). That is because if we assume without
loss of generality that v(α) > v(β), then

v(α+ β) ≥ min {v(α), v(β)} = v(β) = v(α+ β − α) ≥

≥ min {v(α+ β), v(α)} = v(α+ β)

and our assumption v(α) > v(β) proves the last equality.

Next we define some sets that are essential for our further discussions.

If we define

Ov := {α ∈ F : v(α) ≥ 0}

Mv := {α ∈ F : v(α) > 0}

then it is easy to see that Ov is a (clearly commutative) ring. We know from Algebra
that the set of non-invertible elements of a ring forms an ideal, which is maximal and
unique. Therefore, by definiton, the ring Ov is a local ring. Hence we have a naturally
induced field Ov/Mv, the residue (class) field , denoted by F . This field is denoted
throughout this text by F as there will not be any confusion with another valuation.
The set Uv = Ov \Mv is a multiplicative group, the group of units. This group obviously
has the property v(α) = 1 for all α ∈ Uv.

Remark 1.2.3. 1. We saw that the idealMv is unique and maximal. We will there-
fore sometimes denote it by P when convenient and when the situation allows no
confusion.

2. Uv will sometimes also be denoted by UK if the valuation cannot be confused. The
same holds for the ideal Mv which will sometimes be denoted as MK for the
corresponding field. This is useful as we will have different fields later.
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3. The term residue class field should not be mixed up with class field, a term we will
define later and that is something totally different.

Lemma 1.2.4. For every x ∈ F we either have x ∈ Ov or x−1 ∈ Ov.

Proof. This is just a simple observation. By lemma 1.2.2 the assertion is exclusive.

Ov is called the ring of integers or valuation ring . This ring is always integrally closed.
For if x ∈ F is integral over Ov, then by definition there is an equation

xn + an−1x
n−1 + · · ·+ a0 = 0

with ai ∈ Ov and by assumption x /∈ Ov and by our previous observation we must have
x−1 ∈ Ov. But that would imply x = −an−1 − an−2x

−1 − · · · − a0(x−1)n−1 ∈ Ov.

Let v be a valuation of F . For any real number s > 0, define a function µ(α) on F by

µ(α) = s · v(α), for all α ∈ F.

Then µ is again a valuation of F . When two valuations v and µ on F are related in this
way - namely when one is a positive real number times the other - we write

v ∼ µ

and say that v and µ are equivalent valuations of F .

As it is easy to see, that equivalent valuations on a field F induce the same ring of integers
and maximal ideal. Therefore, equivalent valuations have the same residue field, along
with many other properties as we will see.

In order to get more specific results, we need to add properties to valutaions. We will
concentrate on discrete valuation fields.

First of all we call F a discrete valuation field if F allows the definition of a non-trival
discrete valuation. Such a valuation is one that admits a smallest positive value s such
that

v(F ∗) = sZ.

Since v(F ∗) is a subgroup of Z, we get a normalized valuation v∗ := 1
sv. Hence we

can always assume that the map v : F ∗ → Z is surjective by replacing v with its
corresponding normalized valuation. By the definition of the corresponding sets this
does not change Ov or Mv and hence not the residue class field either. When talking
about a discrete valuation we will therefore always assume that it is normalized.

Remark 1.2.5. It is obvious that a field admitting a discrete valuation can never be
finite. This seems obvious at this point, but is worth being mentioned as it will be useful
later. This, however, will not be a restriction since we will see that the fields we want to
study are extensions of Q.
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In terms of our definition of equivalency of valuations this would mean, we regard all
the valuations on a field F in equivalency classes and pick the normalized valuation as
a representative of each class. An element π ∈ F is called a prime, if v(π) generates

v(F ∗). In the case of a normalized discrete valuation, this simply means v(π) = 1.

The next lemma gives us a little information about the inner structure of Ov.

Lemma 1.2.6. Let F be a discrete valuation field, and π be a prime element. Then the
ring of integers Ov is a principal ideal ring, and every proper ideal of Ov can be written
as πnOv for some n ∈ N. In particular,Mv = πOv. The intersection of all proper ideals
of Ov is the zero ideal.

Proof. See [FeVo1].

As our next result we get a useful representation of an arbitrary element of F , which
can also be shown quite easy.

Lemma 1.2.7. Any element α ∈ F can be written as α = πnε for some n ∈ Z, ε ∈ Uv
and a prime element π.

Proof. Let n = v(α). Then απ−n ∈ Uv and α = πnε for ε ∈ Uv. If πnε1 = πmε2, then
n+ v(ε1) = m+ v(ε2). As ε1, ε2 ∈ Uv, we deduce n = m, ε1 = ε2.

A discrete valuation field can be made a metric space in the following way:

Let v be a discrete valuation on a field F . Then for any d such that 0 < d < 1 the map
dv : F × F → R defined by dv(α, β) 7→ dv(α−β) is a metric on F , inducing a Hausdorff
topology.

Remark 1.2.8. It can be shown quite easy that equivalent valuations of F induce the
same topology. We will therefore always assume v1 � v2 if we demand v1 6= v2.

For every α ∈ F the sets α + πnOv form a base of open neighborhoods of α, since the
sets 1 + πnOv form a base of neighborhoods of 1 ∈ F .

Lemma 1.2.9. The field F is a topological field with the above-defined topology.

Proof. By the definition of our base of neighborhoods of an element α it suffices the prove
that we can find a neighborhood U of (α, β) from the product topology which satisfies
v(x − v) ≥ m for some n ∈ N (since that implies v(x − y) ∈ V for some neighborhood
V = α+ πkOv of α = επn, namely any m ≥ max{k, n} will do.
This, however, is gained really easy from the triangle law:

1. v((α− α0)− (β − β0)) = v((α− β)− (α0 − β)) ≥ min {v(α− α0), v(β − β0)} with
(α, β) ∈ V which is a neighborhood of (α0, β0) and using property (ii) of lemma
1.2.2.
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2. v(αβ − α0β0) = v(αβ − α0β + α0β − α0β0) = v((α − α0)β + (β − β0)α0) ≥
min{v(α− α0) + v(β), v(β − β0 + v(α)}.

3. v(α−1 − α−1
0 ) = v(α − α0) − v(α) − v(α0) by adding terms as in the proof of the

multiplication.

We therefore obtain the continuity of subtraction, multiplication and division.

Lemma 1.2.10. Let τ1 be definied by a discrete valuation v1 and τ2 by v2. Then τ1 = τ2

holds if and only if v1 = v2.

Proof. Given v1 = v2 it is obvious that τ1 = τ2 holds.
Assume that τ1 = τ2 = τ . We observe:

αn → 0 with n→∞ in τ ⇔ v(α) > 0

First, if v(α) > 0, then v(α) ≥ 1, since v(F ) = Z. So v(α) > 0 obviously means

v(αn) = n · v(α) ≥ n for all n ∈ N

and hence limn→∞(v(αn)) = 0 which gives us v(limn→∞ α
n) = 0 since v is easily shown to

be continuous. Let us now assume v(α) ≤ 0. v(α) = 0 implies v(αn) = 0 for all n ∈ N.
By the same limit argument as shown above we get v(0) = 0 which contraticts the
definition of v. If v(α) < 0, we apply the limit argument again and get v(limn→∞ α

n) ≤ 0
which leads to the same contratiction.
Having shown the above we get v1(α) > 0 if and only if v2(α) > 0, since both topologies
coincide. Let now π1 and π2 be prime elements of v1 and v2 respectively.
For an arbitrary prime element π with respect to a valuation v we always have v(π) > 0
by definition of π ∈ Ov. As mentioned above we therefore obtain v(π) ≥ 1 in the case
of a discrete valuation. We conclude v1(π2) ≥ 1 and v2(π1) ≥ 1.
If v2(π1) > 1 then

v2(π1π
−1
2 ) = v2(π1) + v2(π−1

2 ) = v2(π1)− v2(π2) > 0

since v2(π2) = 1. The same holds for v1(π2π
−1
1 ) > 0. The latter expression equals

−v1(π1π
−1
2 ) > 0. This implies v2(π1) = 1 and v1(π2) = 1 for all primes π1 with respect

to v1 and π2 with respect to v2. Since every element α ∈ F has a representation πn · ε
both valuations must coincide.

Remark 1.2.11. According to [Ne2] two valuations are equivalent when they define the
same topology on F . It can be shown that this is the case when they only differ in
a multiplicative factor s. Since we assumed our valuations to be normalized, the only
possible factor s is actually 1.
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1.3 Completion

In the last chapter we developed a theory of valuations on a field. Since valuations
naturally define a topology on the field F , making it to a metric topolocial space, we
can take a look at its completion.

Definition 1.3.1. A sequence {αn} of elements is called a Cauchy sequence if for every
real c there is n0 such that v(αn − αm) ≥ c for m,n ≥ n0.

The following lemma shows us, how it is natural to define the completion of a valuation
field.

Lemma 1.3.2. The set A of all Cauchy sequences forms a ring with respect to com-
ponentwise addition and mulitiplication. The set of all Cauchy sequences with αn → 0
forms a maximal ideal M of A. The field A/M is a discrete valuation field with its
discrete valuation v̂ defined by

v̂((αn)) = lim
n→∞

v(αn)

for a Cauchy sequence {αn}n≥0.

Having shown the above we new define the completion of a field.

Definition 1.3.3. A discrete valuation field F is called a complete discrete valuation
field if every Cauchy sequence is convergent in F , i.e. there exists

α = lim
n→∞

{αn} ∈ F

with respect to v. A field F̂ is called a completion of F if it is complete and v̂|F = v
and F is a dense subfield of F̂ .

Theorem 1.3.4. Every discrete valuation field F has a completion which is unique up
to an isomorphism over F .

As promised in the previous section, we will now state the theorem of Ostrowski. We
will therefore see why we did not use absolute values to define valuations.

Theorem 1.3.5 (Ostrowski). Let K be a field which is complete with respect to an
archimedean valuation | |. Then there is an isomorphism σ from K onto R or C satis-
fying

|a| = |σa|s for all a ∈ K

for some fixed s ∈ (0, 1].

We see that every discrete valuation field has the above defined completion, which is a
complete valuation field with respect to v̂, the canonical extension of v from F to F̂ .

Given a sequence {αn} we observe that v(αn) must become stationary. For n ≥ n0 we
have v(α − αn) > v(α) since {α − αn} has to be a null sequence and hence v(α − αn)
tends to +∞ by the definition of a valuation. Therefore we have
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v(αn) = v̂(αn − a+ a) = min{v̂(αn − α), v̂(α)} = v̂(α).

From that we get
v(F ∗) = v̂(F ∗)

and if v is discrete and normalized, then so is the extension v̂. We obtain that if
{αn+1−α} is a sequence tending to null, then {αn} is a Cauchy sequence. By the same
argument we see that an infinite series

∑∞
n=0 αn converges in F̂ if and only if the

sequence of its terms αn is a nullsequence.

Definition 1.3.6. A field F which is complete with respect to a discrete valuation v
and has perfect residue field is called a local field .

Remark 1.3.7. 1. A local field is sometimes defined to have finite residue field, not
just a perfect one. A perfect field is a field for which every algebraic extension
is seperable (as seen in the appendix). As we know from basic Algebra, whence
every field of characteristic 0 is perfect, but also every finite field. Local fields
are sometimes called local number fields if they are of characteristic 0, or local
functional fields if they are of positive characteristic.

2. In Chapter 2 we will mainly assume local fields will to have finite residue fields.

Let us now take a closer look on the topological aspect of the residue fields.

Proposition 1.3.8. If O ⊂ K, respective Ô ⊂ K̂ is the valuation ring of v resp. v̂ and
if M resp. M̂ are the maximal ideals then we have

Ô/M̂ ' O/M

and if v is discrete
Ô/M̂n ' O/Mn for n ≥ 1.

The next proposition is a nice property of discrete valuation fields, that will be men-
tioned, but not proved.

In the introduction we identified the ring Zp of p-adic integers with the projective limit
lim←−n Z/p

nZ. Similar to this we have for every n ∈ N the canonical homomorphisms

O → O/Mn

which together with
O/M λ1←− O/M2 λ2←− O/M3 λ3←− · · ·

gives as a homomorphism O → lim←−nO/M
n into the projective limit

lim←−
n

O/Mn =

{
(xn) ∈

∞∏
n=1

O/Mn | λn(xn+1) = xn

}
.

From this and basic properties of projective limits we obtain that the projective limit
lim←−nO/M

n is a closed subset of the product in the product topology on
∏∞
n=1O/Mn.
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Proposition 1.3.9. The canonical mapping

O → lim←−
n

O/Mn

is an isomorphism and a homeomorphism. The same is true for the mapping

O∗ → lim←−
n

O∗/U (n),

where U (n) = 1 +Mn
v .

Remark 1.3.10. The set U (n), the n-th unit group, will be properly defined and used
later.

We will now state Hensel’s lemma. The proof is not that complicated, but rather long
and therefore omitted. For the proof see for example either [FeVo1] or [Ne2].

Lemma 1.3.11 (Hensel’s Lemma). Let F be a complete discrete valuation field, O its
ring of integers and p its unique maximal ideal. If a primitive polynomial f(x) ∈ O[x]
admits a factorization

f(x) ≡ g(x)h(x) mod p

into relatively prime polynomials g, h ∈ F [x], then f(x) admits a factorization

f(x) = g(x)h(x)

into polynomials g, h ∈ O[x] such that deg(g) = deg(g) and

g(x) ≡ g(x) mod p and h(x) ≡ h(x) mod p.

Fields that satisfiy the assertion of Hensel’s lemma are called Henselian fields. The way
we stated the lemma we see, local discrete valuation fields are Henselian fields.

Remark 1.3.12. It can be shown that if a field F is a Henselian field with respect to
nontrivial valuations v, v′ : F → Q and the topologies induced by v and v′ are not
equivalent and v is discrete, then v′ cannot be discrete.

Example 1.3.13. The polynomial f(x) = xp−1 − 1 ∈ Zp[x] splits over the residue class
field Z/pZ = Fp into distinct linear factors. If we apply Hensel’s lemma we see that f(x)
also splits over Zp. Applying the lemma repeatedly we get a representation of f(x) as
the product of distinct linear factors over Zp. Therefore the field Qp of p-adic numbers
must contain the (p − 1)-th roots of unity, denoted by µq−1. These, together with 0
even form a system of representatives for the residue class field, which is closed under
multiplication.

The next lemma is an immediate consequence of Hensel’s lemma, but will be useful in
the next section to prove the existence of an extension of a valuation.

Lemma 1.3.14. Let F be a complete discrete valuation field and let

f(x) = xn + an−1x
n−1 + · · ·+ a0

be an irreducible polynomial with coefficients in F . Then the condition v(a0) ≥ 0 implies
v(ai) ≥ 0 for 0 ≤ i ≤ n− 1.
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Proof. By assumption we know that a0 ∈ O and let us assume that j is the maximal
integer such that v(aj) = min0≤i≤n−1 v(ai). If aj /∈ O and therefore v(aj) < 0, then put

f1(x) = a−1
j f(x)

g0(x) = xj + a−1
j aj−1x

j−1 + · · ·+ a−1
j a0

h0(x) = a−1
j xn−j + 1

We obviously have f1(x) = g0(x)h0(x) and g0(x), h0(x) are relatively prime. There-
fore by Hensel’s lemma we conclude that f1(x) and f(x) are in contradiction to our
assumption not irreducible.
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1.4 Extensions of Valuations

In this section we will look at the extension of a field’s valuation to an extension of the
field. We will first define the ramification index e and the inertia degree f of a valuation
field and an extension of it. Based on that we deduce basic properties about those two
numbers.
To state our main theorem of this section, the one about the uniqueness of an extension
in a special case, we need to get familiar with the representation of an arbitrary element
x ∈ L in terms of a basis of the extension [L : F ]. From that we also obtain the familiar
equation e · f = n, which we know from algebraic number theory.
Some of the proofs in this section will be omitted, because they are rather long and
technical but do not really give any additional information.

If we have a discrete valuation field L with a valuation w and L is an extension of a field
F , then v := w|F induces a valuation on the field F . In this context L/F is said to be
an extension of valuation fields. Once again w(L∗) is a totally ordered group and w(F ∗)
a totally ordered subgroup of it.

Definition 1.4.1. The index w(L∗)/w(F ∗) is called the ramification index e(L/F,w).

Remark 1.4.2. We will remark later, that the definition known from algebraic number
theory can be deduced from the definiton above.

The ring of integers Ov is clearly a subring of Ow and the maximal ideal Mv is Mv =
Mw ∩ F =Mw ∩ Ov, as we can see from theorem A.2.15 and theorem A.2.16.

From that we obtain

F = Ov/Mv = Ov/(Mw ∩ Ov) = (Ov +Mw)/Mw ⊂ Ow/Mw = L

by using the second isomorphism theorem. We therefore consider the residue field F of
F to be a subfield of the residue field L of L.

Definition 1.4.3. The degree [L : F ] is called the inertia degree or residue degree
f(L/F,w).

Lemma 1.4.4. Let L be a finite extension of F of degree n. Then

e(w|v)f(w|v) ≤ n.

Proof. See [Ne2] for a proof of this.

The following proposition gives us a unique representation of an element x ∈ F which will
be very useful in latter proofs. We therefore need the definition of a set of representatives
for a valuation field F . Such a set is a set R with:

1. R ⊂ O, with O is the ring of integers of F with respect to its valuation
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2. 0 ∈ R

3. R is mapped bijectively on F = O/P under the canonical map

We can now use that definiton to express our unique represenation of an arbitrary
element x of F in a nice way:

Proposition 1.4.5. 1. Each x ∈ F can uniquely expressed in the form

x =
∑

−∞<<n
θnπn, with θn ∈ R.

If x 6= 0 and if θi 6= 0, θn = 0 for all n < i, then

v(x) = i.

2. Let
x =

∑
θnπn, y =

∑
ζnπn, θn, ζn ∈ R.

Then, for any integer i

v(x− y) ≥ i ⇔ θn = ζn for all n < i.

Proof. See [Iw].

Proposition 1.4.6. Let L be an extension of F and let F,L be complete with respect
to discrete valuations v, w. Let w|v, f = f(w|v) and e = e(w|v) < ∞. Let πw ∈ L be a
prime element with respect to w and θ1, . . . , θf elements of Ow such that their residues
form a basis of L = Ow/Pw over F = Ov/Pv.
Then {θiπjw} is a basis of the F -space L and of the Ov-module Ow, with 1 ≤ i ≤ f ,
0 ≤ j ≤ e− 1. If f <∞, then L/F is a finite extension of degree n = ef .

The next lemma is very helpful in the proof of the main theorem of this section.

Lemma 1.4.7. Let L be a finite extension of F and w, v their respective valuations and
L,F their residue fields. Let ω1, . . . , ωs be any finite number of elements in L which are
linearly independent over F and for each i, 1 ≤ i ≤ s choose an element χi in Ow that
belongs to the residue class ωi in L = Ow/P . Fix a prime element πw of L and let

νij = χiπ
j
w, 1 ≤ i ≤ s, 0 ≤ j < e = e(L/F,w).

Then we have:
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1. Let

y′ =
s∑
i=1

yiχi, with yi ∈ F.

Then
w(y′) = min{ev(yi), 1 ≤ i ≤ s}

and χ1, . . . , χs are linearly independent over F .

2. Let
x′ =

∑
i,j

xijνij , with xij ∈ F , 1 ≤ i ≤ s, 0 ≤ j < e.

Then
w(x′) = min{ev(xij) + j, 1 ≤ i ≤ s, 0 ≤ j < e}

and the elements νij, 1 ≤ i ≤ s, 0 ≤ j < e, are linearly independent over F .

Proof. See [Iw].

The next theorem is an essential statement about the uniqueness of an extension of a
valuation in the case of a complete discrete valuation field to a finite extension of it.

Theorem 1.4.8. Let F be a complete field with respect to a discrete valuation v and L
a finite extension of F . Then there is precisely one extension w on L of the valuation v
and

w =
1
f
v ◦NL/F with f = f(L/F,w).

The field L is complete with respect to w.

We will prove this result, since it can be seen very clearly why our extension is defined
the way it is. As discussed in previous chapters we do not loose any of the significant
properties of a valuation if we assume it to be normalized. We will therefore assume our
valuations to be normalized in the following proof.

Proof. We will first constructively prove the existence of an extension and then show
that it is unique.

Existence We define w′ = v ◦ NL/F , where NL/F is the regular norm symbol of the
extension L/F , then w′ is a valuation on L.

(1) It is obvious that w′(α) = +∞ if and only if α = 0 because the same property
holds for v and NL/F (α) = 0 if and only if α = 0.
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(2) Next we have to show that w′(α · β) = w′(α) + w′(β). Since we have:

w′(α · β) = v ◦NL/F (α · β) = v(NL/F (α · β)) = v(NL/F (α) ·NL/F (β)) =

= v(NL/F (α)) + v(NL/F (β)) = v ◦NL/F (α) + v ◦NL/F (β) = w′(α) · w′(β)

because of the multiplicativity of the norm symbol and the valuation v.

(3) For the third property we have to show w′(α + β) ≥ min(w′(α), w′(β)). We can,
without loss of generality, assume that w′(α) ≥ w′(β) is true. Then we have:

w′(α+ β) = w′
(
β

(
1 +

α

β

))
= w′(β) + w′

(
1 +

α

β

)
by (2), which we have already proved above. Due to our assumption we have:

w′
(
α

β

)
= w′(α)− w′(β) ≥ 0

which can easily be seen to be true due to a remark after the definition of a valuation
and by assumption. It therefore sufficies to show that w′(γ) ≥ 0 implies w′(1 + γ) ≥ 0.
Let now be f(x) = xm+am−1x

m−1 + · · ·+a0 the monic irreducible polynomial of γ over
F . We know about norms from algebraic number theory that NL/F (γ) =

∏
γi when

f(x) =
∏

(x− γi) for separable extensions. From that we get (−1)ma0 = NF (γ)/F (γ).
Let s be the degree of the second extensions, namely s := |L : F (γ)|. We know from
basic norm properties that

NL/F (γ) = NF (γ)/F (NL/F (γ)(γ))

For the inner part NL/F (γ)(γ) we simply have NL/F (γ)(γ) = γs and due to the multi-
plicativity of the norm symbol NL/F (γ) = NF (γ)/F (γ)s.
From w′(γ) ≥ 0, which is nothing else but v◦NL/F (γ) ≥ 0, we obtain v(((−1)ma0)s) ≥ 0,
which by the already proved property (2) means nothing else but v((−1)ms)+s·v(a0) ≥ 0.
From the simple fact v(1) = 0 and of course v(−1) = 0 we therefore see v(a0) ≥ 0.
For norms we know that NL/K(g(α)) = g(α1) · · · · · g(αd) for an element α ∈ F , with αi
being the conjugates of α. From that we obtain that

(−1)mNF (γ)/F (1 + γ) = (−1)mf(−1) = (−1)m + am−1(−1)m−1 + · · ·+ a0

and hence

v(NF (γ)/F (1 + γ)) ≥ 0 and v(NL/F (1 + γ)) ≥ 0

since v is a valuation and we can apply property (3) on the last term, which gives us

v((−1)m + am−1(−1)m−1 + · · ·+ a0) ≥ min(1, am−1, am−2, . . . , a0)

where we already omitted the signs of the terms because of lemma 1.2.2.
But the last term is just what we wanted to show, namely w′(1 + γ) ≥ 0.



EXTENSIONS OF VALUATIONS 21

In the last three paragraphs we have shown that w′ really is a valuation on L.

We will now show, that it indeed is an extension of v.

Let n = [L : F ]. By basic norm properties, which we already used, we have w′(α) =
n · v(α) for α ∈ F ∗. Hence, the valuation 1

nw
′ is an extension of v to L. In general we

do not have 1
nw
′(L∗) = Z.

If we want an extension that is again normalized, we need to drop that w|F is normalized
and add an additional factor:
Let e = e

(
L/F, 1

nw
′). In a preceding lemma we saw that e must be finite, since ef = n

holds. We know define a new valuation

w =
e

n
w′ : L∗ → Q.

The fact that w is again a valuation is really easily shown, since it just differs by a factor
from w′ which is, as we already proved, a valuation.
We know for any prime element πw with respect to w that we have

w(L∗) = w(πw)Z = Z.
Therefore w = e

nv ◦NL/F is a discrete valuation on L and an extension of an equivalent
the valuation v′(α) := e · v(α) which is equivalent to v and therefore preserves the
important properties of a valuation.

In the above section we saw that w really is an extension on L. We will now show that
L is a complete valuation field with respect to w.

L is complete Let L̂ be the completion of L with respect to w and let ŵ be the discrete
valuation on L̂. If we apply the third isomorphism theorem to the groups ŵ(L̂∗), w(L∗)
and v(F ∗) we see that

[ŵ(L̂∗) : v(F ∗)] = [ŵ(L̂∗) : w(L∗)] · [w(L∗) : v(F ∗)].

This is nothing else but

e(ŵ|v) = e(ŵ|w) · e(w|v)

where the latter term e(ŵ|w) must be 1 since w is already surjective. We can also explain
this by the fact that the only values of ŵ(L̂∗) are the ones from w(L∗) plus the limits.
As we observed in the previous section after theorem 1.3.5 the sequence of those limits
must become stable and therefore cannot have a value other than one that already is in
w(L∗).
We therefore define e(ŵ|v) = e(ŵ|w) = e.
We have a very similiar result for the inertia degree, namely

f(ŵ|v) = f(ŵ|w) · f(w|v)

where f(ŵ|w) = 1 because of proposition 1.3.8.
Proposition 1.4.6 implies [L̂ : F ] = n, but lemma 1.4.4 states ef ≤ n = [L : F ]. It easily
follows that L = L̂, and therefore L must be complete with respect to w = 1

f v ◦NL/F .
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Uniqueness We will now prove that the above defined extension w of v is unique. Let
therefore w̃ be another extension of v on L with w̃(L∗) = Z. Then w̃ is again a discrete
valuation and let w0 be the induced valuation on F , defined by w0 = w|F .
If we use the basis from proposition 1.4.6 of L over F , we can write each element α ∈ L
as

α =
∑
i,j

ρijθiπ
j
w with ρij(α) ∈ F.

According to lemma 1.4.7 we have:

w(α) = min
j

{
w0

(∑
i

ρij(α)θi

)
+ j

}
.

From that it can easily be seen that if αk → 0 as k → +∞ with respect to the topology
induced by w implies

∑
i ρij(αk)θi → 0 as k → +∞ with respect to w0 for 0 ≤ j ≤ e−1.

On the other hand we have w̃(α + β) ≥ min{w̃(α), w̃(β)} since w̃ is a valuation and
therefore

w̃(α) ≥ min
j

{
w̃0

(∑
i

ρij(α)θi

)
+ jw̃(πw)

}
.

w̃ and w both are extensions of v on F and must therefore coincide on F , which means
we have only one topology on F .
As we saw above we have

∑
i ρij(αk)θi → 0 as k → +∞ with θij ∈ F . From this we

obtain that we must have αk → 0 as k → +∞ with respect to w̃.
Putting αk = πkw we deduce that α ∈ Mw implies α ∈ Mw̃ and Mi

w ⊂ Mi
w̃. If

w(πw̃) ≤ 0 then πwπ
k
w̃ ∈Mw for any negative integer k by lemma 1.2.2.

Hence, πwπkw̃ ∈Mw̃, which means w̃
(
πwπ

k
w̃

)
> 0 for any negative integer k. But on the

other hand
w̃(πwπkw̃) = w̃(πw) + k · w̃(πw̃) = w̃(πw) + k

for any k < 0 which is clearly a contradiction since w̃(πw) must have a finite integer
value by the first property of a valuation.
Therefore we must have w(πw̃) > 0 and hence w(πw̃) ∈ Mw and Mi

w̃ ⊂ Mi
w. This

shows that the topologies induced by w and w̃ coincide and by lemma 1.2.10 we see that
we must have w = w̃.

Remark 1.4.9. We can now see, that the definition of the ramification index which was
given above implies the definition known from algebraic number theory.
Let L be a finite extension of a discrete valuation field F . If v, and hence w = 1

nv◦NL/F ,
is discrete and if Ov,Mv, π resp. Ow,Mw,Π, are the valuation ring, the maximal ideal
and a prime element of F resp. L, then

e = (w(Π)Z : v(π)Z),

so that v(π) = e · w(Π) and we find

π = ε ·Πe,
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for some unit ε ∈ O∗w. From this we deduce the familiar interpretation of the ramification
index: MvOw = πOw = ΠOw =Me

w, or

Mv =Me
w.

