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Preface

Graphs naturally arise in many applications, such as network theory and scheduling. In
many cases, the occurring problems can be formulated in terms of problems on corre-
sponding abstract graphs, like finding special colourings or other subsets with specific
properties. As a consequence, the development of efficient algorithms for various classes
of graph problems is of great practical significance.

Unfortunately, a huge class of these graph problems appears to be NP-hard i.e. the
problems do not admit general algorithms which are efficient for graphs with increasing
size. Since large graph instances emerge in applications anyway, it seems quite natural
to search for algorithms which, at least, tackle some common types of graphs.

For instance, many problems occur to be linear- or polynomial-time solvable on trees.
Just consider the 2-colouring problem, which can be solved in linear time by traversing
the tree in bottom-up order. Similar results can be observed for series-parallel graphs
i.e. graphs obtained by series and parallel composition of edges.

The concepts of treewidth and tree-decomposition, which are presented throughout this
thesis, serve as a generalization of the above graph classes. We will see that many NP-
hard problems allow for polynomial-time or sometimes even linear-time solutions if they
get restricted to graphs of bounded treewidth. This is a quite powerful result since many
practical graphs have relatively small treewidth!

In Chapter 1, we are going to introduce the necessary graph theoretical notions for
treewidth and tree-decompositions. We start Section 1.1 by giving the actual definitions
of treewidth and tree-decomposition. We continue by showing the most basic properties of
tree-decompositions to give a deeper insight. In Section 1.2, we finally consider graphs of
bounded treewidth. We relate this class to other common graph classes e.g. clique sums,
chordal graphs and partial k-trees. We close the chapter with some remarks regarding
the application in graph minor theory in Section 1.3. This chapter will, hopefully, equip
the reader with an adequate perception of the underlying concepts.

Chapter 2 gives some more information for the subsequent part of this thesis, namely
utilizing the properties of graphs of bounded treewidth for finding custom-built algo-
rithms. We classify general graph problems and give a short introduction to fixed-
parameter tractability in Section 2.1. Subsequently, we define some more notions in
Section 2.2 which are of special interest for the later algorithmic considerations: nice
tree-decompositions and terminal graphs. This finally concludes the introductory chap-
ter.
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In Chapter 3, we consider some problems that can efficiently be solved on graphs with
given tree-decompositions. We not only introduce the l-colouring-problem, the k-disjoint-
paths-problem, independent sets, dominating sets and vertex covers but give some ideas
on how more algorithms of this kind could be found. We start with a very general dynamic
programming approach in Section 3.1 and a (more or less detailed) consideration of each
of the problems stated above. In Section 3.3, we finally take a look at a very general
logical approach by Courcelle et al., which involves monadic second-order logic for graphs
and gives some quite powerful results.

We continue with a discussion of the problem of actually determining treewidth and
constructing tree-decompositions in Chapter 4. Although this problem is, in general,
NP-hard, we argue that special sub-problems can be decided in linear or polynomial
time. In Subsection 4.2.1, we introduce a polynomial-time algorithm by Arnborg et al.
Then we consider a linear-time algorithm by Bodlaender in Subsection 4.2.3, which –
despite its inefficiency for practical applications – finally shows that the problem variant
is actually of linear complexity. We finish this discussion by briefly mentioning some
common approximation methods and other useful bounds in Section 4.3.

We finally mention another interesting technique which is based on graph reductions in
Chapter 5. This technique differs from the ones mentioned above by not evaluating
an actual tree-decomposition and thus omitting some complexity issues discussed in
Chapter 4. We intend to give a short motivation for these types of algorithms without
considering all details.

This concludes the discussion of algorithmic methods for bounded-treewidth graphs and
it remains to give some final remarks at the very end.
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1 Graph Theoretical Preliminaries

Throughout this thesis, we assume that the reader is familiar with the most basic graph-
theoretical notions. For general references, we recommend the book ’Graph Theory’ by
Reinhard Diestel [1]. There is, furthermore, a very nice compendium for this purpose in
Miriam Heinz’s thesis [2, Chapter 1] introducing the most basic notions.

At first, we would like to introduce the fundamental concept of tree-decompositions, as
introduced by Roberson and Seymour in their work [3] on the graph minor theorem, and
state a few of its properties, without claiming to be exhaustive. A lot of information about
the structure of tree-decompositions can be found in Bodlaender’s work, for instance in
[4] and [5]. Some more information focusing on the graph minor theorem can also be
found in [1, Chapter 12].

Subsequently, we are going to relate this notion to some other useful concepts. We
consider clique-sums and chordal graphs as well as partial k-trees, which are used in
papers such as [6]. We hope that this discussion will help getting a good impression of
the main concepts.

In this chapter, we mainly follow the structure of Miriam Heinz in her thesis [2, Chap-
ter 3].