We can now easily proof a lemma about the ramification index and the inertia degree:

Lemma 1.4.10. Let L be a complete extension of F and E one of L with the respective
valuations v of F , v′ of L and v′′ of E. Then we have:

e(E/F, v′′) = e(E/L, v′′) · e(L/F, v′) and f(E/F, v′′) = f(E/L, v′′) · f(L/F, v′).

Proof. If v′′ is an extension of v′ as we demand in the lemma, we just saw in the proof
of the preceding theorem that v′′|L = e(E/L, v′′) · v′ and also v′|F = e(L/F, v′) · v holds,
but also v′′|F = e(E/F, v′′) · v.
Hence it is a simple consequence, that we have

e(E/F, v′′) = e(E/L, v′′) · e(L/F, v)

As we discussed above we consider the residue field F of F to be a subfield of the residue
field L of L. Of course the same holds for L and E, such that L is a subfield of E. Since
we have two extensions E : L and L : F , E : F of course is another complete extension
with the same property for its residue fields, namely F is a subfield of E.
This shows, that the property of being extensions of each other just drags down to the
residue fields. From basic Algebra exercises we see that

[E : F ] = [E : L] · [L : F ]

must be true. Which in terms of the inertia degeree is nothing else but f(E/F, v′′) =
f(E/L, v′′) · f(L/F, v′).

We now discuss the case of any algebraic extension of Henselian fields. The assertion
of the preceding theorem is actually also valid for Henselian fields, as we used Hensel’s
lemma (1.3.11) to prove it. We therefore easily gain the uniqueness of an extension of a
valuation on F to a finite extension L and even know how this extension looks like.

Theorem 1.4.11. Let v be a discrete valuation on a Henselian field F . Then the discrete
valuation v, in respect to which F is Henselian, has a unique extension to every finite
algebraic extension L of F .

Proof. The proof is verbatim the same is in the case of a complete field.

We can also go a little further with Henselian fields.

Theorem 1.4.12. Let F be a Henselian discrete valuation field and L an algebraic ex-
tension of F . Then there is precisely one valuation w : L∗ → Q (which is not necessarily
discrete), such that the restriction w|F coincides with the discrete valuation v on F .
Moreover, L is Henselian with respect to w.
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Remark 1.4.13. The last assertion of the theorem does not hold if we replace Henselian
with complete. However, in the case of a finite extension we already obtained that L is
complete. As we now see, it will still be Henselian in any case.

Sketch of proof. The first essential step in this proof of this is the way we extend the val-
uation to L. We already know that we have a unique extension to finite field extensions.
Let wM : M∗ → Q be that extention for the finite extension M : F with wM |F = v. We
now set:

w(α) = wM (α) for every α ∈ L∗ with M = F (α).

It is easy to verify that w really is an extension and it is straightforward to show it is
unique by obtaining a contradiction to the uniqueness on finite field extensions.

We will now state a corollary that will be used in chapter 2.

Corollary 1.4.14. Let F be a Henselian discrete valuation field, and let L/F be a finite
separable extension. Let v be the valuation on F and w the extension of v to L. Let
e = e(w|v) and f = f(w|v), and πw ∈ L be a prime element with respect to w and
θ1, . . . , θf elements of Ow such that their residues form a basis of Fw over F v. Then
θiπ

j
w is a basis of the F -space L and of the Ov-module Ow, with 1 ≤ i ≤ f, 0 ≤ j ≤ e−1.

In particular, if e = 1, then

Ow = Ov[{θi}], L = F ({θi}),

and if f = 1, then
Ow = Ov[πw], L = F (πw).

Proof. The proof is quite similar to the proof of lemma 1.4.4.

We now state another corollary, that will give us a little detail on how the extension of
a valuation looks like on other embeddings of L over F in F alg. At this point we would
like to make the agreement F alg = Lalg, which will be valid for the entire text.

Corollary 1.4.15. Let F be a Henselian discrete valuation field, and L/F a finite
separable extension. Let w be the discrete valuation on L and σ : L→ F alg an embedding
over F . Then w ◦ σ−1 is the discrete valuation on σL and

MσL = σML, OσL = σOL.
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1.5 Unramified and Ramified Extensions

In this section we define the new properties of extensions to be unramified, tamely
ramified or totally ramified. This is important as we could describe an extension of
fields by those terms. However, the proof of this would be too long and would need
several lemmas, additional to those already given in this section. The fact that we can
split up an extension in this way is important in proving the main theorem of local class
field theory.

Remark 1.5.1. At this point we would like to remind of the well known fact that every
finite extension is of course algebraic, but not every algebraic extension has to be a finite
one.

Definition 1.5.2. A finite extension L of a Henselian discrete valuation field F is called
unramified if L/F is a separable extension of the same degree as L/F , namely

[L : F ] = [L : F ].

A finite extension L/F is called totally ramified if f(L|F ) = 1.

Remark 1.5.3. 1. Considering our fundamental equation

e(L/F,w) · f(L/F,w) = [L : F ]

we can see that unramified means nothing else but e(L/F,w) = 1 and totally ram-
ified f(L/F,w) = 1. We will use this implicitly later.

2. By our definition an unramified extension is finite. We will extend this definition
to infinite extensions later.

From that definition and lemma 1.4.10 we can now easily see the following lemma:

Lemma 1.5.4. If L/F,M/L are unramified, then M/F is unramified.

Sketch of proof: This can be seen with the lemma mentioned above and the transitivity
of separability (for which see lemma A.3.24).

Lemma 1.5.5. Let F be a discrete valuation field. Then every subextension E/F of an
unramified extension L/F is unramified.

Proof. We have to prove two properties: First, the degree of the extension E/F must
be the same as E/F and E/F must be separable.
The first fact simply follows from lemma 1.4.10. As we remarked, e(E/F ) must be 1
which can be obtained very easily. We know for the separable extension L/F that every
element α ∈ L is separable over F , and therefore any subextension, which can only
contain such separable elements, is also separable.

Remark 1.5.6. We will add the following definition to give a complete overview of the
terminology, but focus on unramified and totally ramified extensions.

Definition 1.5.7. A finite extension L/F is called tamely ramified if L/F is a separable
extension and p - e(L|F ) when p = char(F ) > 0.

Before we give any statement about such extensions, we would like to remind of two
basic facts that will be used in the following proofs:



UNRAMIFIED AND RAMIFIED EXTENSIONS 26

(1) If we have an unramified extension L/F , which means L/F is separable, we can
apply the primitive element theorem (A.3.23) which states that we have L = F (θ) with
θ ∈ L.

(2) As we discussed earlier, we have a canonical mapping F → F , given by α 7→ α,
where α denotes the residue class of α.

We will now state two very useful lemmas which characterize unramified extensions.

Lemma 1.5.8. Let L/F be an unramified extension, and L = F (θ) for some θ ∈ L. Let
α ∈ OL be such that α = θ.
Then L = F (α) and L is separable over F , OL = OF [α]. θ is a simple root of the poly-
nomial f(x) which is irreducible over F , where f(x) is the monic irreducible polynomial
of α over F .

Proof. We have θ ∈ L is a root of f(x) which can be lifted to α ∈ OL. Therefore α ∈ OL
is a root of f(x), f(α) = 0, and by lemma A.4.12 we have f(x) ∈ OF [x].
Furthermore,

[L : F ] ≥ [F (α) : F ] = deg f(x) = deg f(x) ≥ [F (θ) : F ] = [L : F ]. (1.2)

where the latter equality holds because we have an unramified extension. It follows that
L = F (α) and θ is a simple root of the irreducible polynomial f(x). Therefore, f ′(θ) 6= 0
and f ′(α) 6= 0, i.e. α is separable over F . Applying proposition 1.4.6 helps us to see
OL = OF [α].

Remark 1.5.9. For a monic polynomial f(x) ∈ F [x] for a valuation field F with val-
uation v we must have deg f(x) = deg f(x), because for any non-trival ideal I we can
never have 1 ∈ I and therefore we know 1 /∈Mv.

We will now show the converse of the preceding lemma.

Lemma 1.5.10. Let f(x) be a monic polynomial over OF , such that its residue is a
monic separable polynomial over F and f(x) = g(x). Let α be a root of f(x) in F alg,
and let L = F (α). Then the extension L/F is unramified and L = F (θ) for θ = α.

Proof. Let f(x) =
∏n
i=1 fi(x) be the decomposition of f(x) into irreducible monic factors

in F [x]. By the lemma of Gauss (A.2.19) we must have fi(x) ∈ Of [x].
Suppose that α is a root of f1(x). Then g1(x) = f1(x) is a monic separable polynomial
over F since we demanded that f(x) is a monic separable polynomial. The Henselian
property of F implies that g1(x) is irreducible over F . If it was not, we could find another
decomposition of f1(x) and therefore had a contradiction to f1(x) is an irreducible factor.
By lemma A.4.12 we get α ∈ OL. Since we had θ = α ∈ L, we obtain L ⊃ F (θ) and

deg f1(x) = [L : F ] ≥ [L : F ] ≥ [F (θ) : F ] = deg g1(x) = deg f1(x).

The latter equality holds because of remark 1.5.9.
Thus, L = F (θ), and L/F is unramified.
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We will now prove a fact from which we will obtain the extended definiton of an unram-
ified extension to infinite extensions.

Corollary 1.5.11. If L/F is unramified, M is an algebraic extension of F and M is the
discrete valuation field with respect to the extension of the valuation of F , then ML/M
is unramified.

Remark 1.5.12. In the corollary above we demand M to be a discrete valuation field.
In theorem 1.4.12 we stated, that this infinite extension is not always discrete. We will
see later that in the case of an unramified extension, this condition is always true, and
therefore no limitation.

In this figure we show graphically what the assertion of the corollary is.

M ——————— ML

u
n
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—
—

—
—

—
–

u
n

ra
m

ifi
ed

—
—

—
—

—
–

F
algebraic

——————— M

Proof. Let L = F (α) with α ∈ OL and let f(x) be the monic irreducible polynomial of
α, which is in OL by lemma A.4.12.
If we had α ∈ML we would obtain:

α ∈ F and so L = F

which would be the trivial extension so we must have L = F (α) by assuming to have an
unramified extension.
It is easy to see that we have ML = M(α) by noting that L = F (α) and F ⊂ M .
We denote the irreducible monic polynomial of α over M by f1(x). By the Henselian
property of M we obtain that f1(x) must be a power of an irreducible polynomial over
M . If it would decomposite into at least two relatively prime factors we would gain a
decomposition of f(x) over M .
However, f1(x) divides f(x), as α is a root of both polynomials and we of course must
have deg f1 ≤ deg f , which drags down to the residue fields. Hence, f1(x) is irreducible
separable over M since f(x) is separable. Applying lemma 1.5.10, we conclude that
ML/M = M(α)/M is unramified.

The next corollary is easily obtained from what we have so far.

Corollary 1.5.13. Let L1/F and L2/F be unramified extensions, then L1L2/F is un-
ramified.

Proof. From lemma 1.5.11 we know that L1L2/L1 must be unramified, since L1/F is
an unramified extension and therefore finite by our current definition, hence algebraic.
Applying lemma 1.5.4 completes the proof.
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We will now really, as already mention before, extend our definition of unramified ex-
tensions to infinite extension of a Henselian discrete valuation field F .

Definition 1.5.14. Let L be an algebraic extension of a Henselian discrete valuation
field F . We call L/F unramified if L/F , L/F are separable extensions and e(w|v) = 1,
where v is the discrete valuation on F , and w is the unique extension of v on L.

Remark 1.5.15. Lemma 1.5.8 shows that a finite unramified extension is always sepa-
rable. Therefore the definition above really is an extension of our previous definition in
the finite case.

The assertion of corollary 1.5.13 shows that the composite of all finite unramified ex-
tensions of F in a fixed algebraic closure F alg of F is unramified. From theorem 1.4.12
we know that this extension - since we limited it to be in an algebraic closure - is a
Henselian valuation field. Since we have e(L|F ) = 1 for unramified extensions we see
that the valuation on L must be discrete - this simply follows from the construction of
the extension on finite extensions, where we had:

w(α) =
e

n
· v ◦NL/F (α).

This extension is called the maximal unramified extension F ur of F .

We know from Galois theory that the essential properties of an unramified extension are
invariant under automorphisms. Therefore if L is an unramified extension of a discrete
valuation field F , and σ ∈ Gal(F sep|F ), then σ(L) is another unramified extension of
F . Hence the maximality of F ur implies σ(F ur) = F ur for any automorphism of the
separable closure F sep (see A.3.17 for the definition) over F . By lemma A.3.25 we see
that F ur is Galois over F .

We will now prove a few facts about unramified extensions that we will need later.

Proposition 1.5.16. Let L/F be an unramified extension and let L/F be a Galois
extension. Then L/F is Galois.

Proof. It suffices to prove the assertion for finite unramified extensions, since the com-
posite of such Galois extensions is Galois. This can easily be seen from the transitivity
of separability and normality.
We therefore assume L/F to be a finite unramified extension with L is Galois over F .
Let L = F (θ) as in previous proofs and let g(x) be the irreducible monic polynomial of
θ over F . Then

g(x) =
n∏
i=1

(x− θi),

with θi ∈ L which are all distinct due to separability. Let us, without loss of generality,
assume θ1 = θ.
Let f(x) be a monic polynomial over OF of the same degree as g(x) and f(x) = g(x).
The Henselian property 1.3.11 implies

f(x) =
n∏
i=1

(x− αi),
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with αi ∈ OL, αi = θi. Lemma 1.5.8 shows that L = F (α) and we deduce that L/F is
Galois.

We will now show the converse of the preceding proposition, but also a little more about
the Galois groups of L/F and L/F .

Proposition 1.5.17. Let L/F be an unramified Galois extension. Then L/F is Galois.
For an automorphism σ ∈ Gal(L/F ) let σ be the automorphims in Gal(L/F ) satisfy-
ing the relation σ(α) = σ(α) for every α ∈ OL. Then the map σ 7→ σ induces an
isomorphism of Gal(L/F ) onto Gal(L/F ).

Proof. We first note that σ is unique and well defined:

(Uniqueness) If for σ ∈ Gal(L/F ), σ1, σ2 were two such automorphism satisfying
σ1(α) = σ(α) we can easily see that we have

σ1(α) = σ2(α) for every α ∈ OL/ML

which is equivalent to σ1 = σ2.

(Well-defined) Our first observation is, that we have σ(ML) =ML. This is because
ML is the unique maximal ideal and σ(ML) must be an ideal too, at least including
ML. We now see, that if β ∈ OL with β = α, then σ(α− β) ∈ML.
It again suffices to verify the assertion for a finite unramified Galois extension L/F . Let
f(x) be the monic irreducible polynomial of α over F and θ ∈ L such that α = θ. By
lemma 1.5.8 we saw that f(x) is separable. Since all roots of f(x) belong to L, we obtain
that all roots of f(x) belong to L and L/F is Galois, due to corollary A.3.26.
It is a well known fact that the image of a root αi ∈ L of a polynomial f(x) ∈ F [x] under
an automorphism σ ∈ Gal(L/F ) must be another root αj ∈ L of the same polynomial.
The homomorphism Gal(L/F ) → Gal(L/F ) defined by σ 7→ σ as discussed above is
surjective because the condition σ(θ) = θi implies σ(α) = αi for the root αi of f(x)
with αi = θi. Since Gal(L/F ) and Gal(L/F ) are of the same order by the fundamental
theorem of Galois theory we conclude

Gal(L/F ) ' Gal(L/F ).

From the above propositions we can now obtain the following corollary about the residue
field of the maximal unramified extension F ur.

Corollary 1.5.18. The residue field F ur of F ur coincides with the separable closure
F
sep of F and Gal(F ur/F ) ' Gal(F sep/F ).

Proof. We will proceed in two steps, first proving F ur ⊆ F sep and then the converse.

(1) First we observe that we must have F ur ⊆ F
sep because F ur is unramified over

F and therefore separable by definition and we also have F ur is separable over F , and
hence F ur ⊆ F sep.
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(2) Let θ be in F
sep and g(x) its monic irreducible polynomial over F . Let f(x) be a

monic irreducible polynomial over OL such that f(x) = g(x). Then we have a set {αi}
of roots of f(x) with αi ∈ OL for each i and we define L = F ({αi}). Since by lemma
1.5.10 L is an unramified extension we must have L ⊂ F ur and θ = αi ∈ F ur for a
suitable i.

Hence we have: F ur = F
sep.

We finally give a proposition and a corollary of it that are helpful in proving that an
abelian extension can be seen as the composite of an unramified extension and a totally
ramified extension. This result, however, would require a few more things we cannot
state or prove here. For more on this, see [FeVo1].

Proposition 1.5.19. Let L be an algebraic extension of F and let L be a discrete valu-
ation field. Then Lur = LF ur and L0 = L∩F ur is the maximal unramified subextension
of F which is contained in L. Moreover, L/L0 is a purely inseparable extension.

F —————– F ur —————– F sep

—
—

—
—

—
—

—
—

—
—

—
—

L —————– Lur = LF ur —————– Lsep

Proof. Lemma 1.5.11 implies Lur ⊇ LF ur since F ur clearly is an unramified extension of
F and L an algebraic one by assumption. We therefore obtain F urL/L is an unramified
extension and hence F urL ⊆ Lur. In the preceding section we discussed that we must
have F ⊆ L for an extension L/F . If we apply that here, we get:

LF ur ⊇ L and LF ur ⊇ F ur = F
sep

by the preceding corollary 1.5.18. LF ur therefore contains the compositum LF
sep, which

conincides with L
sep since L is an algebraic extension of F and we therefore must have

F sep = Lsep and F
sep = L

sep because L/F is algebraic. We deduce Lur = LF ur.
An unramified subextension of F in L is clearly contained in L0 and L0/F is unramified
due to lemma 1.5.5.
Let θ ∈ L be separable over F , and let g(x) be the monic irreducible polynomial of θ
over F . Let f(x) be a monic polynomial with coefficients in OF of the same degree as
g(x) and f(x) = g(x). Then there exists a root α ∈ OL of the polynomial f(x) with
α = θ because of the Henselian property. Because of lemma 1.5.10 we see that F (α)/F
is unramified. By our choice of θ we have θ ∈ L and α ∈ OL ⊂ L. Therefore F (α) is
an unramified subextension of L/F and therefore contained in L0, which shows α ∈ L0

and θ ∈ L0.
By that we don’t have any other separable elements over F which are contained in L
but not in L0. Hence L0 must be the maximal unramified subextension of F which is
contained in L.
The construction of our proof also showed that L/L0 is purely inseparable.
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The next corollary is an amendment to the proposition above.

Corollary 1.5.20. Let L be a finite separable extension of a Henselian discrete valuation
field F and let L/F be separable. Then L is a totally ramified extension of L0 = L∩F ur,
Lur is a totally ramified extension of F ur and [L : L0] = [Lur : F ur].

Proof. By previous discussions we saw that we must have f(L|L0) = 1 because f(L0|F ) =
n and we apply lemma 1.4.10. For the same reason we see that

e(L|L0) = [L : L0]. (1.3)

Lemma 1.4.10 again implies

e(Lur|F ur) = e(Lur|F ) = e(Lur|L) · e(L|L0) · e(L0|F ) = e(L|L0)

because we have e(Lur|L) = 1 and e(L0|F ) = 1 by definiton and the proposition above.
By the 2nd isomorphism theorem (A.1.11) we see:

Lur/F ur = LF ur/F ur ' L/(L ∩ F ur) = L/L0

where we just inserted the results of the propositon above and considered our fields to
be additive groups. We therefore obtain

[L : L0] = [Lur : F ur]. (1.4)

Combining the equations (1.3) and (1.4) gives us e(Lur|F ur) = [Lur : F ur] and therefore
by proposition 1.4.6 f(Lur|F ur) = 1. But the latter means, Lur/F ur is a totally ramified
extension.

We next regard the case of a finite Galois extension.

Let therefore L be a finite Galois extension of F . First we state a lemma that can easily
be deduced from corollary 1.4.15 and will therefore not be proved.

Lemma 1.5.21. Let L be a finite Galois extension of F . Then v ◦σ = v for the discrete
valuation v on L and σ ∈ Gal(L/F ). If π is a prime element in L, then σπ is a prime
element and

σOL = OL, σML =ML.

The next proposition seems a little long in its assertion, but will be needed when we
define the set Frob and the Neukirch homomorphism, which will be needed for the local
reciprocity law. We will also give the prove, as it is not long an only relies on already
discussed statements.

Proposition 1.5.22. Let L be a finite Galois extension of F and let L0/F be the maxi-
mal unramified subextension in L/F . Then L0/F and L0/F are Galois. The map σ → σ
defined with

σ(α) = σα for every α ∈ OL
induces the surjective homomorphisms Gal(L/F ) → Gal(L0/F ) → Gal(L0/F ). If, in
addition, L/F is separable, then L = L0 and L/F is Galois, and L/L0 is totally ramified.
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The extension Lur/F is Galois and the group Gal(Lur/L0) is isomorphic to Gal(Lur/L)×
Gal(Lur/F ur), and

Gal(Lur/F ur) ' Gal(L/L0), Gal(Lur/L) ' Gal(F ur/L0).

Proof. Let σ ∈ Gal(L/F ). Then corollary 1.4.15 implies that σL0 is also unramified over
F , hence L0 = σL0, since L0 was the maximal unramified subextension, which is unique.
Further, L0/F is of course Galois, since it a subextension with a stable intermediate field
(see lemma A.3.25). From proposition 1.5.17 we can easily see that the homomorphism
Gal(L/F ) → Gal(L0/F ) is surjective. By previous discussions we saw that F ur/F is
Galois (we applied the same lemma A.3.25 to see that). Now, L/F is also a Galois
extension, and therefore LF ur/F is a Galois extension. We now had Lur = LF ur in
proposition 1.5.19. Therefore Lur/F is a Galois extension.

The last assertions can be deduced from Galois theory. The following diagram helps in
seeing what we need to show:

F ———– L0 ———– L
—

—
—

–

—
—

—
–

F ur ———– Lur = L · F ur

Since F ur is the maximal unramified extension and L0 is an unramified extension, it is
clear that we must have L0 ⊂ F ur. Further:

Gal(Lur/L) ⊂ Gal(Lur/L0) and Gal(Lur/F ur) ⊂ Gal(Lur/L0).

We know from proposition 1.5.17, that L0 = L ∩ F ur and therefore those two Galois
subgroups above are disjoint. Also, they generate the whole group because of Lur =
L · F ur. This shows the first isomorphism. The others are quite easy to see.

We will now give a little lemma that we will need in the next chapter. However, the
proof would need some other lemmas which we will not state here.

Lemma 1.5.23. Let L be a finite Galois extension of F and L a separable extension of
F . If the extension is totally ramified, then Gal(L/F ) is soluble.



Chapter 2

The Local Reciprocity Law

In this chapter, we will state and prove the local reciprocity law. The short first section
gives a little extra information on local fields and useful statements about them. In the
second section, we define and study the Neukirch map. This map was first introduced by
J. Neukirch ([Ne2]) and used by I. Fesenko ([FeVo1]) to combine it with the Hazewinkel
map to a proof of the Local Reciprocity Law that allows to see better what we are
doing. In section four we actually state and prove the Local Reciprocity Law. In the
last section we give the existence theorem, a very important theorem obtained from the
Local Reciprocity Law.
This chapter mainly follows an approach by I. Fesenko ([FeVo1]). We are trying to give
enough extra information to get an idea of how we proceed, but omit mainly technical
lemmas to not blur the sight on things. Most of the parts are, however, purely field
arithmetical. This might seem a little too technical in the beginning, but once all the
statements are worked through, everything will nicely fit together. This chapter should
give an idea of how complicated and how much into detail things get with reciprocity.

2.1 Local Fields

In this section we will prove a few facts about locals fields and discuss their inner
structure. However, we will focus on local fields with a finite residue field instead of
a perfect one. We will therefore denote the residue field of F by F = Fq in this section
(where q is a prime power pf ). The number f is called the absolute residue degree of F .

We next gain a decomposition of F ∗ which will be useful and is actually quite easy to
see.

Proposition 2.1.1. The multiplicative group of a local field F admits the decomposition

F ∗ = (π)× µq−1 × U (1)

where π is a prime element, (π) = {πk|k ∈ Z}, q = |F | is the number of elements in the
residue class field F = Ov/Mv, and U (1) = 1 +Mv is the group of principal units. By
µq−1 we denote the group of (q − 1)-th roots of unity.

33
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Remark 2.1.2. We defined the group of principal units since we get a nice decomposition
of the mulitplicative group of a local field from it. We will later redefine those principal
units as U (1) = 1+πO, which can easily be seen to be the same. But the second definition
will be expanded to higher groups of units, which we will need later.

Proof. For every α ∈ F ∗ we have, due to lemma 1.2.7, a unique representation α = επn

with n ∈ Z, ε ∈ O∗ such that F ∗ = (π)×O∗. As we remarked in a previous section, the
polynomial xq−1 − 1 splits into linear factors over F by Hensel’s lemma. Therefore O∗
contains the group µq−1 of (q−1)-th roots of unity. The canonical homomorphism O∗ →
F
∗ defined by α 7→ α mod Mv, obviously has kernel U (1) and maps µq−1 bijectively

onto F ∗. Hence O∗ = µq−1 × U (1).

Remark 2.1.3. 1. The latter result of the proof, namely

O∗ = µq−1 × U (1)

will be explicitly needed in the following proof and should therefore be mentioned
seperately.

2. We would also like to denote explicitly, that the canonical homomorphism O∗ → F
∗

defined by α 7→ α mod Mv, has kernel U (1). This means, that the set µq−1 of (q-
1)-th roots of unity forms, together with 0, a complete set of representatives of F ∗

in Ov.

The next result is a very specific characterization of local fields. Althought the proof is
not that complicated it is rather lengthly and will therefore be omitted here.

Proposition 2.1.4. The local fields are precisely the finite extensions of the fields Qp
and Fp((t))1.

Proof. See [Ne2, Chapter II, section 5].

With this result, we can get a better decomposition of F ∗ for local fields with finite
residue field.

Proposition 2.1.5. Let F be a local field and q = pf the number of elements in the
residue class field. Then the following hold:

1. If F has characteristic 0, then one has (both algebraically and topologically)

F ∗ ' Z⊕ Z/(q − 1)Z⊕ Z/paZ⊕ Zdp,

where a ≥ 0 and d = [F : Qp].

2. If F has characteristic p, then one has (both algebraically and topologically)

F ∗ ' Z⊕ Z/(q − 1)Z⊕ ZN
p .

Proof. See [Ne2, Chapter 2].

1For a field K we denote the formal power series over t with K[[t]]. K[[t]] is an integral domain and
we denote its quotient field with K((t)). This field is called the field of Laurent series over K.
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2.2 The Norm Map

In this section we regard the norm map for a finite field extension. We will obtain a
few useful commutative diagrams that will be used later. The proofs of this section are
rather technical, but give a lot of extra information on local field arithmetic.

We will now see that F ur/F is a Galois extension and that the Galois group Gal(F ur/F )
is cyclic and generated by an element called the Frobenius automorphism.

Proposition 2.2.1. For every n ≥ 1 there exists a unique unramified extension L of F
of degree n: L = F (µqn−1). The extension L/F is cyclic and the maximal unramified ex-
tension F ur of F is a Galois extension. Gal(F ur/F ) is isomorphic to Ẑ and topologically
generated by an automorphism ϕF , such that

ϕF (α) ≡ αq mod MFur for α ∈ OFur .

The automorphism ϕF is called the Frobenius auotmorphism of F .

Proof. As we discussed above in proposition 2.1.1, F contains the group µq−1 of (q−1)th
roots of unity. This group is the set of nonzero multiplicative representatives of F in O
as we showed in example 1.3.13. As we remarked in 2.1.3, the proof of the preceding
proposition implies that the unit group UF = O∗ is isomorphic to µq−1 × U (1). By that
we see that µq−1 is in F and F and therefore does not change if we regard F instead of
F or vice-a-versa.
The field F = Fq has the unique extension Fqn of degree n, which is, as we know
from basic algebra, cyclic over Fq. (A cyclic group of order n is clearly isomorphic to
Z/nZ). By lemma 1.5.8 and proposition 1.5.16 we see that there must be a unique
unramified Galois extension L of degree n. Namely, if we demand L to be Fqn we have
L = F (µqn−1). We see by the discussion above and lemma 1.5.8, that we must have
L = F (µqn−1). Because of proposition 1.5.16 it is a Galois extension.
Now let E be an unramified extension of F and α ∈ E. Then F (α)/F is of finite degree.
Therefore, F ur is contained in the union of all finite unramified extensions of F . We
have

Gal(F ur/F ) ∼= lim←−
n

Gal(Fqn/Fq) ∼= lim←−
n

Gal(Z/nZ) ∼= Ẑ.

The first isomorphism holds because of proposition A.5.10.
We can see in [FrJa] that Gal(Fsepq /Fq) is topologically generated by the automorphism
σ such that σ(a) = aq for a ∈ Fsepq . Hence, Gal(F ur/F ) is topogically generated by the
Frobenius automorphism ϕF .

We will now go a little deeper into the norm map and will obtain very useful lemmas.
Those will help proving the main theorem of local class field theory.

This first lemma is just a useful tool for proving the others. The proof is quite straight
forward and will therefore be omitted.
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Lemma 2.2.2. Let L/F be a separable extension of prime degree n and γ ∈ML. Then

NL/F (1 + γ) = 1 +NL/F (γ) + TrL/F (γ) + TrL/F (δ)

with some δ ∈ OL such that vL(δ) ≥ 2vL(γ).

The next statement is helpful in understanding the following proposition and the com-
mutative diagrams at the end of this section. But first we need a definition.

Definition 2.2.3. The group 1 + πO is called the group of principal units U1 and its
elements are called principal units. We would also like to introduce higher groups of
units as follows:

Ui = 1 + πiO for i ≥ 1.

Remark 2.2.4. We already used the group of principal units in the proposition before
remark 2.1.2. But as we remarked in that remark we now redefined this group in a way
that allows the definition of higher groups of units as well. Therefore we now denote this
group by Ui instead of U (i).

We can now state a first proposition using those definitions. The proof is quite easy to
see once it is written down, but we will give it anyway to see what is going on.

Proposition 2.2.5. Let F be a discrete valuation field. Then:

1. The choice of a prime element π (1 ∈ Z→ π ∈ F ∗) splits the exact sequence

1→ UF → F ∗
v→ Z→ 0.

The group F ∗ is isomorphic to UF × Z.

2. The canonical map O → O/M = F induces the surjective homomorphism

λ0 : UF → F
∗
, ε 7→ ε.

λ0 maps U/U1 isomorphically onto F ∗.

3. The map
λi : Ui → F , 1 + απi 7→ α

for α ∈ O induces the isomorphism λi of Ui/Ui+1 onto F for i ≥ 1.

Proof. We proceed proving the proposition in the three steps as we stated it.

(1) The first statement follows easily from the uniqueness of the representation α = επi

with α ∈ F ∗, ε a unit and π a prime element in F . We would like to remind again that
we had the agreement to regard all our valautions to be normalized, which gives us the
surjectivity. The injectivity of from UF → F ∗ should be very clear.
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(2) The kernel of λ0 coincides with U1 and λ0 is of course surjective.

(3) The induced map Ui/Ui+1 → F is a homomorphism, since we have

(1 + α1π
i)(1 + α2π

i) = 1 + (α1 + α2)πi + α1α2π
2i.

From this we see that the last term, with π2i will be eliminated when we factor by Ui+1

since we had i ≥ 1. By the definition of our map λi we can easily see the homomorphism
property. Finally, if two such elements (1 + α1π

i), (1 + α2π
i) are mapped into the same

class of F , we must have α1 = ε1π
i1 , α2 = ε2π

i2 and without loss of generality i1 > i2 with
no equality allowed and therefore those two elements are in the same class of Ui/Ui+1.

We can now proceed to the first proposition.

Proposition 2.2.6. Let L/F be an unramified extension of degree n. Then a prime
element πF in F is a prime element in L. Let Ui,L = 1 + πiFOL, Ui,F = 1 + πiFOF and
let λi,L, λi,F , (i ≥ 0), be as follows:

λi : Ui → F , 1 + απi 7→ α

for α ∈ O and with π = πF for both fields F and L. And let

λ0 : U → F
∗
, ε 7→ ε.

Then the following diagrams are commutative:

L∗
vL

−−−−−−−−−−−→ Z
−−−−→NL/F ×n

−−−−→

F ∗
vF

−−−−−−−−−−−→ Z

UL
λ0,L

−−−−−−−−−−−→ L
∗

−−−−→NL/F NL/F

−−−−→

UF
λ0,F

−−−−−−−−−−−→ F
∗

Ui,L
λi,L

−−−−−−−−−−−→ L

−−−−→NL/F TrL/F

−−−−→

Ui,F
λi,F

−−−−−−−−−−−→ F

Proof. First we would like to prove the first fact, namely that a prime element πF of F
is also a prime element of L. By the definition of unramified we have e = e(L/F ) = 1.
But this means, the index of w0(F ∗) in w(L∗) is one. From this we deduce that the
valuation of an element generating the whole group w0(F ∗) = w(L∗) cannot change by
going from w to w0.
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The first commutativity is a simple result of the construction of vL as an extension of
vF . Due to proposition 1.5.17 we have: NL/F (α) = NL/F (α) for α ∈ OL. This shows
the commutivity of the second diagram.
The preceding lemma 2.2.2 shows that

NL/F (1 + θπiF ) = 1 + (TrL/F θ)π
i
F + (NL/F θ)π

pi
F + TrL/F (δ)

with vL(δ) ≥ 2i and, consequently, vFTrL/F (δ) ≥ 2i. Thus, we get

NL/F (1 + θπiF ) ≡ 1 + (TrL/F θ)π
i
F mod πi+1

F

and the commutativity of the third diagram.

As our next step, we will prove a very similiar result for totally and ramified Galois
extensions. This however is a bit more complicated and needs some preliminary work.

Let L/F be a totally ramified Galois extension of degree p = char(F ) > 0. Then
corollary 1.4.14 shows that OL = OF [πL], L = F (πL) for a prime element πL in L, and
L = F . Let σ be a generator of Gal(L/F ), then σ(πL)

πL
∈ UL. We can therefore write

σ(πL)
πL

= θε with θ ∈ UF , ε ∈ 1 +ML

because of the assertion of corollary 1.4.14 and L = F . Then

σ2(πL) = σ

(
σ(πL)
πL

· πL
)

= σ(πL · θε) = σ(πL) · σ(θε)

and therefore
σ2(πL)
πL

=
σ(πL)
πL

σ(θε) = θε · σ(θε) = θ2ε · σ(ε)

because θ ∈ UF ⊂ F .
We now repeat this step p times. Since we chose σ to be a generator of the Galois
group Gal(L/F ), σp must be the identity map due to the main theorem of Galois theory
(A.3.27).

1 =
σp(πL)
πL

= θpε · σ(ε) · · · · · σp−1(ε).

This shows that θp ∈ 1+ML because everything else on the right side is and 1 is because
v(0) =∞, hence 0 ∈ML. We also obtain θ ∈MF , because raising to the p-th power is
an injective homomorphism of F . Thus we obtain σ(πL)

πL
∈ 1 +ML. Put

σ(πL)
πL

= 1 + ηπsL with η ∈ UL, s = s(L|F ) ≥ 1. (2.1)

Remark 2.2.7. In the above proof s = s(L|F ) is a uniquely determined integer which
is the same or all primes πL in L with L = F (πL). This justifies the notation s(L|F ).
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Proposition 2.2.8. Let [a] denote the maximal integer less or equal to a. For an integer
i ≥ 0 put j(i) = s+ 1 + [ i−1−s

p ]. Then

TrL/F
(
πiLOL

)
= π

j(i)
F OF .

The proof of this proposition is quite technical and would need another lemma and will
therefore be omitted.

Proposition 2.2.9. Let L/F be a totally ramified Galois extension of degree p =
char(F ) > 0. Let πL be a prime element in L. Then πF = NL/FπL is a prime ele-
ment in F . Let Ui,L = 1 +πiLOL, Ui,F = 1 +πiFOF and let λi,L, λi,F be as in proposition
2.2.6, for π = πL and π = πF . Then the following diagrams are commutative:

L∗
vL

−−−−−−−−−−−→ Z

−−−−→NL/F id

−−−−→
F ∗

vF
−−−−−−−−−−−→ Z

UL
λ0,L

−−−−−−−−−−−→ L
∗

−−−−→NL/F ↑ p

−−−−→

UF
λ0,F

−−−−−−−−−−−→ F
∗

Ui,L
λi,L

−−−−−−−−−−−→ L = F

−−−−→NL/F ↑ p

−−−−→

Ui,F
λi,F

−−−−−−−−−−−→ F

if 1 ≤ i < s.

Us,L
λs,L

−−−−−−−−−−−→ L = F

−−−−→NL/F θ 7→ θ
p − ηp−1θ

−−−−→

Us,F
λs,F

−−−−−−−−−−−→ F

Us+pi,L
λs+pi,L

−−−−−−−−−−−→ L = F

−−−−→NL/F ×(−ηp−1)

−−−−→

Us+i,F
λs+i,F

−−−−−−−−−−−→ F

if i > 0.

Moreover, NL/F (Us+i,L) = NL/F (Us+i+1,L) for i > 0, p - i.
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Proof. The commutativity of the first and the second diagrams can be verified similarly
to the proof of proposition 2.2.6. In order to look at the remaining diagrams, put
ε = 1 + θπiL with θ ∈ UL. Then by lemma 2.2.2, we get

NL/F ε = 1 +NL/F (θ)πiF + TrL/F (θπiL) + TrL/F (θδ) (2.2)

with vL(δ) ≥ 2i. The previous proposition implies that

vF (TrL/F (πiL)) ≥ s+ 1 +
[
i− 1− s

p

]
, vF (TrL/F (δ) ≥ s+ 1 +

[
2i− 1− s

p

]
and for i < s

vF (TrL/F (πiL)) ≥ i+ 1, vF (TrL/F (δ)) ≥ i+ 1.

Therefore we see that in equation 2.2 the last two terms could be added to the second
term in the unique represenation. Since those terms have a valuation greater or equal
to i, it will still remain in the same residue class. Therefore, the third diagram is
commutative.
Further, using equation 2.1 and lemma 2.2.2, one can write

1 = NL/F

(
σ(πL)
πL

)
≡ 1 +NL/F (η)πsF + TrL/F (ηπsL) mod πs+1

F .

with η ∈ UL.
We deduce that

TrL/F (ηπsL) ≡ −NL/F (η)πsF mod πs+1
F .

Since NL/F (η) ≡ ηp mod πL in view of UL ⊂ UFU1,L (which would be seen relatively
easy), we conclude that

NL/F (1 + θηπsL)− 1− ηpπsF (θp − θ) ∈ πps+1
L θOL

for θ ∈ OF . This implies the commutativity of the forth (putting θ ∈ OF ) and the fifth
(when θ ∈ πiFOF ) diagram.
To prove the last assertion, we assume p - i, θ ∈ OF , then

σ(1 + θπiL)
1 + θπiL

≡ 1 + θηπi+sL mod πi+s+1
L .

This means thatNL/F (1+iθηπi+sL ) ∈ NL/FUs+i+1,L andNL/F (Us+i,L) = NL/F (Us+i+1,L).

We now develop a bit more theory on the norm map that we will refer to later.

First we have a closer look at the norm group NL/F (L∗) for a finite extension L of F .
Remember that we chose to local fields to have a finite residue field which we denoted
by F = Fq for F and L = Fq′ for L respectively.
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First we regard
NFq′/Fq : F∗q′ → F∗q .

This map is surjective, when we have Fq′ ⊃ Fq which could be shown as an exercise.
We now have look at the diagrams one and two of proposition 2.2.6. Since we proved
in propostion 2.2.5 that the maps λi are surjective (and also λ0) it follows from the
surjectivity of NL/F that NL/F must also be surjective.

We therefore obtain NL/FUL = UF in the case of an unramified extension L/F . Further,
the first diagram of 2.2.6 implies that

NL/FL
∗ = (πn)× UF

where π is a prime element in F and n = [L : F ] the degree of the finite extension L/F .
From that representation we can observe particularly that F ∗/NL/FL

∗ is a cyclic group
of order n in this case of an unramified extension.

Remark 2.2.10. We are particularly interested in this factor group F ∗/NL/FL
∗, as it

occurs in the local reciprocity law.

Conversely we see that every subgroup of finite index in F ∗ that contains with UF must
coincide with the norm group NL/FL

∗ for a suitable unramified extension L/F .
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2.3 The Neukirch Map

In this section we will follow an approach by I. Fesenko and S. Vostokov ([FeVo2]) which
can also partly be found in [Ne1]. We will define and explain the Neukirch map, which
is an essential step for proving the local reciprocity law. We therefore assume F to be a
local field with finite residue field.

First we define the set Frob(L/F ).

Let L be a finite Galois extension of F . According to proposition 1.5.19 we have Lur =
LF ur.

Definition 2.3.1. We define

Frob(L/F ) = {σ̃ ∈ Gal(Lur/F ) : σ̃|Fur is a positive integer power of ϕF }.

In propostion 2.2.1 we saw that Gal(F ur/F ) ' Ẑ and is topolically generated by an
element ϕF . It therefore consists of Ẑ-powers of ϕF .

We will now gain a few properties about the set we defined above.

Proposition 2.3.2. 1. The set Frob(L/F ) is closed with respect to multiplication,
but it is not closed with respect to inversion and 1 /∈ Frob(L/F ).

2. The fixed field Σ of σ̃ ∈ Frob(L/F ) is of finite degree over F , Σur = Lur, and σ̃ is
the Frobenius automorphism of Σ.

3. Thus, the set Frob(L/F ) consists of the Frobenius automorphisms ϕΣ of finite
extensions Σ of F in Lur with Gal(Lur/Σ) ' Ẑ.

4. The map Frob(L/F ) −→ Gal(L/F ), σ̃ 7→ σ̃|L is surjective.

This proof goes into the theory of profinite groups. Whenever this would be the neces-
sary, we will only give a sketch of those steps or statements without further explaination.

Proof. The first assertion can be verified very easily.
We know from the general main theorem of Galois theory, that Σ must be an intermediate
field of Lur/F . Since we have F ⊂ Σ ⊂ Lur we deduce that F ur ⊂ Σur ⊂ Lur. By
definition σ̃ is a positive integer power of ϕF .
The Galois group of Lur/Σ is topologically generated by σ̃. This can be seen considered
that we have Lur = LF ur. We know that Gal(F ur/F ) is topologically generated by
an element ϕF and isomorphic to Ẑ. The same holds for Lur/L. We therefore obtain,
that Gal(Lur/Σ) is isomorphic to Ẑ. Having that property means, it does not have any
nontrivial closed subgroups of finite order.
The group Gal(Lur/F ur) is finite, since again we have Lur = LF ur. Therefore the group
Gal(Lur/Σur), being a subgroup of the finite group Gal(Lur/F ur) should be trivial. So

Lur = Σur. (2.3)
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We now proceed with showing that Σ is a finite extension of F . Put Σ0 = Σ∩F ur. This
can be seen the fixed field of ϕFur = ϕmF with m being the positive integer power from
the definition of Frob(L/F ). Therefore [Σ0 : F ] = m is finite.
From corollary 1.5.20 we see really easily that

[Σ : Σ0] = [Σur : F ur] = [Lur : F ur] = [L : L0]

with L0 = L ∩ F ur, is finite.
Thus, Σ/F , being the composite of Σ0/F and Σ/Σ0, is finite.

Now, since Lur = Σur, σ̃ is a power of ϕΣ. Further, ϕΣ|Σ0
= ϕ

[Σ0:F ]
F |Σ0 = ϕmF |Σ0 = σ̃|Σ0 .

Therefore, σ̃ = ϕΣ. Certainly, the Frobenius automorphism ϕΣ of a finite extension Σ of
F in Lur with Gal(Σur/Σ) = Gal(Lur/Σ) ' Ẑ as we saw above, belongs to Frob(L/F ).

Denote by ϕ̃ an extension in Gal(Lur/F ) of ϕF . Let σ ∈ Gal(L/F ), then σ|L0 is equal to
ϕnF for some positive integer n. Hence σ−1ϕ̃n|L acts trivially on L0, and so τ = σϕ̃−n|L
belongs to Gal(L/L0). Let τ̃ ∈ Gal(Lur/F ur) be such that τ̃ |L = τ . That is possible
because of proposition 1.5.19. Then for σ̃ = τ̃ σ̃n we deduce that σ̃|Fur = ϕnF and
ϕ̃|L = τϕ̃n|L = σ. Then the element σ̃ ∈ Frob(L/F ) is mapped to σ ∈ Gal(L/F ).

We see from that, that our set Frob(L/F ) really consists of the Frobenius automorphisms
ϕΣ, where Σ runs through all finite extensions Σ of F in Lur with Gal(Lur/Σ) ' Ẑ.

We can now define the Neukirch map. This map has been used by Neukirch in his book
[Ne1] to prove the reciprocity law. However, Neukirch’s approach is different from the
one we present here as can be seen in the next chapter in comparison to [Ne1]. However,
this part of his construction, the Neukirch map, is a very helpful step to proving the
local reciprocity law.

Definition 2.3.3. Let L/F be a finite Galois extension. Define

Υ̃L/F : Frob(L/F ) −→ F ∗/NL/FL
∗

with
σ̃ 7→ NΣ/FπΣ mod NL/FL

∗,

where Σ is the fixed field of σ̃ ∈ Frob(L/F ) and πΣ is any prime element of Σ.

We will now see that the above definition of Υ̃ really is a well defined map.

Lemma 2.3.4. The map Υ̃L/F is well defined. Further, if σ̃|L = id|L, then Υ̃L/F (σ̃) = 1.

Proof. Let π1, π2 be prime elements in Σ. Then we must have π1 = π2ε for a unit ε ∈ UΣ.
Let E be the compositum of the extensions Σ and L of F . From the preceding proposition
2.3.2 we know that Σ is a finite extension, and L is one by definition. Therefore E is a
finite extension of F .
We have Σ ⊂ E ⊂ Σur (remember equation 2.3, where we had Σur = Lur). Hence, the
extension E/Σ is unramified. In the explainations on page 40 we saw UΣ = NE/Σ(UE),
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whence ε = NE/Ση for some η ∈ UE . Therefore, by the multiplicativity of the norm, we
obtain

NΣ/Fπ1 = NΣ/F (π2ε) = NΣ/Fπ2 ·NΣ/F (NE/Ση) =

NΣ/Fπ2 ·NL/F (NE/Lη),

where the last equality is true because we have, as is stated in the appendix, NE/F (α) =
NL/F (NE/L(α)) for any finite extension E of F and any intermediate field L, with α ∈ E.
We obtain that NΣ/Fπ1 ≡ NΣ/Fπ2 mod NL/FL

∗ since NE/Lη = UL by our discussion
on page 40.

If σ̃|L = id|L, then it is clear that we must have L ⊂ Σ. We again use the property of
norms for intermediate fields

NΣ/FπΣ = NL/F (NΣ/L(πΣ)).

Now the inner term on the right, NΣ/L(πΣ), cannot have norm 0. That can easily be
seen by remembering how we extended a valuation to an extension (namely using the
norm map). Hence, NΣ/L(πΣ) ∈ L∗ and

NΣ/FπΣ ∈ NL/FL
∗.

We will now give a few properties about the Neukirch map. We will therefore alter the
map a little bit to obtain not just a homomorphism, but an isomorphism.

Theorem 2.3.5. Let L be an unramified extension of F of finite degree.
Then Υ̃L/F (σ̃) does not depend on the choice of σ̃ for σ ∈ Gal(L/F ). It induces an
isomorphism ΥL/F : Gal(L/F )→ F ∗/NL/FL

∗ and

ΥL/F (ϕF |L) ≡ πF mod NL/FL
∗

for a prime element πF in F .

Before we begin the proof, we would like to remember that σ̃ ∈ Gal(F ur/F ) denoted
the extension of σ ∈ Gal(L/F ) from L to F ur for any unramified extension of F , which
therefore is a subextension of the extension F ur/F .

Proof. We saw in the assertion of proposition 2.2.1, that the Galois group Gal(F ur/F )
is generated by the Frobenius element ϕF . Now L/F is an unramified extension and as
such a subextension of F ur:

F ⊂ L ⊂ F ur.

We have the following identity for Galois groups:

Gal(F ur/F )/Gal(F ur/L) ' Gal(L/F ).

From that we obtain that σ must be equal to ϕnF |L for some n ≥ 1. Let m = [L : F ]
be the finite degree of the extension. Then we get σ̃ = ϕdF with d = n + lm > 0 for
some integer l. This can be seen very easily by simply restricting σ̃ to L. The last term
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will be the identity as we have m = [L : F ] and therefore m = |Gal(L/F )| by the main
theorem of Galois theory.
We know that the fixed field Σ of σ̃ is a finite extension of F by propositon 2.3.2. Since
L/F was unramified in this case, Σ is the unramified extension of F of degree d. This
unramified exention of degree d is unique by proposition 2.2.1. By what we had so far,
we can take πF as a prime element of Σ.
Then

Υ̃L/F (σ̃) = NΣ/FπF = πdF = πnF · πlmF ≡ πnF mod NL/FL
∗, (2.4)

since πmF = NL/FπF by basic norm properties for finite extensions and πmF is clearly in
NL/FL

∗.

From the multiplicativity of the norm it can easily be seen that Υ̃ is a homomorphism.
The composite of σ̃1 and σ̃2 has a fixed field Σ12, which must be a subfield of Σ1 and
Σ2, hence a finite extension of F . Let πΣ12 be the respective prime element. Since this
extension is again unramified, we can take πΣ12 to be πF . It is now also clear that Υ̃
must send ϕF to πF mod NL/FL

∗.

Our discussion on page 40 shows that πF mod NL/FL
∗ generates the group F ∗/NL/FL

∗

which is cyclic of order [L : F ]. Hence it can now easily be seen that ΥL/F is an
isomorphism.

To close this section we will give three more commutative diagrams that will be very
helpful in the proof of the local reciprocity law.

Lemma 2.3.6. Let L/F be a finite separable extension and let L/M be a finite Galois
extension, σ ∈ Gal(F sep/F ). Let us define σ∗(τ̃) = στ̃σ−1|σLur for τ̃ ∈ Frob(L/M).
Then the diagram of maps

Frob(L/M)
Υ̃L/M

−−−−−−−−−−−→ M∗/NL/ML
∗

−−−−→σ∗ σ

−−−−→

Frob(σL/σM)
Υ̃σL/σM

−−−−−−−−−−−→ (σM)∗/NσL/σM (σL∗)

is commutative.

Proof. If Σ is the fixed field of τ̃ then σΣ is the fixed field of στ̃σ−1. It is obvious that
σΣ is contained in the fixed field of στ̃σ−1. Conversely, any other field L containing σΣ,
but L ⊃ σΣ is a proper inclusion, cannot be fixed by στ̃σ−1. That is, because then σ−1L
is a proper supset of Σ. Hence, there is some α ∈ σ−1L for which we have τ̃(α) 6= α.
For a prime element π in Σ, σπ is prime in σΣ. This can be easily verified using
corollary 1.4.15. We have NσΣ/σM = σNΣ/Mπ. This can be seen using the fact that σ is
an automorphism and considering the way we calculated the norm. We can now prove
the commutativity.
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First, using the maps Υ̃ and σ, we obtain:

σ(Υ̃L/M (τ̃)) = σ(NΣ/Mπ).

Second, using the maps σ∗ and Υ̃σL/σM we get

Υ̃σL/σM (σ∗) = Υ̃σL/σM (στ̃σ−1|σLur) = NσΣ/σM (σπ)

because σπ was a prime element of σΣ, the fixed field of σ∗ = στ̃σ−1|σLur .

In the next proposition we have two extensions of F and will therefore obtain a more
general commutativity.

Proposition 2.3.7. Let M/F and E/L be finite separable extensions, and let L/F and
E/M be finite Galois extensions. Then the diagram of maps

Frob(E/M)
Υ̃E/M

−−−−−−−−−−−→ M∗/NE/ME
∗

−−−−→ N∗
M/F

−−−−→

Frob(L/F )
Υ̃L/F

−−−−−−−−−−−→ F ∗/NL/F (L∗)

is commutative. Here the left vertical homomorphism is the restriction σ|urL of σ ∈
Frob(E/M) and the right vertical homomorphism is induced by the norm map NM/F .
The left vertical map is surjective if M = F .

To get a better idea of with what kind of extensions we are dealing here, we give a little
diagram:

F
finite, Galois

—————— L

fi
n

ite
—

—
—

–

fi
n

ite
—

—
—

–

M
finite, Galois

—————— E

Proof. We see that σ̃ ∈ Frob(E/M) ⊂ Gal(Eur/M). So for σ̃|Lur ∈ Gal(Lur/F ) we
deduce that τ̃ |Fur is a positive integer power of ϕF , since σ̃ is a positive interger power
of ϕM . Hence, τ̃ ∈ Frob(L/F ).
Let Σ be the fixed field of σ̃. Then T = Σ ∩ Lur is the fixed field of τ̃ . This can be
seen, since the given field must be contained in the fixed field of τ̃ , but it also cannot be
bigger for obvious reasons.
The extension Σ/T is totally ramified, since Lur = T ur because we see that Lur is an
unramified extension of T , but no unramified extension of it can be bigger than Lur. So
T = Σ ∩ T ur. Hence for a prime element πΣ in Σ the element πT = NΣ/TπΣ is prime
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in T . This is again a simple result from considering how we extend valuations to finite
extensions and that totally ramified means nothing less than f = f(Σ/T ) = 1. We get

NT/FπT = NΣ/FπΣ = NM/F (NΣ/MπΣ).

Finally, if M = F , then the left vertical map is surjective, since every extension of σ̃ ∈
Frob(L/F ) to Gal(Eur/F ) belongs to Frob(E/F ).

We now state the last corollary of this section, which gives us another commutative
diagram.

Corollary 2.3.8. Let M/F be a Galois subextension in a finite Galois extension L/F .
Then the diagram of maps

Frob(L/M) −−−−−−−→ Frob(L/F ) −−−−−−−→ Frob(M/F )

Υ̃L/M

−−−−→ Υ̃L/F
−−−−→ Υ̃M/F

−−−−→

M∗/NL/ML
∗

N∗
M/F

−−−−−−−→ F ∗/NL/FL
∗ −−−−−−−→ F ∗/NM/FM

∗ −−−−−−−→ 1

is commutative. Here the central homomorphism of the lower exact sequence is induced
by the identity map of F ∗.

Proof. This is an easy consequence from the preceding proposition. For the left commu-
tative diagram we use E = L and for the right one M = F .
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2.4 The Hazewinkel Homomorphism

In this section we will define and describe the Hazewinkel homomorphism. This homo-
morphism works the opposite way from the Neukirch map. Combining those two we will
obtain a nice description of the local reciprocity law.

Before we can proceed defining the Hazewinkel homomorphism we need some preliminary
work.

It can be seen that the maximal unramified extension F ur of F is a Henselian discrete
valuation field with algebraically closed residue field and its completion is a local field
with algebraically closed residue field.

However, for our aim, proving the local reciprocity law, the complete case is sufficient.
We will therefore denote this completion of F ur by F .

First we state a lemma that is a corollary of Hensel’s lemma 1.3.11.

Corollary 2.4.1. Let F be a complete discrete valuation field. Let f(x) be a monic
polynomial with coefficients in O. Let f(α0) ∈M2s+1, f ′(α0) /∈Ms+1 for some α0 ∈ O
and integer s ≥ 0. Then there exists α ∈ O that α− α0 ∈Ms+1 and f(α) = 0.

Let now L be a finite separable extension of F . Every separable extension is of course
algebraic. Since the residue field of F is algebraically closed, the extension L/F can
only be totally ramified.

Lemma 2.4.2. The norm maps

NL/F : L∗ → F∗, NL/F : UL → UF

are surjective.