1.1 Tree-decompositions and treewidth

In this section, we want to give a formal definition of tree-decompositions and treewidth.
Furthermore, we will try to give some intuition for this abstract concept by stating some
of its most important properties.

1.1.1 Definitions

We first provide the abstract definition of a tree-decomposition of a graph G = (V,E).

Definition 1.1.1. A tree-decomposition of a graph G = (V,E) is a pair (T,X ) of a tree
T and a family of sets X = (Xt)t∈V (T ) such that Xt ⊆ V and the following properties
are satisfied:

(T1)
⋃

t∈V (T )Xt = V .

1



1 Graph Theoretical Preliminaries

Figure 1.1: A graph G and two possible tree-decompositions

(T2) For all edges uv ∈ E, there exists a node t ∈ V (T ) such that u ∈ Xt and
v ∈ Xt.

(T3) Whenever t1, t2, t3 ∈ V (T ) such that t2 is contained in the unique path from
t1 to t3 in T , there holds Xt1 ∩Xt3 ⊆ Xt2 .

The vertex sets Xt and also the induced subgraphs G[Xt] are called the parts of the tree-
decomposition (T,X ). To distinguish the vertices of G and T , we use the term nodes
when talking about the vertices of T .

A tree-decomposition obviously describes a certain grouping of the vertices of G into
its parts, where – by Property (T1) - all vertices belong to at least one part and – by
Property (T2) – adjacent vertices share at least one part they belong to.

Obviously, there is no need for this construct to be unique! As an example, we provide
a graph G and two possible tree-decompositions in Figure 1.1.

Property (T3) assures that any vertex contained in two arbitrary sets Xt1 and Xt3 of X
is also contained in any further set Xt2 for an arbitrary node t2 ∈ V (T ) that lies along
the unique path t1Pt3 in T . Therefore this property can easily be reformulated to

(T3’) For all v ∈ V , the induced subgraph G[{t ∈ T : v ∈ Xt}] is connected.

This way, a tree-decomposition can also be seen as a union of induced subtrees G[{t ∈
T : v ∈ Xt}], v ∈ V . This is visualized in Figure 1.2.

We now properly define the concept of treewidth.

Definition 1.1.2. For a fixed tree-decomposition (T,X ) of a graph G, its width is defined

2



1.1 Tree-decompositions and treewidth

Figure 1.2: A tree-decomposition as a union of subtrees (each colour corresponds to one
subtree)

by

max
t∈V (T )

|Xt| − 1

The treewidth tw(G) of a graph G is defined as the minimal width of all tree-
decompositions.

We can immediately give a range for the treewidth of a graph.

Lemma 1.1.3. For each graph G there holds

0 ≤ tw(G) ≤ |V (G)| − 1

Further tw(G) ≥ 1 if there is at least one edge.

Proof. Every part of a tree-decomposition contains at least one and at most |V (G)|
vertices. By definition of treewidth, the first inequality holds. Whenever |E(G)| > 0, we
can apply Property (T2) to see that there has to be at least one part containing both
endpoints of this edge. So by definition, there holds tw(G) ≥ 1.

After this first simple considerations, we provide some important subclasses of graphs
with bounded treewidth.

Example (trees). As the name ’treewidth’ indicates, trees induce quite natural tree-
decompositions of width 1. For a tree T = (V,E), we define a tree-decomposition
(T, (Xt)t∈V ) by choosing a root r, defining Xr = {r}, directing the edges from r and
for every directed edge st ∈ E defining Xt = {s, t}. This defines all the sets Xt and the
above axioms hold. Therefore, we know tw(T ) ≤ 1 and tw(T ) = 1 for non-trivial trees.

This result can obviously be generalized to forests. For each component tree C, we obtain
a tree-decomposition (TC ,XC) of width 1. By introducing a new node r and connecting
it with each tree TC , we get a new tree T . Using all the disjoint parts XC and Xr = ∅,
we obviously get a valid tree-decomposition of width 1 for forests.

3



1 Graph Theoretical Preliminaries

Example (series-parallel graphs). Another subclass of historical importance are series-
parallel graphs. Series-parallel graphs are obtained from K2 by recursive duplication
and subdivision of edges. Their name is motivated by the Kirchhoff rules for electrical
networks, which allow to evaluate the resistance by a series and a parallel rule and can
thus exactly be applied for series-parallel graphs.

K2 obviously has treewidth 1 and duplicating edges does not increase the treewidth at
all. Subdivision of an edge uv ∈ E by a vertex w can easily be handled by adding a new
part {u, v, w} to the tree-decomposition. So series-parallel graphs have treewidth 2.

For further considerations, it is often useful to demand some additional properties. We
introduce the following useful concept.