Proof. The Galois group Gal(L/F) is soluble by lemma 1.5.23. It follows from group
theory, that it is sufficient to consider the case of a Galois extension of prime degree.
Such extensions cannot have any proper subextensions. But since the Galois group must
be soluble, this means we are dealing with an abelian extension. Let l denote the degree
of the abelian extension.
Now L is a finite, hence algebraic, extension of F . We know that the norm of a prime
element of L is a prime element of F . The extension L/F is totally ramified, hence the
ramification index f = f(L/F) = 1. Therefore we have

w(α) =
1
f
v ◦NL/F (α) = v ◦NL/F (α) for α ∈ L.

Let us now regard a prime element πL of L. Then w(πL) = 1, hence

1 = v ◦NL/F (πL) = v
(
NL/F (πL)

)
which declares NL/F (πL) to be a prime element of F .
Now, as we stated above, F is complete. Hence we can apply the results from the
previous section about the norm map and the commutativity diagrams and deduce the
maps surjectivity.
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We now state, but do not prove, a proposition that we will need to show that the
Hazewinkel homomorphism that we define later is similar to of the inverse of the Neukirch
map.

Definition 2.4.3. For a finite Galois extension L/F we denote by U(L/F) the subgroup
of U1,L generated by uσ−1 where u runs through all elements of U1,L and σ runs through
all element of Gal(L/F).

Proposition 2.4.4. Let γ ∈ L∗ be such that γϕ−1 ∈ U(L/F). Then NL/Fγ belongs to
the group NL/FL

∗.

The proof of the above lemma is quite technical and will be omitted since it depends on
much more technical preliminary work.

Let L be a finite Galois totally ramified extension of F . As we denoted at the beginning
of this section, let F be the completion of the maximal unramified extension F ur of F .
We saw, that the extension L/F must be totally ramified. It can be shown, that the
Galois group Gal(L/F) of the extension L/F is isomorphic to Gal(L/F ).

Before proceeding to defining the Hazewinkel homomorphism we need another proposi-
tion. But first a new group theoretic definition.

Definition 2.4.5. For a group F the notation Gab stands for the maximal abelian
quotient of G and is called Verlagerung .

At this point, we will define a notation, which is commonly used in algebraic books. At
first it seems a bit odd, but when explained, it is quite natural2.

Definition 2.4.6. We will denote σ(u) by uσ. As for usual powers of u, the rule
ua+b = ua · ub for any u ∈ F with F any field, applies. We can naturally extend this
definition to for example uσ−1 = uσ · u−1 = σ(u) · u−1 as it will be used in the rest of
the section.

Every unit in UL can be factorized as θε with θ ∈ R∗, ε ∈ U1,L, where R∗ is the set of
multiplicative representatives of the residue field of F . Since by our notation from above
we have θσ−1 = 1 because θ ∈ F is fixed by σ, we deduce that U(L/F) coincides with
the subgroup of UL generated by uσ−1, u ∈ UL, σ ∈ Gal(L/F).

Proposition 2.4.7. Let L be a finite Galois extension of F . For a prime element π of
L define

` : Gal(L/F)→ UL/U(L/F), l(σ) = πσ−1 mod U(L/F).

The map ` is a homomorphism which does not depend on the choice of π. It induces a
monomorphism ` : Gal(L/F)→ UL/U(L/F).
The sequence

1→ Gal(L/F)ab l−→ UL/U(L/F)
NL/F−→ UF → 1

is exact.
2For the general notation please see the appendix at A.1.21.
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We can now proceed defining the Hazewinkel homomorphism.

Let ϕ be the continuous extension of the Frobenius automorphism ϕL on L. Let π be a
prime element of L. Let E be the maximal abelian extension of F in L. For α ∈ F∗ by
lemma 2.4.2 there is β ∈ L∗ such that α = NL/Fβ. Since F ∗ ⊂ F we can also find such
a β for α ∈ F ∗.
Then NL/Fβ

ϕ−1 = αϕ−1 = 1 and by proposition 2.4.7

βϕ−1 ≡ π1−σ mod U(L/F)

for some σ ∈ Gal(L/F) which is uniquely determined as an element of Gal(E/F) where
E = EF .

To make the situation we are dealing with a little clearer, we give a diagram:

F —————— F
—

—
–maximal abelian

—
—

–

E —————— E

—
—

–

—
—

–

L —————— L

Definition 2.4.8. Define the Hazewinkel homomorphism

ΨL/F : F ∗/NL/FL
∗ → Gal(L/F )ab, α 7→ σ|E .

We will now see that the map defined above is really well defined and a homomorphism.

Lemma 2.4.9. The map ΨL/F is well defined and is a homomorphism.

Proof. We proceed by proving first that the map is well defined and second that it is a
homomorphism.

Well-defined First, for it to be well defined we need to prove the independence of it
on the choice of π. But this is just the assertion of propostion 2.4.7 since such a β exists
and we use the map `. For this map the independence of of the choice of π is part of the
assertion. So we assume π ∈ L. This can be done since L of course has prime elements
and L is nothing else than the completion of the maximal unramified extension. But
earlier we had that for unramified extensions L/F a prime element of F is also one of L
and vice-a-versa.
If α = NL/Fγ then γβ−1 belongs to the kernel of NL/F . This is really obvious since we
had α = NL/Fβ. Therefore, again by proposition 2.4.7 γβ−1 = πτ−1ζ with ζ ∈ U(L/F).
Then

γϕ−1 = βϕ−1ζϕ−1 ≡ βϕ−1 mod U(L/F)

which proves the correctness of the definition.
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Homomorphism If we have NL/F (β1) = α1 and NL/F (β2) = α2, we can choose β1β2

for α1α2. Therefore, again by proposition 2.4.7 we see that ΨL/F really is a homomor-
phism, since ` is one.

We are dealing with a totally ramified extension L/F . For such extensions we know,
that the norm of a prime element πL in L is a prime element in F . Remember that for
unramified extensions prime elements of L were also prime elements of F . This can be
seen easily considering the way we extend valuations and that totally ramified means
f = 1. Hence,

F ∗/NL/FL
∗ = UF /NL/FUL

as by definition v(πF ) generates the group v(F ∗) and we again use the unique represen-
tation of an arbitrary element α = επi for ε ∈ U and π a prime element.

We will now prove, that the Hazewinkel homomorphism ΨL/F is the inverse to Υab
L/F ,

which is induced by the Neukirch homomorphism.

This theorem is a first step to the local reciprocity law. It asserts the law in the case of
a totally ramified extension.

Theorem 2.4.10. Let L/F be a finite Galois totally ramified extension. Let E/F be
the maximal abelian subextension of L/F . Then

1. For every σ̃ ∈ Frob(L/F )

ΨL/F (Υ̃L/F (σ̃)) = σ̃|E .

2. Let α ∈ F ∗ and let σ̃ ∈ Frob(L/F ) be such that σ̃|E = ΨL/F (α). Then

Υ̃L/F (σ̃) ≡ α mod NL/FL
∗.

Therefore, ΨL/F is an isomorphism, Υ̃L/F (σ̃) does not depend on the choice of σ̃ for
σ ∈ Gal(L/F ) and induces the Neukirch homomorphism

ΥL/F : Gal(L/F )→ F ∗/NL/FF
∗.

The latter induces an isomorphism Υab
L/F , between Gal(L/F )ab = Gal(E/F ) and F ∗/NL/FL

∗

which is inverse to ΨL/F .

Proof. First we prove the assertions one and two.

(1) We will proceed as follows: We will start at an element σ̃. Then we use some
very helpful representations of Υ̃(̃σ) to get a better representation that we can apply the
Hazewinkel homomorphism on. Finally we will see that those maps really work in some
sense in opposite directions.
We first note that the Galois group Gal(Lur/F ) of Lur/F is isomorphic to Gal(Lur/L)×
Gal(Lur/F ur). Hence σ̃ ∈ Frob(L/F ) ⊂ Gal(Lur/F ) is equal to σϕm for some positive
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integer m and σ ∈ Gal(Lur/F ur). ϕ is again the continuous extension of the Frobenius
element ϕL of Gal(Lur/L).
Let πΣ be a prime element of the fixed field Σ of σ̃. We saw in equation 2.3 that
Σur = Lur. Now if πΣ is a prime element of Σ, we have πΣ = πε for some ε ∈ ULur ,
where π is a prime element of L. Therefore

π1−σ̃ = πΣ · ε−1 · σ̃(πΣε
−1)−1 = ε−1 · σ̃(ε−1)−1 =

= σ̃(ε) · ε−1 = εσ̃−1 = εσϕ
m−1

Let Σ0 = Σ∩F ur, then [Σ0 : F ] = m by the general main theorem of Galois theory and
the fact that ϕ generates the group Gal(Lur/L) by proposition 2.2.1. Then of course
NΣ/F = NΣ0/F ◦NΣ/Σ0

and NΣ/Σ0
acts as NΣur/Σur0

. The first equivalence can again be
deduced easily observing that we extend valuations as

w =
1
f
v ◦NΣ/Σ0

.

Now Σ is clearly an extension of Σ0 and Σur one of Σur
0 . We now have

Σ0 —————— Σ
—

—
–

—
—

–

Σur
0 —————— Σur

We can now extend our valuation on Σ0 to Σur in both ways which of course MUST lead
to the same result. Therefore and by the way we construct that extention, the norm
maps must act the same.
Further

NΣur/Σur0
= NLur/Fur = NL/F

which can be deduced by equation 2.3 and by the definition of Σ0. The last equality
is simple since L is just the completion of Lur. It can be seen that NΣ0/F acts as
1 + ϕ+ · · ·+ ϕm−1. We have

NΣ/FπΣ = NLur/Furε1 ·NLur/Furπ
m, where ε1 = ε1+ϕ+···+ϕm−1

by the same representation of πΣ = πε.
So α = NΣ/FπΣ ≡ NLur/Furε1 mod NL/FL

∗ since π was a prime element of L. Further,
ΨL/F (α) can be calculated by looking at εϕ−1

1 . We deduce

εϕ−1
1 = εϕ

m−1 ≡ εσϕm−1 = π1−σ̃ mod U(L/F).

This completes the proof of step one.
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(2) We now proceed showing assertion two. This part is proven quite similiar to part
one. Therefore we will not go very deep into detail as it just uses the same techniques
as part one. Let α = NL/F and βϕ−1 = π1−σ mod U(L/F) with σ ∈ Gal(L/F ). Then
again, as shown above, σ̃ = σϕm and similarly to the previous

Υ̃L/F (σ̃) = NΣ/FπΣ ≡ NLur/Furε1 mod NL/FL
∗

and
εϕ−1
1 ≡ π1−σ ≡ βϕ−1 mod U(L/F).

From proposition 2.4.4 applied to γ = ε1β
−1 we deduce that NL/Fγ belongs to NL/FL

∗

and therefore
NL/Fε1 ≡ NL/Fβ = α mod NL/FL

∗.

But this proves assertion two.

We will now explain, why those assertions justify seeing the Hazewinkel homomorphism
partly as the inverse of the Neukirch map. This argument is also a very important one
for the proof of the local reciprocity law.

From assertion one we can deduce the surjectivity of ΥL/F . From assertion two and the
fact that we have Υ̃(σ̃) = 1 if σ̃|L = id|L, by taking σ̃ = ϕ, so that σ̃|E = idE = ΥL/F (α)
we deduce that α ∈ NL/FL

∗. But that means that ΨL/F is injective. Hence, ΨL/F is
an isomorphism. Now from assertion one we conclude that Υ̃ does not depend on the
choice of a lifting of σ̃ ∈ Gal(L/F ) and therefore determines the map ΥL/F .
It remains to show that the Hazewinkel homomorphism really is a homomorphism in the
case of a totally ramified extension. Since we can take σ̃1σ2 = σ̃1σ̃2 we can deduce from
assertion one that ΥL/F is a homomorphism. Due to proposition 2.3.2 and assertion
two we see that this homomorphism must be surjective. From assertion one we deduce
that its kernel is contained in Gal(L/E). The latter conincides with the kernel, since
the image of ΥL/F is abelian. Remember that E was the maximal abelian extension.
We therefore know, that Gal(L/E) must be the smallest abelian subgroup. The image
of the Neukirch map is clearly abelian as it is a quotient field of F ∗.

We will now give a corollary for the case of F again being the completion of the maximal
unramified extension of F .

Corollary 2.4.11. Let F be the completion of the maximal unramified extension of F ,
and let L = LF .
For σ ∈ Gal(L/F ) there exists η ∈ L∗ such that

ηϕ−1 = π1−σ.

Then ε = NL/Fη beglongs to F ∗ and

ΥL/F (σ) = NL/Fη.

Conversely, for every ε ∈ F ∗ there exists η ∈ L∗ such that

ε ≡ NL/Fη mod NL/FL
∗
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ηϕ−1 = π1−σ for some σ ∈ Gal(L/F).

Then ΨL/F (ε) = σ|E.

The proof of this corollary needs no further technical details then the one above. But
since it is quite long itself, and technical as the one above, it will be omitted.



THE LOCAL RECIPROCITY LAW 55

2.5 The Local Reciprocity Law

In this section we will state and prove the local reciprocity law.

First, we need a very useful lemma, that allows use to see the finite Galois extension we
will have in the local reciprocity law as a composition of an unramified one and a Galois
totally ramified one.

Lemma 2.5.1. Let L/F be a finite abelian extension. Then there is a finite unramified
extension M/L such that M is an abelian extension of F , M is the compositum of an
unramified extension M0 of F and an abelian totally ramified extension K of F .
For every such M we have NM/FM

∗ = NK/FK
∗ ∩NM0/FM

∗
0 .

Proof. We know from the previous sections, that Gal(Lur/L) is topologically generated
by an element ϕL, hence abelian. Now, L/F is a finite abelian extension, hence Lur =
LF ur is one of F , since a finite extension is always algebraic and therefore proposition
1.5.19 applies. Let ϕ̃ ∈ Gal(LF ur/F ) be an extension of ϕF . Let K be the fixed field
of ϕ̃. Then we must have K ∩ F ur = F , since ϕF generates Gal(F ur/F ), hence K is
a totally ramified extension of F . It is also abelian as a subextension of an abelian
extension, and subgroups of abelian groups are always abelian.
The compositum M of K and L is an unramified extension of L, since Kur = Lur. This
can be seen since K must be a subfield of LF ur = Lur. The field M , as a compositum
of two abelian extensions, is an abelian extension of F and Gal(M/F ) ' Gal(M/K) ×
Gal(M/M0). This proves the first assertion.

We now proceed proving the part about norms, since we will also need that in the
following proof of the local reciprocity law.
Now the left hand side of the formula of the lemma is contained in the right hand
side, which we will denote by N . We have N ∩ UF ⊂ NK/FUK ⊂ NM/FUM , since
UK ⊂ NM/KUM can be deduced by investigating more technical properties about the
norm map. We will, however, not proof that. See [FeVo2, Chpt 3] for a proof of it.
If πM is a prime element of M , then NM/FπM ∈ N . By knowing that M0 is an unramified
extension, we can see that we must have

vF (NM/FπM )Z = vF (NM0/FM
∗
0 ).

This is an easy consequence of the way we extend valuations, the same argument we used
many times before. So every α ∈ N can be written as α = NM/Fπ

m
M ε with ε ∈ N ∩ UF

and some m. Thence N is contained in NM/FM
∗ and we have N = NM/FM

∗.

We can now proceed stating and proving the local reciprocity law. The proof is quite
long, but since we provided very useful lemmas that we can use, it is suprisingly clearly
structured. It is, in fact, mostly applying the previous lemmas and propositions in the
right order on the right objects and not using any further constructions.

Theorem 2.5.2 (Local Reciprocity Law). Let L/F be a finite Galois extension. Let
E/F be the maximal abelian subextension of L/F .
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Then ΨL/F is an isomorphism, Υ̃L/F (σ̃) does not depend on the choice of σ̃ for σ ∈
Gal(L/F ) and induces the Neukirch homomorphism

ΥL/F : Gal(L/F )→ F ∗/NL/FL
∗.

The latter induces an isomorphism Υab
L/F between Gal(L/F )ab = Gal(E/F ) and F ∗/NL/FL

∗

(which is inverse to ΨL/F for totally ramified extensions).

Proof. First, we consider the case of an abelian extension L/F , such that L is the
compositum of the maximal unramified extension L0 of F in L and an abelian totally
ramified extension K of F . Then by the previous lemma NL/FL

∗ = NK/FK
∗∩NL0/FL

∗
0.

From proposition 2.3.7 applied to the surjective maps

Frob(L/F )→ Frob(L0/F ) and Frob(L/F )→ Frob(K/F ),

and from what we had on the Neukirch map and the Hazewinkel homomorphism so far
(theorems 2.3.5 resp. 2.4.10) we deduce that Υ̃L/F does not depend on the choice of σ̃
modulo NK/FK

∗ ∩NL0/FL
∗
0, therefore modulo NL/FL

∗. So we get the map ΥL/F .
Now from what we had in the previous sections we deduce that ΥL/F is a homomorphism
modulo NK/FK

∗ ∩NL0/FL
∗
0, so it is a homomorphism modulo NL/FL

∗. It is injective,
since if ΥL/F (σ) ∈ NL/FL

∗, then σ acts trivially on L0 and K, and hence on L. Its
surjectivitiy follows from the commutative diagram of corollary 2.3.8.

Second, we consider the case of an arbitrary finite abelian extension L/F . By the previ-
ous lemma and the preceding arguments there is an unramified extension M/L such that
the map Υ̃M/F induces the isomorphism ΥM/F . The map Frob(M/F )→ Frob(L/F ) is
surjective by the assertion of proposition 2.3.7. We deduce using proposition 2.3.7 again
that Υ̃L/F induces the well defined map ΥL/F , which is a surjective homomorphism. Let
σ ∈ Gal(M/F ) be such that ΥL/F (σ) = 1. Then we apply the commuative diagram of
corollary 2.3.8 to the extensions M/F and L/F , where M ⊃ L ⊃ F . We already saw
that Υ̃M/F induces the isomorphism ΥM/F . Then from the above mentioned diagram
and the surjectivity of Υ for every finite abelian extension we deduce that we can find
τ ∈ Gal(M/L) ⊂ Gal(M/F ), such that ΥM/F (σ) = ΥM/F (τ). The injectivity of ΥM/F

now implies that σ = τ . Hence, τ also acts trivially on L.

Finally, we consider the case of a finite Galois extension where we argue by induction
on the degree of L/F . We can assume that L/F is not abelian, since in that case our
first part of the proof would apply.

Every σ ∈ Gal(L/F ) belongs to the cyclic subgroup of Gal(L/F ) generated by it. As
we already saw, Υ̃L/F (σ̃) does not depend on the choice of σ̃ and therefore determines
the map ΥL/F .

Lemma 1.5.23 asserted that the Galois group Gal(L/F ) is soluble. Now every σ belongs
to its generated cyclic subgroup, which is of course also abelian. This subgroup must
be a proper one, since Gal(L/F ) would be abelian otherwise, thence we could apply the
second case. But, being a proper subgroup allows us to use the induction hypothesis.
Going up by the degree from n to n + 1 means nothing else but adding an additional
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element to the Galois group Gal(L/F ) by the main theorem of Galois theory (A.3.27).
We can now find, that for each abelian extension E/F we have ΥE/F is surjective by the
second case. Now, L/F is nothing else but the finite composition of those extensions,
hence ΥL/F must be surjective.

In the next several paragraphs we shall show that ΥL/F (Gal(L/E)) = 1. Due to surjec-
tivity of Υ this implies that the map N∗E/F in the diagram of corollary 2.3.8 (where we put
M=E) is zero. Since ΥE/F is an isomorphism we see from the diagram of the corollary
that ΥL/F is a surjective homomoprhism with kernel Gal(L/E). This will proof the theo-
rem, since Gal(L/F )ab = Gal(E/F ), hence the canonical map Gal(L/F )→ Gal(L/F )ab

has kernel Gal(L/E).

So it remains to prove that ΥL/F maps every element of the derived group Gal(L/E) to
1. Since Gal(L/F ) is soluble, we have E 6= F . Proposition 2.3.7 shows that ΥL/F (ρ) =
N∗E/F (ΥL/E(ρ)) for every ρ ∈ Gal(L/E). Since by the induction assumption ΥL/E is a
homomorphism, it suffices to show that

ΥL/F (τστ−1σ−1) = N∗E/F (ΥL/E(τστ−1σ−1)) = 1

for every σ, τ ∈ Gal(L/F ). (Remember that the derived group of a group G is the set
of commutators aba−1b−1, a, b ∈ G as described in the appendix). We can then use the
same argument as in the second case.
To show that, we use lemma 2.3.6 and the induction hypothesis.

Suppose that the subgroup G1 of G = Gal(L/F ) generated by Gal(L/E) and τ is not
equal to G. We can denote that group by G1 = Gal(L/K), since according to the main
theorem of Galois theory applied for finite extensions every subgroup of the Galois group
G = (L/F ) has a corresponding intermediate field K.
So, from the induction hypothesis and lemma 2.3.6

ΥL/K(τστ−1σ−1) = ΥL/K(τ)ΥL/K(στ−1σ−1) = ΥL/K(τ) · σ−1(ΥL/K(τ)) = Υ1−σ
L/K(τ),

and so
ΥL/F (τστ−1σ−1) = N∗K/F (ΥL/K(τ)1−σ) = 1

by proposition 2.3.7 and hence

= N∗K/F (NΣ/K(τ)1−σ = NΣ/K(τ) · σ(NΣ/K(τ)−1) =

= N∗K/F (NΣ/K(τ) ·N∗K/F (σ(NΣ/K(τ)−1)) = α · α−1 = 1

where Σ denots the fixed field of τ and for some α ∈ F . Remember that the norm is the
product of all automorphisms from the Galois group, hence it does not matter if we use
NK/Fα or NK/F (σ(α)).

In the remaining case the image of τ generates Gal(E/F ). Hence σ = τmρ for some
ρ ∈ Gal(L/E) and integer m. We deduce τστ−1σ−1 = τm(τρτ−1ρ−1)τ−m and similarly
to the preceding

ΥL/F (τm(τρτ−1ρ−1)τ−m) = ΥL/F (τρτ−1ρ−1) = N∗E/F (ΥL/E(ρ)τ−1) = 1.
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We will now give a few consequences of the local reciprocity law. The most important
one will be the existence theorem 2.6.5.

Corollary 2.5.3. 1. Let L/F be a finite Galois extension and let E/F be the maximal
abelian subextension in L/F . Then NL/FL

∗ = NE/FE
∗.

2. Let L/F be a finite abelian extension, and M/F a subextension in L/F . Then
α ∈ NL/ML

∗ if and only if NM/F (α) ∈ NM/FL
∗.

Proof. The first assertion follows immediately from the theorem. The second assertion
follows the diagram of corollary 2.3.8 (with Frob being replaced with Gal) in which the
homomorphism N∗M/F is injective due to the theorem.

We now give two more commutative diagrams. However, we will not proof them.

Proposition 2.5.4. 1. Let M/F be a finite separable extension and let L/M be a
finite Galois extension, σ ∈ Gal(F sep/F ). Then the diagram

Gal(L/M)
ΥL/M

−−−−−−−−−−−→ M∗/NL/ML
∗

−−−−→σ∗ σ

−−−−→

Gal(σL/σM)
ΥσL/σM

−−−−−−−−−−−→ (σM)∗/NσL/σM (σL)∗

is commuative.

2. Let M/F , E/L be finite separable extensions, and let L/F and E/M be finite
Galois extensions. Then the diagram

Gal(E/M)
ΥE/M

−−−−−−−−−−−→ M∗/NE/ME
∗

−−−−→ N∗
M/F

−−−−→

Gal(L/F )
ΥσL/σF

−−−−−−−−−−−→ F ∗/NL/FL
∗

is commutative.
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2.6 The Reciprocity Map

To conclude this chapter, we show that we get a good description of the Galois group
of a finite abelian extension out from the local reciprocity law. In the center of that
description is the so-called reciprocity map. We will use this map to state the existence
theorem.

We need the discussion in this section to understand the various generalizations of the
reciprocity law. Since the proofs of the following statements would be rather long and
premise some more theory we did not develop in the above sections, we will omit them.
The main aim of this section is to give a general idea of what we obtain from the local
reciprocity law, so we can seek for a generalization of the results we obtained so far.

The homomorphism inverse to the Neukirch map ΥL/F induces the surjective homomor-
phism

(., L/F ) : F ∗ → Gal(L/F )ab.

If we have a look at the Hazewinkel map, which is a homomorphism in the totally
ramified case, we can see that it has similarities to the map define above. Acutally, it
coincides with it, if we extend the Hazewinkel homomorphism in a canonical way.

We can now proceed stating a very important propostion.

Proposition 2.6.1. Let H be a subgroup in Gal(L/F )ab, and let M be the fixed field of
H in L ∩ F ab. Then

(., L/F )−1(H) = NM/FM
∗.

Let L1, L2 be abelian extensions of finite degree over F , and let L3 = L1L2, L4 = L1∩L2.
Then

NL3/FL
∗
3 = NL1/FL

∗
1 ∩NL2/FL

∗
2,

NL4/FL
∗
4 = NL1/FL

∗
1 NL2/FL

∗
2.

The field L1 is a subfield of the field L2 if and only if NL2/FL
∗
2 ⊂ NL1/FL

∗
1. In particular,

L1 = L2 if and only if NL1/FL
∗
1 = NL2/FL

∗
2.

If a subgroup N in F ∗ contains a norm subgroup NL/FL
∗ for some finite Galois extension

L/F , then N itself is a norm subgroup.

The first assertion of this proposition is an immediate consequence of the local reciprocity
law and the commutative diagrams that we obtained from it.

Passing to the projective limit, we get

ΨF : F ∗ → lim←−
L

F ∗/NL/FL
∗ → lim←−

L

Gal(L/F )ab = Gal(F ab/F )

where L runs through all finite Galois (or all finite abelian) extensions of F .

Definition 2.6.2. The homomorphism ΨF from the construction above is called the
reciprocity map.
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With this reciprocity map, we get a bijection that lets us obtain a description of all finite
abelian extensions of a local field F . But first we need to make some observations on
this map.

Theorem 2.6.3. The reciprocity map is well defined.
Its image is dense in Gal(F ab/F ), and its kernel coincides with the intersection of all
norm subgroups NL/FL

∗ in F ∗ for finite Galois (or finite abelian) extensions L/F .
If L/F is a finite Galois extension and α ∈ F ∗, then the automorphism ΨF (α) acts
trivially on L ∩ F ab if and only if α ∈ NL/FL

∗.

The restriction of ΨFα on F ur coincides with ϕvF (α)
F for α ∈ F ∗.

Let L be a finite separable extension of F , and let σ be an automorphism of Gal(F sep/F ).
Then the diagrams

L∗
ΨL

−−−−−−−−−−−→ Gal(Lab/L)

−−−−→σ σ∗

−−−−→

(σL)∗
ΨσL

−−−−−−−−−−−→ Gal((σL)ab/σL)

L∗
ΨL

−−−−−−−−−−−→ Gal(Lab/L)
−−−−→NL/F

−−−−→

F ∗
ΨF

−−−−−−−−−−−→ Gal(F ab/F )

F ∗
ΨF

−−−−−−−−−−−→ Gal(F ab/F )

−−−−→ V er

−−−−→

L∗
ΨF

−−−−−−−−−−−→ Gal(Lab/L)

are commutative, where σ∗(τ) = στσ−1 as in previous sections, the right vertical homo-
morphism of the second diagram is the restriction and

V er : Gal(F sep/F )ab → Gal(F sep/L)ab = Gal(Lab/L).

With the above discussed properties of the reciprocity map, we can now state the exis-
tence theorem. In this theorem we exhibit an additional feature of the reciprocity map.
One step towards proving the existence theorem is the following observation:

Proposition 2.6.4. Let L be a finite separable extension of F . Then the norm map
NL/F : L∗ → F ∗ is continous and NL/FL

∗ is an open subgroup of finite index in F ∗.

At this point we would like to remember on the fact that every local field has a natural
topology implied by its valuation. The term open subgroup refers to this topology
explained in the first chapter.
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Theorem 2.6.5 (Existence Theorem). There is a one-to-one correspondence between
open subgroups of finite index in F ∗ and the norm subgroups of finite abelian extensions:

N ↔ NL/FL
∗.

This correspondence is an order reversing bijection between the lattice of open subgroups
of finite index in F ∗ (with respect to the intersection N1 ∩ N2 and the product N1N2)
and the lattice of finite abelian extensions of F (with respect to the intersection L1 ∩ L2

and the compositum L1L2).

From this very important theorem we obtain the following fact about the reciprocity
map:

Corollary 2.6.6. The reciprocity map ΨF is injective and continuous.

This describes the way that this one-to-one correspondence works. So we get a de-
scription of the finite abelian extensions of a local field F only by looking at its open
subgroups of finite index. So the structure of the abelian extensions of such fields is
hidden in the field itself. This is a very strong assertion. Of course, we would like to
try generalize this result in some ways. An overview of how this has been done within
the last decade is given in the last chapter. The work done in this chapter was mostly
to understand how we obtain the local reciprocity law in an arithmetical way. This way
has also been followed to find various generalizations.



Chapter 3

A Cohomological Approach

In this chapter we will give another approach proving to the local reciprocity law. Our
first approach was a purely number theoretic one, giving a lot of useful properties of
local fields and their extensions.
This approach however, is purely group theoretic, using cohomology groups. Due to
limited space we will not go into detail. Instead we try to give a general idea of what
is used and how we get the results. For the more detailed cohomological approach see
[Ne3]. This chapter is mainly an abridgement of what J. Neukirch describes in his book.
At the end of this chapter we will state Artin’s global reciprocity law and deduce the
well-known quadratic reciprocity law from it using the so-called Hilbert symbol.

3.1 Definitions

Our first subsection will contain crucial definitions from group cohomology.

Our first definition will be the definition of an abstract G-module. Later we will use as
our group G the Galois group of an extension.

Definition 3.1.1. Let G be a profinite group. An abstract G-module M is an abelian
group M together with an action

G×M →M, (g,m) 7→ g(m)

such that

1. 1(m) = m

2. (gh)(m) = g(h(m))

3. g(m+ n) = g(m) + g(n)

holds for all g, h ∈ G,m, n ∈M .

62
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In the definition we used a profinite group. We will later use G to be a finite group
which always is also a profinite group in a trivial way.

Remark 3.1.2. When we use for example a Galois group as G, this definition is just
the natural equivalent to the usual definition of a module as know from Algebra.

Our next definition is the definition of a cohomology group. In order to be able to define
such groups we need some preliminary work.

First we regard a profinite group G. Then we have natural projections:

di : Gn+1 → Gn, i = 0, 1, . . . , n,

given by omitting the i-th component.
We will assume our G-modules to be discrete. This however, will not cause any problem
in the application we have in mind - the reciprocity law.

For every G-module A we form the abelian group

Xn = Xn(G,A) = Map(Gn+1, A)

of all continuous maps x : Gn+1 → A, i.e. of all continuous functions x(σ0, . . . , σn) with
values in A. Here the σi ∈ G. We will see later that this notation is quite natural since
we will use a Galois group as G and every Galois group is a profinite group. Then Xn

is a G-module in a natural way by

(σx)(σ0, . . . , σn) = σx(σ−1σ0, . . . , σ
−1σn)

Now the maps di : Gn+1 → Gn induce G-homomorphisms d∗i : Xn−1 → Xn by

d∗i : x 7→ x ◦ di.

With these maps we form the alterning sum

∂n =
n∑
i=0

(−1)id∗i : Xn−1 → Xn

where we will sometimes denote ∂n by ∂ since it is clear what n is.
Thus for x ∈ Xn−1, ∂x is the function

(∂x)(σ0, . . . , σn) =
n∑
i=0

(−1)ix(σ0, . . . , σi−1, σi+1, . . . , σn)

Moreover, we have the G-homomorphism ∂0 : A → X0, which associates to a ∈ A the
constant function x(σ0) = a.

Definition 3.1.3. We call such a sequence with maps ∂ a complex if ∂n+1∂n = 0. We
will denote this by ∂∂ = 0 since the powers should be clear.
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Proposition 3.1.4. The sequence

0 −→ A
∂0

−→ X0 ∂1

−→ X1 ∂2

−→ X2 −→ . . .

is exact.

Definition 3.1.5. An exact sequence of G-modules 0 → A → X0 → X1 → X2 → . . .
is called a resolution of A.

We now set
Cn(G,A) = Xn(G,A)G

by which Cn(G,A) consists of the continuous functions x : Gn+1 → A such that

x(σσ0, . . . , σσn) = σx(σ0, . . . , σn)

for all σ ∈ G. These functions are called n-cochains of G with coefficients in A.

From the resolution we therefore obtain another sequence

C0(G,A) ∂1

−→ C1(G,A) ∂2

−→ C2(G,A) −→ . . . ,

which in general is no longer exact. However, it is still a complex, i.e. ∂∂ = 0, which is
an easy consequence from the sequence in the proposition being a complex.

We now set
Zn(G,A) = ker(Cn(G,A) ∂

n+1

−→ Cn+1(G,A))

Bn(G,A) = im(Cn−1(G,A) ∂n−→ Cn(G,A))

and B0(G,A) = 0. The elements of Zn(G,A) and Bn(G,A) are called the n-cocycles
and n-coboundaries respectively. Since ∂∂ = 0 we see that Bn(G,A) ⊆ Zn(G,A).

We can now proceed defining a cohomology group.

Definition 3.1.6. For n ≥ 0 the factor group

Hn(G,A) = Zn(G,A)/Bn(G,A)

is called the n-dimensional cohomology group of G with coefficients in A.

Remark 3.1.7. In our definition A is an abelian group. There is also a non-abelian
cohomology group, using a non-abelian group A1.

Before we can proceed defining the cup product, which will be use in stating the reci-
procity law in a cohomological way, we need to define the tensor product.

Definition 3.1.8. Let A and B be modules over the ring of intergers Z. Let F be the
free abelian group on the set A × B. Let K be the subgroup of F generated by all
elements of the following forms (for all a, a′ ∈ A, b, b′ ∈ B, r ∈ R):

1See [Se1] for more on this.
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1. (a+a’,b)-(a,b)-(a’,b)

2. (a,b+b’)-(a,b)-(a,b’)

3. (ar,b)-(a,rb)

The quotient group F/K is called the tensor product of A and B. It is denoted by
A ⊗R B (or simply A ⊗ B if R = Z). The coset (a, b) + K of the element (a, b) in F is
denoted a⊗ b. The coset of (0, 0) is denoted 0.

With this definition we can define the cup product.

If A and B are two G-modules, then A⊗ZB is also a G-module (by σ(a⊗ b) = σa⊗σb),
and we obtain for every pair p, q ≥ 0 bilinear map

Cp(G,A)× Cq(G,B) ∪−→ Cp+q(G,A⊗B) (3.1)

by
(a ∪ b)(σ0, . . . , σp) = a(σ0, . . . , σp)⊗ b(σp, . . . , σp+q).

For this map we have the following proposition:

Proposition 3.1.9. ∂(a ∪ b) = (∂a) ∪ b+ (−1)p(a ∪ ∂b).

From this proposition it follows that a∪ b is a cocycle if a and b are cocycles. Given that
a and b are cocycles we have:

0 ∪ b+ (−1)p(a ∪ 0).

By the third form of the tensor product we see that this must be in K and therefore
is zero in the tensor product. Similiarly we see that the same must hold if a and b are
coboundaries.

Therefore the pairing in equation 3.1 induces a bilinear map

Hp(G,A)×Hq(G,B) ∪−→ Hp+q(G,A⊗B)

by
(α, β) 7→ α ∪ β.

This map is called the cup-product . For p = q = 0, we obtain the map

AG ×BG −→ (A⊗B)G

(a, b) 7→ a× b.

Remark 3.1.10. In this definition AG means that G acts on A from the right. This
notation is frequently used in group theory.
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We aim to state the reciprocity law. This will be done with using the theorem of
Nakayama and Tate. In this theorem they use another form of cohomology, the n-Tate
cohomology group. This will only be done for finite groups, which is sufficient for what
we need it.

We consider the norm residue group

H0(G,A) = AG/NGA,

where NGA is the image of the norm map

NG : A→ A, NGa =
∑
σ∈G

σa.

We already know the norm map from previous chapters. Since this approach is purely
abstract, we need to define the maps used. However, this definition coincides with the
well known norm map from previous chapters in the case we have in mind - using it for
the local reciprocity law.

We call the groups

Ĥn(G,A) =

{
AG/NGA for n = 0
Hn(G,A) for n ≥ 1

the modified cohomology groups.
This definition holds only for n ≥ 0. In the application we have in mind, the local
reciprocity law, we will need n to be −2. Therefore we will now extend our definition.

We need the next sequence to get our maps ∂n for negative n, which we will use to
construct a sequence that will be used for the Tate cohomology.

For n ≥ 0, let Z[Gn+1] be the abelian group of all formal Z-linear combinations∑
aσ0,...,σn(σ0, . . . , σn), σ0, . . . , σn ∈ G

with its obvious G-module structure. We consider the complete standard resolution of
Z, i.e. the sequence of G-modules

. . . −→ X2
∂2−→ X1

∂1−→ X0
∂0−→ X−1

∂−1−→ X−2 −→ . . .

where Xn = X−1−n = Z[Gn+1] for n ≥ 0, and the differentials are defined for n > 0 by

∂n(σ0, . . . , σn) =
∑n

i=0(−1)i(σ0, . . . , σi−1, σi+1, . . . , σn)
∂−n(σ0, . . . , σn−1) =

∑
τ∈G

∑n
i=0(−1)i(σ0, . . . , σi−1, τ, σi, . . . , σn−1),

while ∂0 : X0 → X−1 is given by

∂0(σ0) =
∑
τ∈G

τ.
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Using the maps ∂n we can define the complete standard resolution of A as the sequence
of G-modules

. . . −→ X−2 ∂−1

−→ X−1 ∂0

−→ X0 ∂1

−→ X1 ∂2

−→ X2 −→ . . .

where X−1−n = Xn =Hom(Xn, A) =Map(Gn+1, A) for n ≥ 0 and ∂n =Hom(∂n, A) for
n ∈ Z. Then the above sequence is a complex using the maps

D−n : X−n+1 −→ X−n

given by

(Dnx)(σ0, . . . , σn) = x(1, σ0, . . . , σn) for n ≥ 0,
(D−1x)(σ0) = δσ0,1x(1) for n = 1,
(D−nx)(σ0, . . . , σn−1) = δσ0,1x(σ1, . . . , σn−1) for n ≥ 2,

we get
Dn ◦ ∂n+1 + ∂n ◦Dn−1 = id

for all n ∈ Z. From this we conclude that the above sequence is exact.

Finally we have gathered enough information to define the Tate cohomology group.

For every n ∈ Z we now define the n-th Tate cohomology group Ĥn(G,A) as the coho-
mology group of the complex

Ĉ(G,A) = ((Xn)G)n∈Z

at n:
Ĥn(G,A) = Hn(Ĉ(G,A)),

similar as before for Hn(G,A).
Clearly, for n ≥ 0 we get the previous (modified) cohomology groups.

In order to proceed defining essential objects for the reciprocity law, we first need the
restriction.

For an arbitrary closed subgroup H of G and a G-module A, we consider the two
homomorphisms

H
incl
↪→ G, A

incl
↪→ A.

On the cochains they induce a restriction map and we obtain homomorphisms on the
cohomology

resHF : Hn(G,A) −→ Hn(H,A),

called restriction. Cleary the restriction is transitive, i.e. for two closed subgroups
F ⊆ H, we have

resHF ◦ resGH = resGF .

We can now proceed defining the fundamental class, which will get us closer to stating
the local reciprocity law in a group cohomological way.

Let G be a finite group. We call a G-module C a class module if for all subgroups H of
G
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1. H1(H,C) = 0 and

2. H2(H,C) is cyclic of order |H|.

Definition 3.1.11. A generator γ of H2(G,C) is called a fundamental class.

In order to define the invariant maps that will be used in the reciprocity law we need to
construct a new G-module from a class module.

As we have n-th cocycles we could also define n-th inhomogeneous cocycles in a similiar
way2. These are elements of Cn(G,A), which is the abelian group of all continuous
functions y : Gn → A. From that we could also define, similar to before, the sets
Zn(G,A) and Bn(G,A).
We could also show, that we have isomorphisms

Hn(G,A) ' Zn(G,A)/Bn(G,A)

where Z and B are similiarly the kernel and the image of the maps between those sets
Cn.

To each G-module C and each class γ ∈ H2(G,C) we associate a G-module C(γ) as
follows. Let B =

⊕
σ 6=1 Zbσ be the free abelian group with basis bσ, indexed by the

elements σ ∈ G, σ 6= 1. We set
C(γ) = C ⊕B,

and we let G act on C(γ) by the means of an inhomogeneous cocycle c(σ, τ) representing
γ as follows: we set b1 = c(1, 1) and define

σbτ = bτ − bσ + c(σ, τ).

This is really a G-action and we could also show that we have map H2(G,A) →
H2(G,C(γ)) which maps γ to zero. C(γ) is therefore called the splitting module of
γ.

2Inhomogeneous cocycles are basically such, that are not in the same equivalence class of the cobound-
aries. For a detailed definition see [Se1].
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3.2 The Local Reciprocity Law

In this section we use the definitions of the previous sections to state the local reciprocity
law.

We have the following theorem from wich we will get the definition of invariant maps.

Theorem 3.2.1. Let G be a finite group. For each n ∈ Z and each subgroup H ⊆ G,
the homomorphism

δ2 : Ĥn(H,Z)→ Ĥn+2(H,C)

is given by the cup-product β 7→ γH ∪ β, where γH =resGH(γ). The following conditions
are equivalent:

1. C(γ) is a cohomologically trivial G-module

2. C is a class module with fundamental class γ

3. δ2 is an isomorphism for all n ∈ Z and all H.

If C is a class module for G, then by the above theorem we have isomorphisms

(δ2)−1 : H2(H,C) −→ 1
|H|

Z/Z, γH 7→
1
|H|

mod Z,

where γ ∈ H2(G,C) is a chosen fundamental class. These are called invariant maps and
denoted by inv.

We can now state a very important theorem that we would need to prove the reciprocity
law:

Theorem 3.2.2 (Nakayama-Tate). Let G be a finite group, let C be a class module
for G and let γ ∈ H2(G,C) be a fundamental class. Then, for all integers i ∈ Z, the
cup-product

Ĥ i(G,Hom(A,C))× Ĥ2−i(G,A) ∪−→ H2(G,C) ' 1
|G|
Z/Z,

where H2(G,C) ' 1
|G|Z/Z is given by γ 7→ 1

|G| mod Z, induces an isomorphism

Ĥ i(G,Hom(A,C)) ' Ĥ2−i(G,A)∗,

provided that A is Z-free. If, in addition, A is finitely generated, then this is an isomor-
phism of finite abelian groups.

We now apply this theorem to the case A = Z, i = 0 and using that we could also show

H2(G,Z)∗ ' H1(G,Q/Z)∗ = Hom(Gab,Q/Z)∗ = Gab.

From that we obtain a crucial theorem with which the local reciprocity law can be
proved.
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Theorem 3.2.3. If C is a class module for the finite group G, then we have an isomor-
phism

ρ = ρG : Gab → CG/NGC,

called the Nakayama map. It depends on the choice of a fundamental class γ ∈ H2(G,C)
and satisfies (by definition) the formula

χ(σ) = inv(ρ(σ) ∪ δχ)

for all characters3 χ ∈ H1(G,Q/Z) δ→ H2(G,Z).

This theorem is actually quite close to the local reciprocity law. What still needs to be
proved is that it really applies in the case of local fields.

First, it can be shown that for a finite Galois extension L/K of a local field K the
multiplicative group K∗ is a class module for the Galois group G(L|K). It can also be
deduced that we have a canonical fundamental class γ ∈ H2(G,K∗). Therefore, by the
Nakayama-Tate theorem, we obtain the next theorem.

Theorem 3.2.4. Let L|K be a finite extension of local fields with Galois group G. Let
A be a finitely generated Z-free G-module and A′ = Hom(A,K∗). Then for all i ∈ Z the
cup-product

Ĥ i(G,A′)× Ĥ2−i(G,A) ∪−→ H2(G,K∗) =
1
|G|
Z/Z

induces an isomorphism of finite abelian groups

Ĥ i(G,A′) ' Ĥ2−i(G,A)∗.

In the case i = 0 and A = Z we have H2(G,Z)∗ ' H1(G,Q/Z)∗ = (Gab), and we obtain
the main theorem of local class field theory, the local reciprocity law:

Theorem 3.2.5 (Local Reciprocity Law). Let K be a local field and let L|K be a finite
Galois extension. Then there is a canonical isomorphism

K∗/NL/KL
∗ ' G(L|K)ab.

The norm groups NL/KL
∗ for a finite Galois extension L|K are precisely the open sub-

groups of finite index in K∗.

Apparently it had been this isomorphism which initiated the use of cohomology in num-
ber theory. As we can see, we obtain the very same result with this cohomological
approach than with the one in the previous chapter. However, the method we tried to
explain here does not use any of the arithmetical properties of local fields. But those
fields are used widely in number theory and algebraic geometry. Therefore the first
approach, developing the theory of local fields, is probably the more helpful one for
understanding number theory and local fields.

3See definition 4.3.6 for characters.
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As we saw in this cohomological approach, it is not quite as short and simple as one
might suggest. It also requires a lot of definitions and would also require some technical
properties of those objects defined. Due to limited space and to keep the section an
overview, as it was intended, we did not show any of those. Hopefully the idea of what
is used and how we proceed in obtaining the local reciprocity law in a cohomological
way is given.
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3.3 The Global Reciprocity Law

In this section we will state Artin’s reciprocity law. The basic idea of this global reci-
procity law is that we replace the mulitplicative group from the local law with so-called
ideles. We will also see later that this is very suitable for the local-to-global principle.

In addition to the theory we developed in the chapter about valuation theory we define:

Definition 3.3.1. A prime p of an algebraic number field K is a class of equivalent
valuations of K. The nonarchimedian equivalence classes are called finite primes and
the archimedian ones infinite primes.

As we saw in the theorem of Ostrowski 1.3.5, we have just one infinite prime for complete
fields. It can also be shown, that the primes of an extension of Q can be identified with
those of Q itself. Therefore, since Q has well known prime ideals, we will identify the
primes of an extension of Q with the primes in Q and ∞ for the infinite prime.

Remark 3.3.2. 1. We will denote the completion of K at the prime p by Kp.

2. In the chapter about valuation theory we said that we call OK the ring of integers.
In addition to this, we say the elements of OK are integral in Kp. We saw in the
first chapter that OK is integrally closed, which justifies the term ’integral’.

Definition 3.3.3. An adele of a local field K is a family

α = (αp)

of elements αp ∈ Kp where p runs through all primes of K and αp is integral, having
non-negative valuation, in Kp for almost all p. It can easily be seen that the adeles form
a ring, which is denoted by

AK =
∏
p

Kp.

Addition and multiplication are defined componentwise. This kind of product is called
the ’restricted product’ of the Kp with respect to the subrings Op ⊆ Kp.

The idele group of K is defined to be the unit group

IK = A∗K .

Thus an idele is a family
α = (αp)

of elements αp ∈ K∗p where αp is a unit in the ring Op of integers of Kp, for almost all
p. In analogy with AK we write the idele group as the restricted product

IK =
∏
p

K∗p

with respect to the unit groups O∗p.

We now discuss why we can have an inclusion map K∗ → IK .
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For every finite set of primes S, IK contains the subgroup

ISK =
∏
p∈S

K∗p ×
∏
p/∈S

Up

of S-ideles, where Up = K∗p or Up = R∗+ for p depending on a property of the prime
which we will not discuss here. For a detailed discussion on this restricted product see
[Ne2]. We then clearly have

IK =
⋃
S

ISK ,

if S varies over all finite sets of primes of K.

The inclusions K ⊆ Kp allow us to define the diagonal embedding

K∗ → IK ,

which associates to a ∈ K∗ the idele α ∈ IK whose p-th component is the element a in
Kp.

Definition 3.3.4. The elements of the subgroup K∗ of IK are called principal ideles
and the quotient group

CK = IK/K
∗

is called the idele class group of K.

We now gathered enough information to state Artin’s reciprocity law:

Theorem 3.3.5 (Artin’s Reciprocity Law). Let L|K be a finite Galois extension of
global fields with Galois group G(L|K). Then there is a canonical isomorphism

rL|K : G(L|K)ab −→ CK/NL/KCL.

The inverse map of rL/K yields a surjective homomorphism

(., L|K) : AK → G(L|K)ab

with kernel NL|KAL. This map is called the norm residue symbol of L/K.

A proof of this would be too long. Instead we give a quick description of how we would
proceed:

Generally, we obtain the global reciprocity law from theorem 3.2.3. To use this theorem,
we have to show that we really have a class module. This is, again, done by using serveral
properties of cohomology groups.

For every prime p of K we have the canonical injection

[.] : K∗p → CK ,
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which associates to each ap ∈ K∗p the class of the idele

[ap] = (. . . , 1, 1, 1, ap, 1, 1, 1, . . . ).

What is really important is the compatibility of local and global class field theory, which
follows from the next proposition.

Proposition 3.3.6. If L|K is an abelian extension and p a prime of K, then the diagram

K∗p
(.,Lp|Kp)

−−−−−−−−−−−→ G(Lp|Kp)

−−−−→[.]

−−−−→

CK
(.,L|K)

−−−−−−−−−−−→ G(L|K)

is commutative.
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3.4 Deducing Quadratic Reciprocity

In this section we will try to demonstrate how the well-known Gaussian reciprocity law
can be deduced from the global reciprocity law.

First we need the definition of the Hilbert symbol.

We know from previous sections, primes split into finite and infinite primes, where the
infinite primes are the equivalence classes of the archimedian valuations.

Let K be a local field. We will also assume that K contains the group µn of roots of
unity where n is a natural number prime to the characteristic of K. Let L = K( n

√
K∗)

be the maximal abelian extension of exponent m. [Ne1, Chapter 3, 3.2] shows that we
then have

NL/KL
∗ = K∗n.

So by class field theory we obtain a canonical isomorphism

G(L/K) ' K∗/K∗n.

On the other hand, Kummer theory, which is not part of this text, gives us a canonical
isomorphism

Hom(G(L|K), µn) ' K∗/K∗n.
Therefore the bilinear pairing

G(L|K)×Hom(G(L|K), µn)→ µn,

(σ, χ) 7→ χ(σ),

produces a bilinear pairing(
., .

p

)
: K∗/K∗n ×K∗/K∗n −→ µn

which is bilinear in the multiplicative sense. This pairing is called the Hilbert symbol .
We have the following explicit connection to the previously defined norm residue symbol:

Proposition 3.4.1. If a, b ∈ K∗, then the Hilbert symbol
(
a,b
p

)
∈ µn is given by

(a,K( n
√
b)|K)

√
nb =

(
a, b

p

)
n
√
b.

For a proof see [Ne1].

We will now proceed defining the n-th power residue symbol. We will see that it is
generalizing the Legendre symbol.

We already saw in previous sections that we have a decomposition O∗ = µq−1 × U (1).
So every unit u ∈ UK has a unique decomposition

u = ω(u) · 〈u〉

with ω(u) ∈ µq−1, 〈u〉 ∈ U (1) and u ≡ ω(u) mod p. With this notation we have
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Theorem 3.4.2. If (n, p) = 1 and a, b ∈ K∗, then(
a, b

p

)
= ω

(
(−1)αβ

(
bα

aβ

) q−1
n

)
,

where α = vK(a), β = vK(b).

For a proof see [Ne1].

In particular, the theorem shows that (in case (n, p) = 1) the Hilbert symbol(
π, u

p

)
= w(u)

q−1
n

is independent of the choise of the prime element π. We may therefore set(
u

p

)
:=
(
π, u

p

)
for u ∈ UK .

(up ) is an n-th root of unity determined by(
u

p

)
≡ u

q−1
n mod pK .

We call it the Legendre symbol or the n-th power residue symbol . Both names are justified
by the following proposition.

Proposition 3.4.3. Let (n, p) = 1 and u ∈ UK . Then(
u

p

)
= 1⇔ u is an n-th power mod pk.

The above definition of the n-th power residue symbol is for any prime ideal p of K. We
will now extend this definition to any ideal. This is done very similiar as the extension
from the Legendre symbol to the Jacobi symbol in basic number theory.

Definition 3.4.4. For any ideal b =
∏
p-n p

vp of K prime to n and any number a prime
to b, we define the n-th power residue symbol by(a

b

)
=
∏
p-n

(
a

p

)vp
.

Clearly the power residue symbol a
b is multiplicative in both arguments. To see this

please compare to the Jacobi symbol, which is based on the Legendre symbol.

We can now state the general reciprocity law of n-th power residues.

Theorem 3.4.5. If a, b ∈ K∗ are prime to each other and to n, then(a
b

)
·
(
b

a

)−1

=
∏
p|n·∞

(
a, b

p

)
.
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The proof of this theorem is quite simple. Although we will refer to [Ne1].

Remark 3.4.6. The term p | n · ∞ should be read as p is running through all primes
including the infinite one.

The next theorem is the well known Gaussian Reciprocity law. It follows straight forward
from the theorem above.

Theorem 3.4.7 (Gauss’ Reciprocity Law). Let K = Q, n = 2 and let a and b be
coprime non-negative odd integers. Then(a

b

)
·
(
b

a

)
= (−1)

a−1
2
· b−1

2

and furthermore (
−1
b

)
= (−1)

b−1
2 ,

(
2
b

)
= (−1)

b2−1
8 .

This theorem can be seen using the explicit formula of the Hilbert symbol for p = 2 and
p =∞.

1. If p = 2 and a, b ∈ UQp , then(
a, b

2

)
=
(
b, a

2

)
= (−1)

a−1
2
· b−1

2 .

2.
(
a,b
p

)−1
=
(
b,a
p

)
3.
(
a,b
∞

)
= 1 in these cases.

Proof. From the previous theorem 3.4.5 we know that we have(a
b

)
·
(
b

a

)−1

=
(
a, b

2

)
·
(
a, b

∞

)
= (−1)

a−1
2
· b−1

2 · 1 = (−1)
a−1
2
· b−1

2 .



Chapter 4

Recent Results in Class Field
Theory

In this chapter we give a summary of recent results in class field theory. Those are, as
can be seen below, widely spreaded.

First, we follow approaches of a more general ground field. Although there have been
some interesting results at this part, there are still many unresolved cases.
The second section is dedicated to more general laws. However, in the local case this
has been resolved with the Langlands conjecture. Mainly, research focused on finding a
nonabelian generalization of the existence theorem. This was approached by nonabelian
reciprocity laws. Although the proof of the Langlands conjecture gives the existence of
a nonabelian existence theorem, it does not assert the noncommutative reciprocity map.
Therefore research on this has been included here in an additional section.
In the third section we try to give a very general idea of the Langlands conjecture and its
consequences. There is a lot of terminology needed to even properly state the Langlands
correspondence. Once this is done, we discuss several approaches to it. The Langlands
conjecture has been proved completely for the local case. For the global Langlands
correspondence there is a proof from 2002 in the case of function fields. Of course the
Langlands conjecture would be a very important statement, deducing a nonablian global
reciprocity law.
The last section summerizes a few results on constructions of class fields, or fields with
certain class field towers. As an application, we picked a few recent research results that
used parts of class field theory.

There are also very recent results related to class field theory or the Langlands con-
jectures. Such as Serre’s conjecture on representations. Another very intersting part
of research goes more detailed into higher dimensional fields and explores all kinds of
subjects on them. Ramification theory, as we studied it in the first chapter, is also
generalized and studied more detailed on various fields. Those topics, however, are not
discussed here.

78
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4.1 Generalizations of the Ground Field

In this first section we will discuss reciprocity laws on more general fields than local fields.
Those are, in our definition, complete discrete valuation fields with a finite residue field.
We will try to extend the local reciprocity law to a various number of fields, including
generally Henselian fields or fields with imperfect residue field. This section should give
a summary of what happend in this part of generalization of the local reciprocity law
over the last decade. To accomplish that, we picked selected papers and will demonstrate
how complicated generalizations can get on them.

Before we begin stating more recent result, we would like to briefly explain the following
result. This result allows us to see local fields in a more general context and is one of
many generalizations.

In chapter 2 we developed a theory with local fields. We defined local fields to have a
finite residue field. More general, most of the theory developed before the local reci-
procity law also holds for fields with perfect, but not necessarily finite, residue field (in
the appendix of this text we see that every finite field is perfect). Fesenko generalized
this approach to the perfect residue field case in his paper [Fe3] in 1994. In his paper,
he gives a description of abelian strictly ramified p-extensions of a field complete with
respect to a discrete valuation with a perfect residue field of characteristic p. The ap-
proach is as follows: He uses similiar techniques as we developed for the finite residue
field case and generalizes them. Mainly, he works with the methods Neukirch used in
[Ne1].

We will now see that the case of quasilocal fields also admits a generalization to a one
dimensional nonabelian local class field theory.

Quasilocal Fields In this paragraph we discuss the role that quasilocal fields play in
generalizing local class field theory. In the first case we have a look at strictly quasilocal
fields.

First, we need to define what quasilocal fields are.

Definition 4.1.1. A field E is called primarily quasilocal (PQL) if for every prime
number p, E has no proper finite Galois p-extensions, or the Brauer group Br(E) has
trivial p-primary component, or every cyclic field extension of E of degree p embeds as
an E-subalgebra in every central division E-algebra of Schur index p.
We call E strictly primarily quasilocal if, in addition, whenever p is a prime number and
the p-primary part of Br(E) is trivial, E has no nontrivial p-extensions.

Remark 4.1.2. 1. We used the Brauer group and the Schur index in the above def-
inition. The Brauer group is the group of equivalence classes of central simple
algebras. However, we will not go into detail about those terms.

2. In ring theory a central algebra over a field K is a finite-dimensional associative
algebra for which the center is exactly K. A central division algebra is an extension



GENERALIZATIONS OF THE GROUND FIELD 80

(a ring) that is a division ring. We will later have the add the term simple to it,
which means there are no non-trivial ideals1.

With these definitions above we can define what a strictly quasilocal field is.

Definition 4.1.3. A field K is called strictly quasilocal , if its finite extensions are strictly
primarily quasilocal.

By the existence theorem we obtained a one-to-one correspondence between the open
subgroups of group F ∗ on the one hand and the abelian extensions on the other. So
if we take an open subgroup of finite index from F ∗, we can uniquely asign an abelian
extension to it. This encourages the following definition:

Definition 4.1.4. For every open subgroup N of finite index of F ∗, the multiplicative
group of a local field F , there exists an abelian extension L/F , such that NL/FL

∗ = N .
This is the class field of the subgroup N .

Now I.D. Chipchakov [Ch3] shows, that such fields allow a more general, even non-
abelian one dimensional local class field theory. This paper shows that the norm group
NR/FR

∗ possesses a class field denoted by cl(NR/F ) which is uniquely determined by the
norm group, up-to a F -isomorphism. I.D. Chipchakov also showed, that this class field
cl(NR/F ) includes as a subfield the maximal abelian extension Rab of F in R. Hence he
deduces a canonical bijection ω of the set of isomorphism classes of a class field upon
the set Nr(F ) of norm groups of finite separable extensions of F .
The study of such quasilocal fields admits a limitation to the special case of finite abelian
extensions. Hence it really is a generalization to a nonabelian local class field theory.

Let P (F ) be the set of those prime numbers p for which F is properly included in its
maximal p-extension F (p) in F sep.

The main assertion of this paper can be summerized as follows:

Theorem 4.1.5 (Chipchakov). Let (F, v) be a discrete Henselian strictly quasilocal field
with a residue field κ. Then the class field and norm groups of F are related as follows:

1. For each U ∈ Nr(F ), there exists a class field cl(U) which is uniquely determined,
up to a F -isomorphism. The extension cl(U) over F is abelian if and only if F (κ)
contains the prime divisors of the index of U in F ∗.

2. A class field cl(U) of a group U ∈ Nr(F ) embeds as a F -subalgebra in a finite
extension R of F in F sep if and only if NR/FR

∗ is included in U . Furthermore,
if NR/FR

∗ = U , then the F -isomorphic copy of cl(U) in R is unique and includes
Rab.

3. There exists a set ϕU : U ∈ Nr(F ) of extensions of F in F sep, such that ϕU is
a class field of U , U ∈ Nr(F ), and for each U1, U2 ∈ Nr(F ), ϕU1∩U2 equals the
compositum ϕU1ϕU2 and ϕU1U2 = ϕU1 ∩ ϕU2.

1This is an analogue of simple groups.
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This covers the case of strictly quasilocal fields.
In another paper by I.D. Chipchakov [Ch1] he claims that every field F admitting a one-
dimensional local class field theory is strictly quasilocal provided that Br(F ) is nontrivial
and F has the following property: every central simple algebra of prime exponent p over
F is similar to a tensor product of cyclic division F -algebras of Schur index p. The latter
property is known to hold for many important classes of fields. It is currently unknown
if it holds in general.

Reciprocity for Higher Local Fields Our next paragraph deals with generalizations
to higher local fields. Such higher local fields are widely used. A lot of different theory has
been developed on them as we will see in this chapter. The theory we developed in this
text can be seen as a one-dimensional case of n-dimensional local fields. However, this
should not be confused with the way we extend dimensions the Langlands correspondence
later. Therefore, first a definition of what we are using here.

Definition 4.1.6. A complete discrete valuation field K is said to have the structure of
an n-dimensional local field if there is a chain of fields

K = Kn,Kn−1, . . . ,K1,K0

where Ki+1 is a complete discrete valuation field with residue field Ki and K0 is a finite
field. The field Kn−1 (resp. K0 ) is said to be the first (resp. the last) residue field of
K.

In this paragraph we would like to give a summary of in what context the local reciprocity
law still holds for such fields. An overview of some other work done on such fields with
be given at the end of this chapter.

Before we can outline some of the major results on such fields, we need to define the
frequently used Milnor K-group. Acutally, we can see that such groups are related to
abelian extensions. But first the definition.

Let F be a field, A an abelian group. A map

f : F ∗ × · · · × F ∗︸ ︷︷ ︸
ntimes

→ A

is called an n-symbolic map on F if

1. f(. . . , αiβi, . . . ) = f(. . . , αi, . . . ) + f(. . . , βi, . . . ) for 1 ≤ i ≤ n (multiplicativity).

2. f(α1, . . . , αn) = 0 if αi + αj = 1 for some i 6= j, 1 ≤ i, j ≤ n (Steinberg property).

Let In denote the subgroup in F ∗ ⊗Z · · · ⊗Z F
∗︸ ︷︷ ︸

n times

generated by the elements

α1 ⊗ · · · ⊗ αn with αi + αj = 1 for some i 6= j.
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The n-th Milnor K-group of the field F is the quotient

Kn(F ) = F ∗ ⊗Z · · · ⊗Z F
∗︸ ︷︷ ︸

n times

/In.

The construction of the n-th K-Milnor group shows, that we can extend an n-symbolic
map to the n-th group. Following this we obtain a homomorphism Kn(F )×Km(F )→
Kn+m(F ). This shows that the definition of the Milnor groups does make sense in a way
that higher groups are still related to the lower ones.

Remark 4.1.7. Those K-groups are themselves very important as this summary by H.
Gillet of a paper [Bl4] by S. Bloch from 1981 states: ’One of the reasons algebraic K-
theory is so tantalizing is that even though very little is known about how to compute it,
new connections between it and arithmetic and geometry are continually being found or
conjectured. For example, K-theory is intimately related to intersection theory [see, for
example, D. R. Grayson, [Gr]], S. Bloch [Bl1], crystalline cohomology [S. Bloch [Bl2]],
and special values of ζ- and L-functions [C. Soule, [So], S. Bloch [Bl3]].’

In this aricle S. Bloch finds an analogue for regular arithmetic surfaces with specific
properties, of the classical isomorphism between the ideal class group of the ring of in-
tegers O in a number field L and the Galois group Gal(H/L) of the Hilbert class field2

H of L.

First we would like to mention the work done by I. Fesenko in [Fe2], [Fe1], who succeded
in establishing a class field theory for such fields if char(k(n)) 6= char(k(n − 1)) = p.
Generalizing the method of J. Neukirch (in the case n = 1 of local number fields), he
constructed the reciprocity map

F : Ktop
n (F )→ Gal(F ab/F )

as an injection with dense image, where Ktop
n (F ) denotes a well-defined factor of Milnors

K-group Kn(F ).

This theory however has first been developed by Parshin [Pa1, Pa2, Pa3] for the case of
a residue field of characteristic p and by Kato [Ka1, Ka2, Ka3] for the general case. But
let us first have a look at what we get in the one dimensional case. For every finite field
we can see easily that we have an injective homomorphim

Z→ Gal(Ksep/K).

We can interpret this homomorphism as the 0-dimensional local reciprocity map

K0(K)→ Gal(Kab/K).

By convention K0(K) = Z. This convention proves to be useful. For an explaination
why, see [FeVo2, Chapter 9].

2See Definition 4.4.1 for the definition.
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It is then natural to expect that for an n-dimensional local field F its n-th Milnor K-
group Kn(F ) should be related to abelian extensions of F . And indeed, there is a higher
dimensional local class field theory first developed by A.N. Parshin and K. Kato in the
above mentioned papers. Let us briefly describe here how this generalization is obtained.
We aim to get a higher dimensional reciprocity map

ΨF : Kn(F )→ Gal(F ab/F ).

Let L/F be a finite Galois extension and σ ∈ Gal(L/F ). Denote by F ′ the maximal
unramified extension of F corresponding the maximal separable extension of its last
residue field Fq. Then there is σ̃ ∈ Gal(LF ′/F ) such that σ̃|L = σ and σ̃F ′ is a positive
power of the lifting of the Frobenius automorphism of GFq . The fixed field Σ of σ̃ is
a finite extension of F . Let t1, . . . , tn be a lifting of prime elements of residue fields
Σ1, . . . ,Σn−1,Σ of Σ to Σ. A generalization of the Neukirch map is then defined as

σ 7→ NΣ/F t1, . . . , tn mod NL/FKn(L).

A specific feature of higher dimensional local fields is that in general for an arbitrary
finite Galois extension L/F linearly disjoint with F ′/F a generalization of the Hazewinkel
homomorphism does not exist. This is due to the fact that the map

iF/F ′ : Kn(F )→ Kn(F ′)

is not injective for n > 1. Still one can define a generalization of the Hazewinkel map
for extensions which are composed of so-called Artin-Schreier extensions, and this is
enough to prove that the Neukirch map induces an isomorphism

Gal(L/F )ab→̃Kn(F )/NL/FKn(L)

as is shown by I. Fesenko in [Fe4].

Of course on of the central parts of generalizing local class field theory is the existence
theorem for higher local fields. This has been elaborated by K. Kato and summarized in
[Ka4]. In this paper K. Kato characterizes subgroups of the Milnor group in a categorial
way and uses the Milnor group to obtain the existence theorem for higher local fields.

With this fact in mind, we can have a look at what has been obtained from this result
in the last decade.

As a first example of what has been done we would like to give a short summary of an
article by A. Shiho [Sh2].

As shortly stated above it is known that central statements of class field theory of higher
local fields (even though not easy to formulate and develop) are relatively similar to
those in class field theory of one-dimensional fields, whereas class field theory of higher-
dimensional fields which are not entirely complete has features quite distant from class
field theory of one-dimensional fields. In his paper, A. Shiho illustrates this principle
for the fraction field K of a two-dimensional complete normal local ring A with finite
residue field.
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Another interesting paper is one elaborating explicit reciprocity laws for p-divisible
groups over higher local fields by T. Fukaya ([Fu2]). In this paper T. Fukaya estab-
lishes an explicit formula for the generalized Hilbert pairing by systematic work with
differential forms.

Remark 4.1.8. As we saw in chapter 3, we can use the Hilbert pairing to deduce the
Gaussian reciprocity law. Therefore having explicit formulas for the Hilbert symbol allows
us to deduce the Quadratic reciprocity law in the same way from the generalized one for
higher local fields.

The above mentioned paper can be seen as a generalization of two papers by D. Benois
[Be2] and M. Kurihara [Ku1].The first author developed such theory for p-divisible
groups over one-dimensional local fields, while M. Kurihara had a closer look on the
multiplicative group over higher dimensional local fields. As an application of the higher
exponential homomorphisms M. Kurihara gives a simple proof of the explicit reciprocity
law for local fields of S. Sen [Se3] and generalizes the explicit reciprocity laws to higher
dimensional local fields.



GENERALIZATIONS OF THE RECIPROCITY LAW 85

4.2 Generalizations of the Reciprocity Law

In this section we will give various examples af generalizations. One was already men-
tioned above, the one from I.D. Chipchakov [Ch3] in 2005. We will see here, why this
was not the first generalization to nonabelian class field theory. Moreover, we will give
a few papers, that will all fit together in the Local Langlands Conjecture. Historically
the local reciprocity law was deduced from the global reciprocity law. Later on, purely
local proofs were found by Hasse and Chevalley. The Langlands correcpondence, the
currently best known generalization of the reciprocity law, has already been proved for
the local case, but just for special cases in the global case.

We will, however, start with showing what work has been done before the local Langlands
correspondence was shown for the general case. From Artin’s reciprocity law, it is natural
to go looking for a nonabelian one. But how would a more general reciprocity law look
like? Langlands conjectured a certain representation of it, as we will see later.

Our first case will deal with metabelian extensions. Metabelian groups can be thought
of as groups that are ’close’ to being abelian, in the sense that every abelian group is
metabelian, but not every metabelian group is abelian.

Definition 4.2.1. A group G is metabelian if there exists a normal subgroup A of G
such that both A and G/A are abelian.

Remark 4.2.2. This definition can easily be seen to coincide with the one from the
appendix.

The generalization of the local reciprocity law follows immediately from the next propo-
sition.

Proposition 4.2.3. Every abelian group is metabelian.

The first approach to metabelian extensions was made by H. Koch in [Ko]. In this
paper he started with a local field with residue field of cardinality q. Denote by Kf

the unramified extension over K of degree f . The theory of fields of norms due to J.-
M. Fontaine and J.-P. Wintenberger in [FoWi] implies that finite abelian extensions of
KfKπ correspond to certain abelian extensions of the field of norms attached to KfKπ.
It is well known that the compositum Kπ of all finite abelian extensions over K in which
a fixed prime element π of K is a norm can be described by means of Lubin-Tate formal
groups. Such groups are formally uniquely descriped by a property3. Therefore the finite
abelian extensions can be described using Lubin-Tate formal groups.

However, in practice it is a very intricate matter to get any explicit description. The cur-
rently discussed paper by H. Koch [Ko] provides a description of finite abelian extensions
of KfKπ.

This was a first step to generalizing the local reciprocity law. A next paper by H. Koch
and E. de Shalit [KoSh] gave a specific main result about metabelian extension. Let

3For more on them see [FeVo2, Chapter 8, Section 1].
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therefore Gd be a certain set of all pairs (πn · ε ·h(X)) ∈ K∗×k[[X]]∗ satisfying a certain
condition depending on d. Then denote by G(L) the inverse limit of Gd, d ∈ N, with
respect to a natural transition map Gdd′ → Gd.

The main result is that the correspondence L → NL/KG(L) is one-to-one between all
finite metabelian extensions of K and all open subgroups of finite index in G(K) and
there is a canonical isomorphism

G(K)/NL/KG(L) ' G(L/K)

which is compatible with field extensions. Although this result is quite excellent, accord-
ing to the reviewer of this paper, I. Fesenko, it would be important to find an exposition
of the theory without using formal groups and generalize it to the case of perfect residue
fields.

The next result is due to E.W. Zink in [Zh]. In this paper he extends local class field
theory to the maximal nilpotent extension of class 2 of K. In a paper by F. Laubie,
[La4], he extends those two approches by E.W. Zink and H. Koch and E. de Shalit. The
isomorphism that those two papers state is extended to the absolute Galois group GK
of the field K. He uses the assumption that there is a fixed Frobenius automorphism ϕ
in the Galois group of this extension. Namely, he constructs a complete group G(K,ϕ)
and its continuous isomorphism to GK satisfying the usual properties of the reciprocity
map, with some exceptions.

Using the norm fields of arithmetically profinite extensions of local fields defined by J.-
M. Fontaine and by J.-P. Wintenberger [FoWi] and the results of H. Koch and E. de
Shalit, F. Laubie defines recursively a family of arithmetically profinite extensions of K
which cover Ksep. This leads to a description of Galois groups Gd(K,ϕ), (d ≥ 1), of the
maximal Galois extensions of K fixed by ϕd, and finally to the group

Gk = lim←−
d

Gd(K,ϕ).

However, as we discussed at the beginning of this section, a nonabelian generalization
of the local reciprocity law would probably be the most natural one. There has also
been done some work on this. We saw at the end of chapter 2, that the most important
theorem obtained from the local reciprocity law is the existence theorem 2.6.5. In this
theorem, a one-to-one correspondence is given, which is described by the reciprocity map.
Hence, having a reciprocity map for nonabelian extensions would be a good progress on
a nonabelian reciprocity law. Before the local Langlands correspondence, which implies
a nonabelian law, was proved, there was some work done by I. Fesenko on this topic.

In [Fe5] I. Fesenko constructs a local reciprocity map for totally ramified arithmetically
profinite extensions generalizing the Neukirch and Hazewinkel maps. It is shown that
the abelian case is a restricted case of this construction and so is the metabelian class
field theory of H. Koch and E. de Shalit, which is proved without the use of the Coleman
homomorphism or Lubin-Tate groups.
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However, it describes the reciprocity map, while the Langlands correspondence only
gives a statement about having such a map. Nevertheless, the Langlands correspondence
states a lot more than just a nonabelian local reciprocity law.

In a later paper [Fe6] from 2005, I. Fesenko discusses a little bit more about the image
of such a noncommuative local reciprocity map.
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4.3 The Langlands Conjecture

In this section we will state the Langlands conjecture and describe the cases that have
already been proved.
The Langlands conjecture can be seen as a very general reciprocity law, generalizing the
local and the global case in various ways. The local case has been stated in cases, for
archimedian and non-archimedian fields. The local case has been proved by Langlands
himself in the case of an archimedian field in [La5]. In this case the formulation of
the problem is much simpler. We will, however, not go into detail but focus on the
non-archimedian case.
We will try to give the necessary background information to state the local Langlands
correspondence properly. The local Langlands correspondence for has been proved by
G. Laumon, M. Rapoport and U. Stuhler in 1993 ([LaRaSt]) for non-archimedian local
fields of characteristic p and by M. Harris and R. Taylor for characteristic 0 in 2001
([HaTa]).
The global case for function fields was proved by L. Lafforgue in 2002 ([La2]), who
followed the approaches by V. Drinfeld from [Dr2]. L. Lafforgue was awarded the fields
medal for his progress on the global Langlands correspondence.

Before we go into detail, let us have a look what is meant by the Langlands correspon-
dence.

Remark 4.3.1. The Langlands correspondence is a part of a far reaching series of
conjectures, called the Langlands program. We will, however, only try to explain the
correspondence itself and not go into detail about the program. For a more detailed
explaination on the program see for example [Be3].

4.3.1 The Local Langlands Correspondence

In this subsection we will try to elaborate the local Langlands correspondence. To do
so, we need a few more definitions, such as group representations and the Weil group.

Definition 4.3.2. A representation of a group G on a vector space V over a field K is
a group homomorphism from G to GL(V ), the general linear group on V , which is the
group of automorphisms of V . That is, a representation is a map

ρ : G→ GL(V )

such that
ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G.

In other words, ρ should be a homomorphism.

Given two such representations, we need to define, when we consider them to be the
same.

Definition 4.3.3. Given two K vector spaces V and W , two representations

ρ1 : G→ GL(V )
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and
ρ2 : G→ GL(W )

are said to be equivalent or isomorphic if there exists a vector space isomorphism

α : V →W

so that for all g in G
α ◦ ρ1(g) ◦ α−1 = ρ2(g).

For stating the Langlands correspondence correctly we will also need irreducible repre-
senations. To understand them, we need to define, that we want our group G to act on
V in a usual way4.

Definition 4.3.4. A subspace W of V that is fixed under the group action is called a
subrepresentation. If V has exactly two subrepresentations, namely the zero-dimensional
subspace and V itself, then the representation is said to be irreducible.

For more information on group representations see [FuHa].

To give a first idea of what we demand in the local Langlands correspondence, we need
to define the Weil group.

Assume that F is a p-adic local field, i.e. a finite extension of Qp for some prime p. Let
the ring of integers be OF . This ring has a unique maximal ideal, necessarily principal,
and we let π be any generator, a so-called prime element . Denote by q the cardinality
of the residue field k = OF /(π)5. We can also see easily that a Galois automorphism
τ ∈ Gal(F/F ) = GF induces an automorphism τ of the residue field k of F . The map
τ 7→ τ is surjective.

Definition 4.3.5. The Weil group is defined as the dense subgroup of Galois automor-
phisms τ such that τ is of the form x 7→ xq

m
for some integer m.

We also know that Gal(k/k) is isomorphic to Ẑ. Therefore we can see that the kernel
of the map τ 7→ m is a closed subgoup of Gal(F/F ), called the inertia subgroup IF of
F 6. An element τ mapping to m = 1 is called a Frobenius automorphism. In any case
we have an isomorphism

W (F/F ) ' Z× IF
and we use this to make W (F/F ) into a topological group, taking the product of the
discrete topology on Z and relative topology from Gal(F/F ) on IF 7. With this definition,
the restriction r′ of the reciprocity map induces an isomorphism of topological groups

r′ : F ∗ →W (F/F )ab.

Before we proceed, we need to at least define what character groups are.
4See the appendix for more information on group actions.
5If we look closely, we see that this residue field coincides with the residue field defined in the first

chapter.
6We will not elaborate this in detail, as we are only trying to give a general idea about the Langlands

correspondence. For more detailed information about this see for example [Wi1].
7For the topology on profinite groups see [Wi1].
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Definition 4.3.6. Let G be an arbitrary group. A complex-valued function f defined
on G is called a character of G if f has the multiplicative property

f(ab) = f(a)f(b)

for all a, b in G, and if f(c) 6= 0 for some c in G.

We now consider the isomorphism of character groups

σ1 : Hom(F ∗,C∗)→ Hom(W (F/F ),C∗)

induced by r′. Now, considering the above, we could show that an irreducible representa-
tion is the nonabelian generalization of a character. Hence we define Gn to be equivalence
classes of irreducible n-dimensional representations of W (F/F ) for all n ≥ 1.

Remark 4.3.7. In the first case that Langlands showed ([La5]), the one for a local
archimedian field, Gn is either trivial or Z/2Z.

Before we can state the local Langlands correspondence we need a few more terms
on representations. We use G = GLn(F ) and let (π, V ) be a representation of G on a
complex vector space V . It can be shown that G has a family of open compact subgroups
{Km}m≥1.

Definition 4.3.8. A representation (π, V ) is admissible if

1. every vector v ∈ V is fixed by Km for some m

2. the subspace of vectors fixed by each Km is finite dimensional.

Remark 4.3.9. We could also show that to each irreducible unitary representation
(π′, V ′) there is attached an admissible representation (π, V ) in a natural way.

We now get to the last definition we need to state the Langlands correspondence.

Definition 4.3.10. A representation π is called supercuspidal if the support of every
matrix coefficient is compact modulo the center of G.

Now the Local Langlands Correspondence asserts that for all n, there exists a
natural bijection

σn : Cn → Gn,

where Cn is the set of equivalence classes of supercuspidal representations ofG = GLn(F ).
We can now also see, why this really is a generalization of the local reciprocity law. To
see this, we consider the case n = 1 and then we basically get back to the reciprocity
map r′.

This does not seem to complicated. But the key of the Langlands correspondence is in
the word natural. To be able to see where we are going with this, we need to explain
what is meant by ’natural’. This is where the L-function and the ε-factor are introduced.
We aim to introduce factors, such that σn is defined uniquely.
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We now proceed to introducing the Hecke L-function. Generally, L-factors generalize
the individual factors of the Euler product representation of the Riemann zeta function
ζ(s), such that

L(s) =
∏

p odd, prime

1
1− χ−(p)p−s

where

χ−(p) ≡
{

1 for p ≡ 1 mod 4
−1 for p ≡ 3 mod 4

}
=
(
−1
p

)
.

In a similiar way we can attach an L-function to each continuous homomorphism

χ : A∗F /F ∗ → C∗.

Such a homomorphism is called a Hecke character . Such a Hecke character gives rise,
by restriction, to a homomorphism χv : F ∗v → C∗ for all places v of F . Then the Hecke
L-function is defined as an infinite product

L(s, χ) =
∏
v

L(s, χv)

of local factors L(s, χv).

Hecke proved that they satisfy a global functional equation of the form

L(s, χ) = ε(s, χ)L(1− s, χ−1)

for some factor ε(s, χ). This is where we introduce the second factor we need to state
the Langlands correspondence properly, the ε-factors.

Now, using the so-called ζ-integrals, we could describe the Hecke L-function on represen-
tations. It was shown by G. Henniart ([He2]) that the following statement of the local
Langlands correspondence defines σn uniquely.

Remark 4.3.11. To prove the uniqueness G. Henniart attached pairs to the L-function
and the ε-factor. But as it gets even more complicated using this, we omit more infor-
mation on them here.

If π is an irreducible representation of GLn(F ), then there is a character ωπ of Z, called
the central character of π connected to π. We regard ωπ as a character of F ∗.

Theorem 4.3.12 (Local Langlands Correspondence, [Ro1]). There exists a unique fam-
ily of bijections

σn : C → Gn
for n ≥ 1 satisfying the following conditions:

1. σ1 is the correspondence of abelian local class field theory.

2. For all pairs π ∈ Cn and π′ ∈ C′n, we have

L(s, π × π′) = L(s, σn(π)⊗ σn′(π′))

and
ε(s, π × π′) = ε(s, σn(π)⊗ σn′(π′)).
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3. For all π, σ1(ωπ) = det(σn(π)).

Now, having stated the Langlands correspondence, we can get back to what happend
recently. As already discussed in the introduction, the local correspondence for fields of
characteristic p has been shown by G. Laumon, M. Rapoport and U. Stuhler in 1993
([LaRaSt]). This paper contains basic and profound work on so-called D-elliptic sheaves.
By properties of them and using the cohomology of moduli spaces he accomplishes to
prove a reciprocity law generalizing the one given in a paper by Drinfelds ([Dr1]) where
he proved the 2-dimensional case with the same methods. As a consequence, the authors
find enough representations to establish the basic local Langlands conjecture for GLd, d
arbitrary, of a local field of equal characteristic. This was the prove of the case where
the ground field has characteristic p.

Later, in 2001, M. Harris and R. Taylor succeded in proving the case for non-archimedian
fields of characterisic 0 ([HaTa]). Basically, they generalized an approach by P. Deligne
([De]) and H. Carayol ([Ca]) of a study of elliptic modular curves and Shimura curves
at primes of bad reduction. A few months after this was published, G. Henniart found a
simpler and more elementary proof in preparing lectures on the topic ([He3]). To keep
things simple, we would only like to go a little into Henniarts proof. Let F be a finite
extension of Qp. For each integer n ≥ 1, we construct a bijection from the set G0

F (n) of
isomorphism classes of irreducible degree n representations of the Weil group of F, onto
the set A0

F (n) of isomorphism classes of smooth irreducible supercuspidal representations
of GLn(F ). Those bijections preserve ε-factors for pairs, as briefly mentioned in remark
4.3.11, and hence he obtains a proof of the Langlands conjectures for GLn over F, which
is more direct than M. Harris and R. Taylors.

Those two cases complete the proof of the local Langlands correspondence. Before that,
Henniart already covered several other cases ([He1, He4]). In order to complete the
local Langlands correspondence one needs to consider all suitable representations of the
so-called Weil-Deligne group on the Galois theoretic side and all irreducible admissible
representations of GLn(k) on the other side. This is where we are facing a problem
with the global Langlands correspondence, since this Weil-Deligne group has no global
equivalence. A nice overview on this can be found for example in [Cog].

4.3.2 The Global Langlands Correspondence

In this subsection we will state the Langlands correspondence for global fields. Then
we will give a short summary on the progress of proving it. Of course as the local
Langlands correspondence, the global correspondence should be a generalization of the
global reciprocity law. We will follow J.W. Cogdell ([Cog]) and formulate the global
Langlands correspondence separately for characteristic p and 0.

Global fields of positive characteristic The formulation of the global Langlands
conjecture by Drinfeld and Lafforgue is essentially the same as in the local nonarchime-
dian case. Although a few modifications are made.

To describe the global case, we need another definition.
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Definition 4.3.13. Let ρ be a Galois representation for K with representation space
A. We say that ρ is unramified if the inertia group IK acts trivially on A.

In the case of a field of characteristic p, on the Galois side we consider a set Rep0
n(G,Ql)f .

This set should be the isomorphism classes of irreducible continuous l-adic representa-
tions ρ : Gk → GLn(Ql) which are unramified outside a finite number of places and have
a determinant of finite order.

On the other side we have a set A0
n(k;Ql), the space of some Ql-valued cuspidal repre-

sentations.

Then we can state the global Langlands correspondence as follows:

Theorem 4.3.14 (Global Langlands Correspondence for characteristic p > 1). For each
n ≥ 1 there exists a bijective map A0

n(k;Ql)f → Rep0
n(Gk,Ql)f , denoted π 7→ ρπ with the

following properties:

1. For n = 1 the bijection is given by global class field theory.

2. For any π ∈ A0
n(k;Ql)f and π′ ∈ A0

n′(k;Ql)f , we have

L(s, ρπ ⊗ ρπ′) = L(s, π × π′)

and
ε(s, ρπ ⊗ ρπ′) = ε(s, π × π′).

3. For any π ∈ A0
n(k;Ql)f the determinant of ρπ corresponds to the central character

of π under global class field theory.

4. The global bijections should be compatible with the local bijections of the local Lang-
lands correspondence.

Those are, mainly, the most important statements for the global Langlands correspon-
dence. There would be two other conditions, but as those would not give any more
information to understand what we are trying to say, they are omitted here. For a
complete list of conditions see [Cog].

Fields of positive characteristic In this case the conjectured correspondence looks
a little bit different. First, if k is a global field, let us denote its ring of adeles by A.
As already mentioned above, there is no global form of the Weil-Deligne group. So
for a more general approach, we need a global analogue. But unfortunately no such
analogue is available. Instead the conjectures are envisioned in terms of a conjectural
Langlands group Lk by D. Ramakrishnan ([Ra]). This conjectured group should fit into
a commutative diagram with another conjectural group, the motivic Galois group8.

First a definition of a term that will occur in the text below. However, it will give no
extra information as we are only trying to give a very general idea of things. But to
make the subject a little less confusing, we will add this definition.

8This group is also conjectured by D. Ramakrishnan in [Ra].
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Definition 4.3.15. A modular form is a (complex) analytic function on the upper half-
plane satisfying a certain kind of functional equation and growth condition9.

Based on the above definition we obtain the following term:

Definition 4.3.16 (Automorphic Form). The general notion of automorphic form is
the extension to analytic functions, perhaps of several complex variables, of the theory
of modular forms.

In these terms, in general it is conjectured (in [Ra] and [Cl]) that we have the following
types of global correspondences:

1. The irreducible n-dimensional representations of Gk should be in bijective corre-
spondence with the cuspidal representations of GLn(A) of Galois type.

2. The irreducible n-dimensional representations of Mk should be in bijective cor-
respondence with the algebraic cuspidal representations of GLn(A). These are
analogues of algebraic Hecke characters.

3. The irreducible n-dimensional representations of Lk should be in bijective corre-
spondence with all cuspidal representations of GLn(A).

Of course, all of these correspondences should satisfy properties similar to those on the
local conjectures, particularly the preservation of L- and ε-factors (with some twists),
compatibility with the local correspondences, etc.

There is very little known about this case. However, there are many partial results of a
general nature if we start on the automorphic side and try to reconstruct the associated
Galois representation.

When n = 2 and k = Q, P. Deligne ([De]) associated to every cuspidal representation π
of GL2(AQ) with certain properties a compatible system of `-adic representations. This
was extend later by P. Deligne and J.P. Serre ([DeSe]). Again, this work was extend to
totally real fields k, but still with n = 2 by a number of people10. The case with k an
imaginary quadratic field is also already covered.

Although there has also been done work on the other direction, starting with a specific
Galois representation and showing that it is modular, there is no general result.

The most important progress in the case of a field of characteristic p has been made by
L. Lafforgue ([La1]). He proves Langlands correspondence for GLr over function fields.
His proof is a generalization of Drinfeld’s proof ([Dr2]) in the case of rank 2.

To close this section we are trying to briefly elaborate the work that has been done on the
compatibility of the local and the global Langlands correspondence. This is an important
part of the Langlands correspondence, as the global case demands to be compatible with

9For a real definition see [La3].
10See [Cog] for a list of them.
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the local correspondence. This mostly covers work on special cases, as there is no general
proof of the global Langlands conjecture. But for example J. Bellaiche ([Be]) proved the
following:

Let π be an automorphic representation of the unitary group U(3), the group of all
unitary matrices. For l a prime, let ρl be the l-adic Galois representation attached to
π. Then J. Bellaiche showed that, up to semisimplification, ρl gives the representation
predicted by the local Langlands correspondence at every finite place for a density one
set of primes l. In his proof he also used the work of M. H. Harris and R. L. Taylor
([HaTa]), who proved the same result for U(n) under some assumptions, namely up to
semisimplification, that are not required in J. Bellaiche’s proof anymore.

Based on the results of M.H. Harris and R. Taylor ([HaTa]), R Taylor and T. Yoshida
succeded in 2006 in proving the compatibility of local and global Langlands correspon-
dences for GLn ([TaYo]).

We conclude this section with this information. Hopefully, we succeded in trying to
give an idea of what the the Langlands correspondence is. For more information see
any of the books published on the Langlands program. We would also like to mention
that there is also a geometric way of describing the Langlands correspondence. This
can already be assumed by the things that were used in several proofs, as some of the
important work has been done using for example elliptic sheaves and of course modular
forms.
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4.4 Constructions and Applications

In this section we will give a few examples on constructions of class fields and results
obtained from class field theory.

4.4.1 Class Field Towers

In this first subsection we will explain the class field tower problem.

Definition 4.4.1. Given a number field K, there exists a unique maximal unramified
abelian extension L of K which contains all other unramified abelian extensions of K.
This finite field extension L is called the Hilbert class field of K.

In these terms the class field tower problem can be stated as follows:

Class Field Tower Problem Given a number field K we construct a class field tower:

K = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ . . . ,

where Ki+1 is the Hilbert class field of Ki. Now the problem is, if this tower stops after
a finite number of steps. A positive answer would have the implication that the last field
in the tower had class number 1. This would mean, that in it all ideals of K - actually
all ideals from Kimax itself - would become principal.

However, this problem was decided in the negative by E.Golod and I. Safarevich in 1964
([GoSa]). The main theorem of their result can be stated as follows:
Let k be a finite extension of the rational field Q, and p a prime number.We denote by γ
the minimal number of generators of the p-Sylow subgroup of the divisor class group11

and by ρ the minimal number of generators of the unit group. The principal theorem is
that, if γ ≥ 3 + 2(ρ+ 2)

1
2 , then there exists an infinite Galois p-extension of k such that

all prime divisors are unramified over k. The simplest example for this is the field

Q(
√

4849845).

The result of E. Golod and I. Safarevich gives a specific description, under which con-
ditions such infinite class field towers occur. This was specified with the pn-rank of a
group. To properly define this rank, we need a theorem from Kronecker:

Theorem 4.4.2 (Kronecker). Every finite Abelian group can be written as a group direct
product of cyclic groups of prime power group orders.

Definition 4.4.3. For any prime number p and any positive integer n, the pn-rank ,
denoted by r(pn)(G) of a finitely generated abelian group G is the number of copies of
the cyclic group Zpn (or Cpn) appearing in the Kronecker decomposition of G.

11For an explaination of the divisor class group see [Ne2].
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For our next definition, we need to explain p-class field theory a little bit.

Let P be a set of prime numbers and let G be a pro-P -group, i.e. a profinite group all of
whose quotients G/N by open normal subgroups N have order divisible only by primes
in P 12.
Let d : G → ZP be a surjective homomorphism onto the group ZP =

∏
p∈P ZP , and

let A be a G-module. A Henselian P -valuation with respect to d is by definition a
homomorphism

v : Ak → ZP

which satisfies the following properties:

1. v(AK) = Z ⊇ Z and Z/nZ ' Z/nZ for all natural numbers n which are divisible
only by primes in P ,

2. v(NK|kAK) = fKZ for all finite extensions K|k, where fK = (d(G) : d(GK)).

Definition 4.4.4. Now, under these terms, a p-class field is the class field asigned to a
field extension when we have G is of course our Galois group and the G-module AK is
given by k∗.

Remark 4.4.5. In this case we use rk instead of rpn because pn is unique here.

Definition 4.4.6. Let K be an algebraic number field and p a prime number. Let
K(0) = K and K(i) denote the Hilbert p-class field of K(i−1) for i ≥ 1. The tower

K(0) = K ⊆ K(1) ⊆ · · · ⊆ K(∞) =
⋃
i≥0

K(i)

is called the p-class field tower of K.

Now in these terms, the result can be summerized as: Let k be an imaginary quadratic
number field. If rk ≥ 5, then k has an infinite 2-class field tower.

Following this condition, there has been done a lot of work lately to give other criteria
for such infinite class field towers on other fields.

For example, E. Benjamin ([Be1]) elaborated sufficient conditions for imaginary quadratic
number fields k with rk = 4 to have infinite 2-class field towers, thus proving special
cases of the conjecture by J. Martinet ([Ma4]) according to which an imaginary quadratic
number field k satisfying rk = 4 has an infinite 2-class field tower.

There has been more recent research on this conjecture, covering more special cases by
Y. Sueyoshi ([Su]). In this paper, he investigates J. Martinet’s conjecture for fields K
whose discriminant is divisible by exactly one negative prime discriminant, and shows
that many of these fields have an infinite Hilbert 2-class field tower. In particular, under
the hypotheses already stated, if the 4-class rank of K is positive, then the Hilbert 2-class
field tower of K is infinite.

12For more explaination on profinite groups see the Introduction, the Appendix and [Wi1].
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A. Mouhib focusses on the case where K is real quadratic and r2 = 4. In this special
situation, C. Maire ([Ma1]) proved that K has an infinite 2-class field tower when the
4-rank r4 is 4. His main results assert that the 2-class field tower of a real quadratic
number field is infinite under the sufficient conditions r4 ≥ 4 and r+

4 ≥ 3, where r+
4

denotes the 4-rank of the so-called narrow 2-class group.

Similiarly, there have been results on 3-class field towers as well. As for example by E.
Yoshida ([Yo]) on biquadratic fields. The paper gives a necessary and sufficient condi-
tion for the 3-class field tower of K to terminate at K(1), when the extension K/Q is
biquadratic and contains

√
−3.

It is a nice result, that even very naturally occuring fields, such as Q(ζm), can have
infinite class field towers. Due to a paper from I. Shparlinski from 2008 ([Sh1]), we have
the following result:
For a positive integer m, let ζm = e

2πi
m and Km = Q(ζm) denote the m-th cyclotomic

field. For an integer v ≥ 1 and a real number x > 1 he defines logv x inductively by

log1 x = max{log x, 1},

where log x is the natural logarithm and

logv x = max{log(logv−1 x), 1} for v > 1.

The main result is that for x sufficiently large and all m ≤ x, except for possibly
O(x log2 x)−0.08 values, Km has an infinite Hilbert p-class field tower.

In contrast to this, A. Nomura ([No]) had a look on the case of a cyclic cubic field. He
gives conditions under which we have a non-trivial class field tower.

Definition 4.4.7. Such a biquadradic extension of a field F is a Galois extension K of
F such that Gal(K/F ) is isomorphic to the Klein-4-group.

Remark 4.4.8. We will now need the term of the genus field. Since this is an important
term in class field theory, we would like to give its definition.

Definition 4.4.9. The genus field G of a number field K is the maximal abelian exten-
sion of K which is obtained by composing an absolutely abelian field with K and which
is unramified at all finite primes of K. The genus number of K is the degree [G : K]
and the genus group is the Galois group of G over K.

Let lp(K) be the length of the tower, that is, the least non-negative integer n such that
K

(p)
n = K

(p)
n+1. He specialized to the case where p = 3. The primary result of the paper

is a sufficient condition for when l3(K) > 1 in this case. Let m(K) be the number of
rational primes ramified in K/Q. First, he shows that if m(K) > 3, then l3(K) > 1. The
he states and proves the main result, which asserts that if m(K) = 3, then l3(K) > 1 if
and only if the class number of the genus field of K is divisible by 3.

There has also been done some work in another direction, namely classifying fields that
have an abelian p-class field tower by K. Okano ([Ok]). In this paper he classifies
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the imaginary quadratic fields whose cyclotomic Zp-extensions have abelian p-class field
towers in the case where p is odd.

As a result, we see, that even though the very interesting class field tower problem
has been solved, there has been done a lot of work on class field towers lately. The
above mentioned articles cover only special cases, hence there are still open questions
concerning class field towers.

4.4.2 Computations and Applications

One very important assertion of class field theory is the existence theorem. It states,
that to a given subgroup, we can assign a field extension. Unfortunately, it does not give
any information about how this extension looks like. As a first part of this subsection,
we will briefly summerize recent approaches to computing these class fields.

There exist very satisfactory algorithms to compute the discriminant, the ring of integers
and the class group of a number field, and especially of a quadratic field. For the
computation of the Hilbert class field, however, there exists an efficient version only for
complex quadratic fields, using complex multiplication, and a general method for all
number fields, using Kummer theory, which is not really satisfactory except when the
ground field contains enough roots of unity.
However, there is a paper by H. Cohen and X. Roblot ([CoRo]), which gives an idea for
real quadratic fields. In this paper, they explore a third way, available for totally real
fields, which uses the units appearing in Stark’s conjectures13, the so-called Stark units,
to provide an efficient algorithm to compute the Hilbert class field of a real quadratic
field. This method relies on the truth of Stark’s conjecture (which is not yet proved!).
Although, they can prove independently of the conjecture that the field obtained is
indeed the Hilbert class field.

Another approach by S. Pauli ([Pa4]) gives a way of constructing the finite extension
L/K associated to a subgroup G of K∗ in the case of a local field K, an extension of
Qp, a p-adic field.

If G contains the group U1(K) of 1-units of K the extension L/K is tamely ramified
(or unramified). The construction of L is straightforward in this case. If G has index p
in K∗ and G is not contained in U1(K) then L/K is a wildly ramified Z/pZ-extension,
and hence is generated by a root of one of the polynomials given by S. Amano [Am]. In
the paper by S. Pauli an algorithm is given for determining which Amano polynomial
corresponds to a specified index-p subgroup G ≤ K∗. It is then shown how the con-
structions for L in these two special cases may be used to construct the extension L/K
corresponding to an arbitrary closed subgroup G of K∗ with finite index.

The above paper covers the local case. But there is also an algorithm by C. Fieker ([Fi])
to compute class fields in the global case. He does so by reducing the problem to the

13For an explaination of them pleae see for example a book from J. Tate [Ta], who extended the
original conjectures from Stark to its present form.
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construction of cyclic extensions of prime power degree pr whose compositum is the field
L, which is the abelian extension according to the existence theorem14.

To conclude this section, we would like to give a few examples of results that have been
obtained using the assertions from class field theory.

As a first result, we would like to point at an article by H. Cohen, F. Diaz y Diaz and
M. Oliver ([CoDiOl]). To see what they obtained, we need a little introduction to the
subject. Let K be a number field, and let G be a transitive subgroup of the symmetric
group Sn. The inverse problem of Galois theory asks whether there exists an extension
L/K of degree n such that the Galois group of the Galois closure of L is isomorphic
to G. This problem is far from being solved. However, we are focusing on the number
NK,n(G,X) of such extensions up to K-isomorphism, such that the discriminant of L/K
is at most equal to X, at least in some asymptotic sense. A general conjecture due to
G. Malle ([Ma2], [Ma3]), states that there should exists constants aK(G), bK(G), and
cK(G) such that

NK,n(G,X) ∼ cK(G)XaK(G) log(X)bK(G)−1.

G. Malle also gave formulas for aK(G) and bK(G) (Although it has been shown in the
meantime by J. Klueners ([Kl]), that the formula for bK(G) cannot be applied to every
case). Now the currently discussed paper discusses a few special cases for abelian groups.
For the case of the cyclic group Cl they need the surjectivity of the local reciprocity map.

Another paper by G. Cornelissen ([Cor]) deals with describtions of class numbers. Let q
be an odd prime, e a non-square in the finite field Fq with q elements, p(T ) an irreducible
polynomial in Fq[T ] and A the affine coordinate ring of the hyperelliptic curve y2 = ep(T )
in the (y, T )-plane. They use class field theory to study the dependence on deg(p) of the
divisibility by 2, 4, and 8 of the class number of the Dedekind ring A.

As a last, very nice result obtained from the reciprocity law, we have a look on Mersenne
primes.

Definition 4.4.10. A Mersenne number is a positive integer that is one less than a
power of two

Mn = 2n − 1.

A Mersenne prime is a Mersenne number that is prime.

H. Lenstra and P. Stevenhagen consider Mersenne primes Mp = 2p − 1 for primes p ≡ 1
mod 3 ([LeSt]). These can be represented in the form Mp = x2 + 7y2, and it is easily
seen that we always have 4 | x. Numerical experiments suggest that in fact 8 | x, and,
amazingly, this can be proved using Artins reciprocity law.

14In the global case the existence theorem is called the Takagi theorem.
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Appendix

In this last chapter of this text we give a short summary of algebraic, number theoretic
and topological aspects. The selection of topics coverd here should help the reader to
follow various proofs and to get a better understanding of some introductions into new
topics. For group theory, most parts can be found in [Ro2]. For field and ring theory,
see [Hu1] and for algebraic number theory [Ne2].

A.1 Group Theory

In this first section of the appendix we would like to give most of the terms and theorems
used from group theory. However, the reader should be familiar with basic group theory.
Therefore we will focus on definitions and theorems that are not part of any basic Algebra
course. For more information on groups see for example [Ro2].

A.1.1 Definitions and Isomorphism Theorems

In this first subsection we basically list definitions that are used in the text. Those are
partly very basic ones, but on the other hand also rarely used ones. Most of what follows
can be found in any group theoretic book, unless a reference is given.

Definition A.1.1. A group (G, ·) is a nonempty set G equipped with an operation ’·’
such that:

1. G is closed under the operation ’·’

2. ’·’ is an associative operation

and G contains an element e such that

3. e · a = a = a · e for all a ∈ G

4. for every a ∈ G, there is an element b ∈ G with

a · b = e = b · a.

101
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Now, a subgroup is a group (H, ·), where H is a subset of G and (G, ·) is a group. Usually
subgroups are denoted by H ≤ G or H < G.

Remark A.1.2. We will usually denote the group operation by ’·’. When not denoting
any group operation, we will assume that it is ’·’. It is also very common to write ’ab’
instead of ’a · b’ for a, b ∈ G. However, this will never be subject of any confusion.

Among subgroups, the normal ones are of high importance:

Definition A.1.3. A subgroup K ≤ G is a normal subgroup, denoted by K CG, if

gKg−1 = K

for every g ∈ G.

Remark A.1.4. Sometimes a normal subgroup K is defined to have gKg−1 ≤ K. But
this is just the same as above. The alternative definition gives one part of the inclusion,
and replacing g with g−1 lets us deduce K ≤ gKg−1.

A group G is called abelian, if

a · b = b · a for all a, b ∈ G.

Remark A.1.5. It is quite easy to see that in an abelian group every subgroup is normal.

The following term of a group extension could also be defined using exact sequences.

Definition A.1.6. Let two groups A and B be given. A group G is called an extension
of A by B if G contains a normal subgroup A′, isomorphic to A, whose factor group is
isomorphic to B,

A′ ' A, G/A′ ' B.

Note that the extension G is not uniquely determined by giving the groups A and B.
Examples can be found in [Ku2]. By a class of a group extension we will mean its class
of isomorphic groups.

Since we will need this term, we will also define what the free abelian group is. This
should not be confused with a free group in general.

Definition A.1.7. An abelian group F is free abelian if it is a direct sum of infinite
cyclic groups. More precisely, there is a subset X ⊂ F of elements of infinite order,
called a basis of F , with F =

∑
x∈X 〈x〉 i.e. F '

∑
Z.

For a group we can define the center, which is trivial in the abelian case.

Definition A.1.8. The center of a group G, denoted by Z(G), is the set of all a ∈ G
that commute with every element of G. Namely,

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.



GROUP THEORY 103

For an abelian group, we obviously have Z(G) = G.

Normal subgroups have the property, that left and right cosets coincide. We can therefore
consider a new group G/N for a normal subgroup N and a group G. It is quite easy to
see that this really is a group. The elements of this group are denoted by gN for g ∈ G.
In this case g is called a representative of the coset gN .

Definition A.1.9. Let (G, ·) and (H, ◦) be groups. A function f : G → H is a group
homomorphism, if for all a, b ∈ G

f(a · b) = f(a) ◦ f(b).

An isomorphism is a homomorphism that is also a bijection. We say that G is isomorphic
to H, denoted by G ' H, if there exists an isomorphism f : G→ H.

The subgroup K of G with f(K) = {0} is called the kernel of f and denoted by ker f .

With this in mind, we can state the important isomorphism theorems:

Theorem A.1.10 (First Isomorphism Theorem). Let G,H be groups and

f : G→ H

a homomorphism with kernel K. Then K is a normal subgroup of G and

G/K ' imf.

Theorem A.1.11 (Second Isomorphism Theorem). Let N and T be subgroups of G
with N normal. Then N ∩ T is normal in T and

T/(N ∩ T ) ' NT/N.

Theorem A.1.12 (Third Isomorphism Theorem). Let K ≤ H ≤ G, where both K and
H are normal subgroups of G. Then H/K is a normal subgroup of G/K and

(G/K)/(H/K) ' G/H.

Next we will define a class of groups, which is close to abelian groups. But to do so, we
need commutators.

Definition A.1.13. If a, b ∈ G, the commutator of a and b, denoted by [a, b] is

[a, b] = aba−1b−1.

The commutator subgroup (or derived subgroup) of G, denoted by G′, is the subgroup
of G generated by all the commutators of G.

Theorem A.1.14. The commutator subgroup G′ is a normal subgroup of G. Moreover,
if H CG, then G/H is abelian if and only if G′ ≤ H.
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Similiar to the commutator subgroup, we can proceed defining:

G(0) = G, G(1) = G′ and recursively G(i+1) =
(
G(i)

)′
.

Obviously we have
G ≥ G′ ≥ G(2) ≥ G(3) ≥ · · · ,

and of course all groups G(i), the so-called higher derived groups, are characteristic sub-
groups of G. A characteristic subgroup is a subgroup K of G, where every automorphism
from G maps K into itself.

Definition A.1.15. A group G is soluble, if G(k) = {e} for some k ∈ N.

Now a group G is called metabelian1, if G is soluble with G(2) = {e}.

Remark A.1.16. Soluble groups are of high interest in group theory, but also in Galois
theory. For example, solubility is used to prove that there can be no formula to solve
equations of degree greater than 4. This is a theorem by Abel.

An abelian group D is called divisible if every element d ∈ D has an n-th root in D.
That is, for every n > 0, there exists x ∈ D with xn = d.
An easy observation shows that, D is divisible if and only if Dn = D for every positive
n.

In these terms, we say a group is p-divisible2 if Dpk = D for every positive integer k.
Since Dpk = D · · · · ·D︸ ︷︷ ︸

p times

, it is obvious that p-divisibility is implied by Dp = D.

Theorem A.1.17. A group G is divisible if and only if it is p-divisible for every prime
p.

For the next definition, we need to make the following observation. Given any element
g ∈ G, we define a map

αg : G→ G

as follows:
αg(a) 7→ gag−1.

This map is an automorphism of G, called an inner automorphism.

Definition A.1.18. A group G is called complete if every automorphism of G is an
inner automorphism and it has trivial center, Z(G) = 1.

To close this subsection, we would like to give one last definition, that is a little bit out
of the context.

Definition A.1.19. A subgroup G of the symmetric group Sn is said to be transitive3

if given any i 6= j (1 ≤ i, j ≤ n), there exists σ ∈ G such that σ(i) = j.
1[Hu2]
2[Fu1]
3[Hu1]
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A very helpful tool in investigating groups are exact sequences.

Definition A.1.20. A sequence of groups Ai and homomorphisms fi

· · · → A1
f1→ A2

f2→ A3
f3→ A4 → · · ·

is an exact sequence if the image of each map is the kernel of the next map. A split exact
sequence is an exact sequence of groups A,B,C and homomorphisms f, g of the form

0→ A
f→ B

g→ C → 0.

This definition asserts, that f must be an injective homomorphism and g must be a
surjective one. This is usually denoted as

A ↪→ B � C.

A.1.2 Sylow Theorems and p-Groups

We will now proceed to a very important group theoretic aspect of finite groups, the
Sylow theorems. Hence for the next paragraphs, we will assume G to be a finite group.
Most parts of this section are from [Ro2], but can also be found in any other group
theoretic book.

When having a first look at the statement of the Sylow theorems, we would not suggest
that the method of proving them needs the action of a group on a set. Hence, and
because we also need it to properly define group representations, we will give an idea of
what is meant by this.

Definition A.1.21. If X is a set and G is a group, then X is a G-set if there is a
function α : G×X → X, denoted by

α : (g, x) 7→ gx,

such that:

1. e · x = x for all x ∈ X, where e denotes the unity element of G,

2. g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

It is very common to say that G acts on X.

Remark A.1.22. It is very common to denote g(x) as xg.

A very commonly used action is conjugation. This is, when a group G or a subgroup
H ≤ G acts on itself by gx 7→ gxg−1. Given this action, we define:

Definition A.1.23. If a ∈ G, then the centralizer of a in G, denoted by CG(a), is the
set of all x ∈ G which commute with a:

CG(a) = {x ∈ G | xa = ax}.
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It is immediate that CG(a) is a subgroup of G.

Definition A.1.24. If H ≤ G and g ∈ G, then the conjugate gHg−1 is

gHg−1 = {ghg−1 | h ∈ H}.

The conjugate gHg−1 is often denoted by Hg.

The conjugate is a subgroup isomorphic to H. Normal subgroups are themselves of
course their only conjugates.

Definition A.1.25. If H ≤ G, then the normalizer of H in G, denoted by NG(H), is

NG(H) = {a ∈ G : aHa−1 = H}.

It is immediate that NG(H) is a subgroup of G. An easy observation shows that H C
NG(H). Indeed, NG(H) is the largest subgroup of G in which H is normal.

Definition A.1.26. If X is a G-set and x ∈ X, then the stabilizer of x, denoted by Gx
is the subgroup

Gx = {g ∈ G | gx = x} ≤ G.

The order of a group G has consequences for its structure. Usually the more complicated
the prime factorization of |G|, the more complicated the group. The Sylow theorems are
statements about certain subgroups of a group with a given finite order.

Definition A.1.27. If p is a prime, then a p-group is a group in which every element
has order a power of p.

The following gives part of the inner structure of G, and would also be used to prove
the Sylow theorems.

Theorem A.1.28 (Cauchy). If G is a finite group whose order is divisible by a prime
p, then G contains an element of order p.

Corollary A.1.29. A finite group G is a p-group if and only if |G| is a power of p.

Theorem A.1.30. If G 6= 1 is a finite p-group, then its center Z(G) 6= 1.

Similiar to p-groups, we can define p-subgroups of a group G, with p | |G|.

Definition A.1.31. For a prime p, a p-subgroup H is a subgroup of a group G, with
p | |G| and H is a p-group.

Among p-subgroups, there are certain ones of special interest.

Definition A.1.32. If p is a prime, then a Sylow p-subgroup P of a group G is a maximal
p-subgroup.

We now proceed stating, for completness reasons, the Sylow theorems:

Theorem A.1.33 (Sylow, 1892). If P is a Sylow p-subgroup of a finite group G, then
all Sylow p-subgroups of G are conjugate to P .
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The next theorem gives an idea about the number of Sylow p-subgroups.

Theorem A.1.34 (Sylow). If there are r Sylow p-subgroups, then r is a divisor of |G|
and r ≡ 1 mod p.

The following theorem asserts the existence of Sylow p-subgroups.

Theorem A.1.35 (Sylow). If G is a finite group of order pnm, where (p,m) = 1, then
G has a subgroup of order pn.
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A.2 Ring Theory

In this section we will summerize basic definitions and theorems about rings that are
used in this text.

Definition A.2.1. A ring is a nonempty set R together with two binary operations
(usually denoted as addition (+) and multiplication) such that:

1. (R,+) is an abelian group

2. (ab)c = a(bc) for all a, b, c ∈ R (associative multiplication)

3. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc (left and right distributive laws).

If, in addition:

4. ab = ba for all a, b ∈ R,
then R is said to be a commutative ring . If R contains an element 1R such that

5. 1Ra = a1R = a for all a ∈ R,
then R is said to be a ring with identity .

Similiar to subgroups, we can define subrings. Normal subgroups play a special role in
group theory. Equivalently, we have ideals in ring theory.

Definition A.2.2. Let R be a ring and S a nonempty subset of R that is closed under
the operations of addition and multiplication in R. If S is itself a ring under these
operations then S is called a subring . A subring I of a ring R is a left ideal provided

r ∈ R and x ∈ I ⇒ rx ∈ I

I is a right ideal provided

r ∈ R and x ∈ I ⇒ xr ∈ I

I is an ideal if it is both a left and a right ideal.

In number theory, we are specifically intersted in prime ideals, that mostly play the part
of primes in the integers.

Definition A.2.3. An ideal P in a ring R is said to be prime if P 6= R and for any
ideals A,B in R

AB ⊂ P ⇒ A ⊂ P or B ⊂ P.

Theorem A.2.4. If P is an ideal in a ring R such that P 6= R and for all a, b ∈ R

ab ∈ P ⇒ a ∈ P or b ∈ P, (A.1)

then P is prime. Conversely if P is prime an R is commutative, then P satisfies condi-
tion A.1.
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Theorem A.2.5. In a commutative ring R with identity 1R 6= 0 an ideal P is prime if
and only if the quotient ring R/P is an integral domain.

From the first chapter on, we are dealing with maximal ideals. They are a nice thing to
deal with, as the quotient structure is a field. We use this fact very often.

Definition A.2.6. An ideal M in a ring R is said to be maximal if M 6= R and for
every ideal N such that M ⊆ N ⊆ R, either N = M or N = R.

Definition A.2.7. A ring R which has a unique maximal ideal is called a local ring.

Next we get some more about invertible elements.

An element a in a ring R with identity is said to be left [resp. right] invertible if there
exists c ∈ R [resp. b ∈ R] such that ca = 1R [resp. ab = 1R. The element c [resp. b]
is called a left [resp. right] inverse of a. An element a ∈ R that is both left and right
invertible is said to be invertible or to be a unit .

Lemma A.2.8. The set of non-invertible elements of a ring R forms a unique maximal
ideal M in R.

The next theorem gives a connection between maximal and prime ideals in commutative
rings.

Theorem A.2.9. If R is a commutative ring such that R2 = R (in particular if R has
an identity), then every maximal ideal M in R is prime.

We can now have a look at the quotient structures.

Theorem A.2.10. 1. If M is maximal and R is commutative, then the quotient ring
R/M is a field.

2. If the quotient ring R/M is a division ring, then M is maximal.

Remark A.2.11. A division ring is like a field, but the multiplicative operation lacks to
be abelian.

This text uses a certain theorem about ideals in ring extensions. Therefore we need a
few definitions.

Definition A.2.12. Let S be a commutative ring with identity and R a subring of S
containing 1S . Then S is said to be an extension ring of R.

For number theory, the term ’integral’ element is very important.

Definition A.2.13. A polynomial f(x) over a ring R is said to be monic, if its leading
coefficient is 1.

Definition A.2.14. Let S be an extension ring of R and s ∈ S. If there exists a monic
polynomial f(x) ∈ R[x] such that s is a root of f (that is f(s) = 0), then s is said to
be integral over R. If every element of S is integral over R, S is said to be an integral
extension of R.
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With the above terms, we can define a set

R = {s ∈ S | s is integral over R}.

This set is called the integral closure of R in S.
A ring R contained as a subring in anothe ring S is said to be integrally closed in S if R
is its own integral closure in S. If we do not refer to a certain extension ring, and say R
is integrally closed, we mean R is integrally closed in its field of fractions.

With these terms, we can state the Lying-Over-Theorem that is used in this text.

Theorem A.2.15 (Lying-Over-Theorem). Let S be an integral extension ring of R and
P a prime ideal of R. Then there exists a prime ideal Q in S which lies over P (that is,
Q ∩R = P ).

Another theorem will prove to be useful in the quite technical proofs of this text.

Theorem A.2.16. Let S be an integral extension ring of R and let Q be a prime ideal
in S which lies over a prime ideal P in R. Then Q is maximal in S if and only if P is
maximal in R.

We close this short section with a Lemma about polynomials.

Definition A.2.17. Let D be a unique factorization domain and f =
∑n

i=0 aix
i a

nonzero polynomial in D[x]. A greatest common divisor of the coefficients a0, a1, . . . , an
is called a content of f and is denoted by C(f).
If f ∈ D[x] and C(f) is a unit in D, then f is said to be primitive.

The following Lemma about polynomials over rings is due to Gauss.

Lemma A.2.18 (Gauss). If D is a unique factorization domain and f, g ∈ D[x], then
C(fg) ≈ C(f)C(g). In particular, the product of primitive polynomials is primitive.

Lemma A.2.19 (Gauss). Let D be a unique factorization domain with quotient field F
and f a primitive polynomial of positive degree in D[x]. Then f is irreducible in D[x] if
and only if f is irreducible in F [x].
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A.3 Field Theory

In this section we will summarize a few field theoretic aspects that are widely used in
this text.

First, for completeness reasons, the definition of a field.

Definition A.3.1. A nonzero element a in a ring R is said to be a left [resp. right] zero
divisor if there exists a nonzero b ∈ R such that ab = 0 [resp. ba = 0]. A zero divisor is
an element of R which is both a left and a right zero divisor.

A commutative ring R with identity 1R 6= 0 and no zero divisors is called an integral
domain. A ring D with identity 1D 6= 0 in which every nonzero element is a unit is
called a division ring . A field is a commutative division ring.

A commonly used criteria to classify fields is their characteristic. We will define it,
however, generally for rings.

Definition A.3.2. Let R be a ring. If there is a least positive integer n such that

na = 0 for all a ∈ R,

then R is said to have characteristic n. If no such n exists, R is said to have characteristic
zero. The characteristic of a ring is usually denoted by charR = n or charR = 0.

From the beginning of this text, we deal with different kinds of field extensions.

Definition A.3.3. A field F is said to be an extension field of a field K (or simply an
extension of K) provided that K is a subfield of F .

If we have the situation that K ⊂ E ⊂ F are subfields, then E is said to be an interme-
diate field of K and F .
If F is a field and X ⊂ F , then the subfield generated by X is the intersecion of all
subfields of F that contain X:

〈X〉 =
⋂
{C ≤ F | X ⊆ C}.

If F is an extension of K and X ⊂ F , then the subfield generated by K ∪X is called the
subfield generated by X over K and is denoted K(X). If X contains only one element
u, then K(u) is said to be a simple extension.

In this text, we only have algebraic extensions.

Definition A.3.4. Let F be an extension field of K. An element u of F is said to be
algebraic over K provided that u is a root of some nonzero polynomial f ∈ K[x]. F is
called an algebraic extension of K if every element of F is algebraic over K.

Theorem A.3.5. If F is an extension field of K and u ∈ F is algebraic over K, then

1. K(u) = K[u],
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2. K(u) ' K[x]/(f), where f ∈ K[x] is an irreducible monic polynomial of degree
n ≥ 1 uniquely determined by the conditions f(u) = 0 and g(u) = 0 (g ∈ K[x]) if
and only if f divides g.

3. [K(u) : K] = n,

4. {1K , u, u2, . . . , un−1} is a basis of the vector space K(u) over K,

5. every element of K(u) can be written uniquely in the form

a0 + a1u+ · · ·+ an−1u
n−1 with (ai ∈ K).

We will use those facts often. From this it can easily be seen, that every finite extension
must be algebraic.

Definition A.3.6. Let F be an extension field of K and u ∈ F algebraic over K. The
monic irreducible polynomial f of the preceding theorem is called the irreducible or
minimal or minimum polynomial of u. The degree of u over K is deg f = [K(u) : K].

Such polynomials are widely used to describe field extensions.

Definition A.3.7. Let F be a field and f ∈ F [x] a polynomial of positive degree. f is
said to split over F if f can be written as a product of linear factors in F [x].

Definition A.3.8. Let K be a field and f ∈ K[x] a polynomial of positive degree. An
extension field F of K is said to be a splitting field over K of the polynomial f if f splits
in F [x] and F = K(u1, . . . , un) where u1, . . . , un are the roots of f in F .

Theorem A.3.9. The following conditions on a field F are equivalent:

1. Every nonconstant polynomial f ∈ F [x] has a root in F .

2. Every nonconstant polynomial f ∈ F [x] splits over F .

3. Every irreducible polynomial in F [x] has degree one.

4. There is no algebraic extension field of F (expect F itself).

5. There exists a subfield K of F such that F is algebraic over K and every polynomial
in K[x] splits in F [x].

A field that satisfies the equivalent conditions of this theorem is said to be algebraically
closed .
It is also important to know that there is a maximal algebraic extension of a field.

Theorem A.3.10. If F is an extension field of K, then the following conditions are
equivalent.

1. F is algebraic over K and F is algebraically closed.

2. F is a splitting field over K of the set of all polynomials in K[x].
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An extension field F of a field K that satisfies the equivalent conditions of this theorem
is called an algebraic closure of K.
A very important aspect of this text is Galois theory.

Definition A.3.11. Let E and F be extension fields of a field K. If σ : E → F is a
nonzero homomorphism of fields, then σ(1E) = 1F . If σ is also a K-module homomor-
phism then for every k ∈ K

σ(k) = σ(k1E) = kσ(1E) = k1F = k.

Conversely, if a homomorphism of fields σ : E → F fixes K elementwise (that is, σ(k) = k
for all k ∈ K), then σ is nonzero and for any u ∈ E,

σ(ku) = σ(k)σ(u) = kσ(u)

whence σ is a K-module homomorphism.

Definition A.3.12. A field homomorphism f which also is a K-module homomorphism
is called a K-homomorphism. Let F be a field extension of K. The group of all K-
automorphisms of F is called the Galois group of F over K and is denoted by AutK(F ).

Hence every element of AutK(F ) fixes K elementwise. Another very important observa-
tion is, that every automorphism maps a root of a polynomial f ∈ K[x] to another root
of the same polynomial.

Theorem A.3.13. Let F be an extension field of K, E an intermediate field and H a
subgroup of AutK(F ). Then

1. H ′ = {v ∈ F | σ(v) = v for all σ ∈ H} is an intermediate field of the extension,

2. E′ = {σ ∈ AutK(F ) | σ(u) for all u ∈ E} = AutE(F ) is a subgroup of AutK(F ).

The field H ′ i called the fixed field of H in F . We deduce easily that

F ′ = AutF (F ) = 1 and K ′ = AutK(F ) = G

and on the other hand 1′ = F (that is, F is the fixed field of the identity subgroup). It
is not necessarily true, however, that G′ = K. If so though, we have a Galois extension.

Definition A.3.14. Let F be an extension field of K such that the fixed field of the
Galois group AutK(F ) is K itself. Then F is said to be a Galois extension (field) of K
or to be Galois over K.

Definition A.3.15. If E is an intermediate field of the extension K ⊂ F , E is said to
be stable if every K-automorphism σ ∈ AutK(F ) maps E into itself. This implies, that
σ|E is in fact a K-automorphism of E (that is σ|E ∈ AutK(E)).

We now get to define two terms that are, combined, equivalent to Galois.
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Definition A.3.16. Let K be a field and f ∈ K[x] an irreducible polynomial. The
polynomial f is said to be separable if in some splitting field of f over K every root of
f is a simple root.
If F is an extension field of K and u ∈ F is algebraic over K, then u is said to be
separable over K provided its irreducible polynomial is separable. If every element of F
is separable over K, then F is said to be a separable extension of K.

Definition A.3.17. An algebraic closure Kalg of K contains a unique separable exten-
sion Ksep of K containing all (algebraic) separable extensions of K within Kalg. This
subextension is called a separable closure of K.

With this definition of the separable closure, we are able to define the absolut Galois
group of a field.

Definition A.3.18. The absolute Galois group of a field K is the Galois group

Gal(Ksep
/K)

of its separable closure as a field extension.

Definition A.3.19. An algebraic extension field F of K is normal over K if every
irreducible polynomial in K[x] that has a root in F actually splits in F [x].

Definition A.3.20. A Galois closure of a field F is an extension field L ⊇ F , such that
no proper subextension K ⊂ L is normal over F .

Hence L is a minimal Galois extension of F .

Lemma A.3.21. Let F be an algebraic extension field of K. Then F is Galois over K
if and only if F is normal and separable over K. If charK = 0, then F is Galois over
K if and only if F is normal over K.

Remark A.3.22. If charF = 0, then every irreducible polynomial over F is separable.

Proposition A.3.23 (Primitive Element Theorem). Let L be a finite dimensional ex-
tension field of F .

1. If L is separable over F , then L is a simple extension of F , namely there exists
u ∈ L such that L = F (u).

2. (Artin) More generally, L is a simple extension of F if and only if there are only
finitely many intermediate fields.

Lemma A.3.24. If E is a separabel extension field of L and L is a separable extension
field of F , then E is a separable over F .

Lemma A.3.25. If L is a Galois extension of F and E is a stable intermediate field of
the extension, then E is Galois over F .

Corollary A.3.26. Let F be an algebraic extension field of K. Then F is Galois over
K if and only if F is normal and separable over K.
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The next theorem is a very important result of Galois theory. It asserts, that the sub-
groups of a Galois group correspond one-to-one to the intermediate fields of an extension.

Theorem A.3.27 (Fundamental Theorem of Galois Theory). If F is a finite dimen-
sional Galois extension of K, then there is a one-to-one correspondence between the set
of all intermediate fields of the extension and the set of all subgroups of the Galois group
AutK(F ) (given by E 7→ E′ = AutE(F )) such that:

1. the relative dimension of two intermediate fields is equal to the relative index of
the corresponding subgroups. In particular, AutK(F ) has order [F : K].

2. F is Galois over every intermediate field E, but E is Galois over K if and only
if the corresponding subgroup E′ = AutK(F ) is normal in G = AutK(F ). In this
case, G/E′ is (isomorphic to) the Galois group AutK(E) of E over K.

There is another, generalized version of this fundamental theorem, dealing with infinite
extensions. To accomplish such a theorem, we need to consider topological aspects.

It is possible to make AutK(F ) into a compact topological group in such a way, that a
subgroup H is topologically closed f and only if it is closed in the sence of H = H ′′. This
is due to an observation of Krull. Of course even compact topological groups contain
subgroups that are neither open nor closed.

Theorem A.3.28 (Generalized Fundamental Theorem). If F is an algebraic Galois
extension field of K, then there is a one-to-one correspondence between the set of all
intermediate fields of the extension and the set of all closed subgroups of the Galois group
AutK(F ) (given by E 7→ E′ = AutE(F )) such that F is Galois over every intermediate
field E, but E is Galois over K if and only if the corresponding subgroup E′ is normal
in G = AutK(F ). In this case, G/E′ is (isomorphic to) the Galois group AutK(E) of E
over K.

In this text we define local fields to have a perfect residue field.

Theorem A.3.29. The following conditions on a field K are equivalent:

1. Every irreducible polynomial in K[x] is separable.

2. Every algebraic closure K of K is Galois over K.

3. Every algebraic extension field of K is separable over K.

4. Either charK = 0 or charK = p and K = Kp.

Definition A.3.30. A field that satisfies the equivalent conditions of theorem A.3.29 is
said to be perfect .

Lemma A.3.31. Every finite field is perfect.
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A.4 Algebraic Number Theory

In this section we will explain basic terms from number theory and give a little back-
ground information on them.

In algebraic number theory, we usually have the following situation. Let A be an integral
domain which is integrally closed, K its field of fractions and L a finite extension of K.
We are particularly interested in the integral closure of A in L, denoted by OL.

K ——– L

—
—

–

—
—

–
A ——– OL

But first two very important terms that are widely used in this text:

Definition A.4.1. The trace and norm of an element x ∈ L are defined to be the trace
and determinant of the endomorphism

Tx : L→ L, Tx(α) = xα.

Since we have a finite extension, we can describe this endomorphism by its action on
the basis elements of this extension. Hence we gain a matrix. Now the trace and norm
of an element are the trace and determinant of this matrix:

TrL|K(x) = Tr(Tx), NL|K = det(Tx).

In the characteristic polynomial

fx(t) = det(t · In − Tx) = tn − a1t
n−1 + · · ·+ (−1)nan ∈ K[t]

of Tx, n = [L : K], we recognize the trace and the norm as

a1 = TrL|K(x) and an = NL|K(x).

Since Tx+y = Tx + Ty and Txy = Tx ◦ Ty, we obtain homomorphisms

TrL|K : L→ K and NL|K : L∗ → K∗.

In the important case where the extension L|K is separable, the trace and norm admit
the following Galois-theoretic interpretation that we use a lot.

Proposition A.4.2. If L|K is a separable extension and σ : L → K varies over the
different K-embeddings of L into an algebraic closure K of K, then we have

1. fx(t) =
∏
σ(t− σx),

2. TrL|K(x) =
∑

σ σx,
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3. NL|K(x) =
∏
σ σx.

Another very important property of norm and trace is that its compatible with finite
field extensions.

Corollary A.4.3. In a tower of finite field extensions K ⊆ L ⊆M , we have

TrL|K ◦TrM |L = TrM |K

and
NL|K ◦NM |L = NM |K .

Definition A.4.4. The discriminant of a basis α1, . . . , αn of a separable extension L|K
is defined by

d(α1, . . . , αn) = det((σjαj))2,

where σi, i = 1, . . . , n varies over the K-embeddings L→ K.
Because of the relation

TrL|K(αiαj) =
∑
k

(σkαi)(σkαj),

the matrix (TrL|K(αiαj)) is the product of the matrices (σkαi)t and (σkαj).
Thus we may write

d(α1, . . . , αn) = det
(
TrL|K(αiαj)

)
.

We now regard a more specific field extension. Namely, our integral domain will be Z
with its well known quotient field Q. Then K is an algebraic number field. We are now
particularly interested in OK , the ring of integers of K.

Q ——– K

—
—

–

—
—

–

Z ——– OK

Definition A.4.5. A ring R is called Noetherian if every ideal is finitely generated.

Definition A.4.6. An integral domain that is

1. Noetherian,

2. integrally closed

3. and in which every nonzero prime ideal is maximal

is called a Dedekind domain.

Theorem A.4.7. The ring OK is Noetherian, integrally closed and every prime ideal
P 6= 0 is a maximal ideal, hence it is a Dedekind domain.

Definition A.4.8. A fractional ideal of K is a finitely generated OK-submodule A 6= 0
of K.
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Proposition A.4.9. The fractional ideals form an abelian group, the ideal group JK of
K. The identity element is (1) = OK and the inverse of A ∈ JK is

A−1 = {x ∈ K | xA ⊆ OK}.

The fractional principal ideals (a) = aOK , a ∈ K∗ form a subgroup of the group of
ideals JK , which is denoted by PK . The quotient group

ClK = JK/PK

is called the ideal class group of K.
Along with the group of units O∗K of OK , it fits into the exact sequence

1 −→ O∗ −→ K∗ −→ JK −→ ClK −→ 1

where the arrow in the middle is given by a 7→ (a). So the class group ClK measures
the expansion that takes place when we pass from numbers to ideals.

This concept is very important as we know that the class group is finite, so we not get
lost in infinity when passing from numbers to ideals.

Theorem A.4.10. The ideal class group ClK = JK/PK is finite. Its order

hK = [JK : PK ]

is called the class number of K.

Corollary A.4.11. Every fractional ideal A admits a unique representation as a product

A =
∏

P prime

P vP

with vP ∈ Z and vP = 0 for almost all P . In other words JK is the free abelian group
on the set of nonzero prime ideals P of OK .

To close this section, we give a lemma that will prove useful in our technical proofs.

Lemma A.4.12. Let L/F be a finite extension. Let α ∈ OL and let f(x) be the monic
irreducible polynomial of α over F . Then f(x) ∈ OF . Conversely, let f(x) be a monic
polynomial with coefficients in OF . If α ∈ L is a root of f(x), then α ∈ OL.
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A.5 Topological Groups

In this brief subsection we would like to give a short introduction to topological groups.
As special topological groups we will give a little extra information on profinite groups,
that were introduced in the introduction of chapter one. It is assumed that the reader
has a basic understanding of topology.

Definition A.5.1. A topological group G is a topological space and group such that the
group operations

G×G→ G, (x, y) 7→ xy

and
G→ G, x 7→ x−1

are continuous functions. Here, G × G is viewed as a topological space by using the
product topology.

Definition A.5.2. By a topologically generated group G by a set X we mean that 〈X〉
is a dense subgroup in G.

Such topological groups have interesting and very useful properties. First, an observation
shows, that it can contain subgroups that are neither open nor closed. In this text, we
need topological groups as profinite groups. Those are special topological groups, as they
are compact and totally disconnected Hausdorff spaces. Hence we get a list of properties,
that prove to be very useful.

Lemma A.5.3. Let G be a topological group.

1. The map (x, y) 7→ xy from G×G to G is continuous and the map x 7→ x−1 from
G to G is a homoemorphismus. For each g ∈ G the maps x 7→ xg and x 7→ gx
from G to G are homoemorphisms.

2. If H is an open (resp. closed) subgroup of G then every coset Hg or gH of H in
G is open (resp. closed).

3. Every open subgroup of G is closed, and every closed subgroup of finite index is
open. If G is compact then every open subgroup of G has finite index.

4. If H is a subgroup containing a non-empty open subset U of G then H is open in
G.

Remark A.5.4. There is also a converse theorem of 3 by D. Segal and N.Nikolov
([SeNi]). Namely, for a finitely generated profinite group we know, that every subgroup
of finite index is open. This means, the topology on the group is determined by the group
structure.

Example A.5.5. A very nice profinite group is Ẑ, the profinite completion of the inte-
gers. In chapter one we had

Zp = lim←−
i

Z/piZ.
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Similar to this, we define:
Ẑ = lim←−

n

Z/nZ.

The numbers Ẑ are also called the Hensel numbers.

Profinite groups are characterized to be compact and totally disconnected Hausdorff
groups.

Proposition A.5.6. Let X be a compact Hausdorff totally disconnected space. Then X
is the inverse limit of its discrete quotient spaces.

On the other hand we have:

Lemma A.5.7. Let G be a topological group. Then G is a profinite group if and only if
G is compact and totally disconnected.

A very important description of a profinite group is with its inverse limit.

Theorem A.5.8. Let G be a profinite group. If I is a filter base of closed normal
subgroups of G such that

⋂
(N | N ∈ I) = 1 then

G ' lim←−
N∈I

G/N.

Moreover
H ' lim←−

N∈I
H/(H ∩N)

for each closed subgroup H and

G/K ' lim←−
N∈I

G/KN

for each closed normal subgroup K.

Remark A.5.9. 1. It is important to understand, that every open subgroup is closed,
hence the above description also holds for open subgroups. However, as already said
above, subgroups of profinite groups can be neither open nor closed.

2. For profinite groups we can use the set

I = {N | N CO G} = {N | N CG, N has finite index in G}

as a filter base. This explains the term profinite, as because of this G is an inverse
limit of finite groups.

To close this section, we would like to give an idea of the Galois group of an infinite
extension. Such extensions naturally occur in absolute Galois groups.

Let us assume we have a given field K and an infinite Galois extension L. First we define
the set

F = {M | M a subfield of K such that M/K is a finite Galois extension}.

We define a topology in Gal(L/K) by taking as a base of open neighbourhoods of 1 the
family of subgroups

N = {Gal(L/M) | M ∈ F}.
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Proposition A.5.10. Gal(L/K) is the inverse limit of the finite groups Gal(M/K) with
L ∈ F . In particular, Gal(L/K) is a profinite group.

Absolute Galois groups are always profinite groups4. For a finite field the absolute Galois
group is isomorphic to Ẑ.

4[Wi1]
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(4) 7 (1974), 507–530 (1975).

[Dr1] V. Drinfeld Elliptic modules. Mat. Sb. (N.S.) 94(136), 594–627, 656 (1974).

[Dr2] V. Drinfeld Cohomology of compactified moduli varieties of F -sheaves of rank 2.
J. Soviet Math. 46, no. 2, 1789–1821 (1989).

[Fe1] I. Fesenko A multidimensional local theory of class fields. II St. Petersburg Math.
J. 3, no. 5, 1103–1126 (1992).

[Fe2] I. Fesenko Class field theory of multidimensional local fields of characteristic 0 with
residue field of positive characteristic Algebra i Analiz 3, no. 3, 165–196 (1991);
translation in St. Petersburg Math. J. 3, no. 3, 649–678 (1992).

[Fe3] Fesenko: Local class field theory: the perfect residue field case. Izv. Ross. Akad.
Nauk Ser. Mat. 57, no. 4, 72–91 (1993); translation in Russian Acad. Sci. Izv.
Math. 43, no. 1, 65–81 (1994).

[Fe4] I. Fesenko Abelian local p-class field theory Math. Ann. 301, no. 3, 561–586 (1995).

[Fe5] I. Fesenko Nonabelian local reciprocity maps. Class field theory—its centenary and
prospect (Tokyo), 63–78 (1998).

[Fe6] I. Fesenko On the image of noncommutative local reciprocity map. Homology, Ho-
motopy Appl. 7, no. 3, 53–62 (electronic) (2005).



BIBLIOGRAPHY 124

[FeKu] I. Fesenko, M.Kurihara Invitation to higher local fields (Introduction) Papers
from the conference held in Mnster, August 29 - September 5, 1999. Edited by Ivan
Fesenko and Masato Kurihara. Geometry & Topology Monographs, 3. Geometry
& Topology Publications, Coventry. front matter+304 pp. (electronic) (2000).

[FeVo1] I. Fesenko, S.V. Vostokov: Local Fields and Their Extensions American Math.
Soc., Providence, RI (1993).

[FeVo2] I. Fesenko, S.V. Vostokov: Local Fields and Their Extensions - Second Edition
American Math. Soc., Providence, RI (2003).

[Fi] C. Fieker Computing class fields via the Artin map. Math. Comp. 70, no. 235,
1293–1303 (electronic) (2001).

[FoWi] J.M. Fontaine, J.P. Wintenberger Le “corps des normes” de certaines extensions
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[Kl] J. Klüners A counterexample to Malles conjecture on the asymptotics of discrimi-
nants. C. R. Math. Acad. Sci. Paris 340, no. 6, 411–414 (2005).

[Ko] H. Koch Local class field theory for metabelian extensions. Proceedings of the 2nd
Gauss Symposium. Conference A: Mathematics and Theoretical Physics (Munich,
1993), 287–300, Sympos. Gaussiana, de Gruyter, Berlin (1995).

[KoSh] H. Koch, E. de Shalit Metabelian local class field theory. J. Reine Angew. Math.
478, 85–106 (1996).

[Ku1] M. Kurihara The exponential homomorphisms for the Milnor K-groups and an
explicit reciprocity law. J. Reine Angew. Math. 498, 201–221 (1998).

[Ku2] A.G. Kurosh Theory of Groups - Volume 1. Translated and edited by K. A. Hirsch.
Chelsea Publishing Co., New York, N.Y. (1955).

[La1] L. Lafforgue Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math.
147, no. 1, 1–241 (2002).

[La2] L. Lafforgue Chtoucas de Drinfeld, formule des traces d’Arthur-Selberg et corre-
spondance de Langlands. Proceedings of the International Congress of Mathemati-
cians, Vol. I (Beijing, 2002), 383–400, Higher Ed. Press, Beijing (2002).

[La3] S. Lang Introduction to Modular Forms. Berlin [u.a.]: Springer (1976).

[La4] S. Lang: Algebra. New York, NY [u.a.]: Springer (2002).

[La5] R. Langlands On the classification of irreducible representations of real algebraic
groups. Representation theory and harmonic analysis on semisimple Lie groups,
101–170, Math. Surveys Monogr., 31, Amer. Math. Soc., Providence, RI, (1989).



BIBLIOGRAPHY 126
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