Definition 1.1.4. A tree-decomposition (T, (Xi)i∈V (T )) of a graph G is called reduced,
if it has width tw(G) and

Xi\Xj 6= ∅ and Xj\Xi 6= ∅

for all ij ∈ E(T ).

The following lemma states that these particular demands are admissible i.e. we can still
find such a tree-decomposition.

Lemma 1.1.5. For all graphs G, there exists a reduced tree-decomposition (T, (Xi)i∈V (T ))
of width tw(G).

Proof. Choose an arbitrary tree-decomposition (T, (Xi)i∈V (T )) of width tw(G) with a
minimal number of nodes.

If some Xi\Xj = ∅, there holds Xi ⊆ Xj . We define a new tree T ′ obtained from T
by contracting the edge ij to a single node k with vertex set Xk = Xj . Of course, the
Properties (T1) and (T2) are not violated for G since the nodes in Xi, Xj are covered
by Xk. Note that the subgraphs of T ′ induced by a single vertex v stay connected since
for v ∈ Xk either v ∈ Xi ⊆ Xj = Xk or v ∈ Xj\Xi and j was already a leaf of the tree
induced in T . This gives a new tree-decomposition which obviously has the same width
but fewer nodes – a contradiction to minimality!

By contradiction, we see that (T, (Xi)i∈V (T )) is reduced.

1.1.2 Subgraphs and minors

From the treewidth of G, we can derive information about the treewidth of arbitrary
subgraphs.

Lemma 1.1.6. For an arbitrary subgraph H of a graph G, there holds tw(H) ≤ tw(G).

4



1.1 Tree-decompositions and treewidth

Proof. If we take a tree-decomposition (T,X ) ofG, the tree-decomposition (T,X ′) defined
by the parts

X ′t = Xt ∩ V (H)

is a valid tree-decomposition for H. All three axioms are passed on from G.

We would like to mention that a similar result can be obtained for the treewidth of
minors.

Lemma 1.1.7. If H is a minor of a graph G, then there holds tw(H) ≤ tw(G).

This result is only slightly more challenging and very important in graph minor theory.
For reference, one can consider Miriam Heinz’ thesis [2] or Diestel’s book [1, Chapter 12].

Another property that can easily be observed is the following.

Lemma 1.1.8. For the connected components C1, . . . , Cn of a graph G, there holds
tw(G) = max{tw(Ci) : i = 1, . . . , n}.

Proof. Since all components are subgraphs of G, there holds maxn
i=1 tw(Ci) ≤ tw(G)

by Lemma 1.1.6. From the tree-decompositions (T i,X i) of Ci, we can derive a tree-
decomposition for G by gluing the trees Ti together at a common root node r with
Xr = ∅. All the other parts are passed on from the components decompositions. Trivially,
all axioms do hold because the components are not connected and use disjoint vertex
labels.

We can, therefore, always restrict to connected graphs when examining properties based
on treewidth and tree-decompositions. For disconnected graphs, we simply consider each
component separately.

1.1.3 Connectivity and separation properties

Tree-decompositions contain information about the connectivity properties of G. We now
consider how tree-decompositions reflect the connectivity of G at a fixed node t ∈ V (T ).

Throughout this subsection, let (T, (Xt)t∈V (T ) be a fixed tree-decomposition of G.

Definition 1.1.9. For any node t ∈ V (T ), the components of T − t are called the
branches of T at t.

Lemma 1.1.10. Let t ∈ V (T ) be an arbitrary node. For each vertex v ∈ V , either
v ∈ Xt or v is contained only in parts of exactly one branch of T at t. This branch is
denoted by Tt(v).

5



1 Graph Theoretical Preliminaries

Proof. For v ∈ Xt, we are done. If v 6∈ Xt, it has to be contained in another part by
Condition(T1). If it was contained in some vertex sets Xt1 , Xt2 of different branches, t
would lie on the unique path from t1 to t2 in T and by Property (T3) we could conclude
that v ∈ Xt. This is a contradiction, so there is just one such part.

Lemma 1.1.11. There holds:

• If uv ∈ E and u and v are not in Xt, then Tt(u) = Tt(v).

• More generally, if u, v ∈ V are neither elements of Xt nor separated in G by Xt,
then Tt(u) = Tt(v).

Proof. Since Property (T2) has to hold, we know that for each edge uv ∈ E there exists
a part Xt′ , t

′ 6= t containing both u and v. The branch containing the node t′ contains
both u and v in its part Xt′ and by uniqueness Tt(u) = Tt(v). The second statement
follows from the fact that we can iteratively apply the first statement for a path from u
to v which does not meet Xt.

This already suffices to see that it is not possible to find paths between vertices of different
branches which do not meet Xt. More precisely, we can derive the following corollary
from Lemma 1.1.10 and Lemma 1.1.11.

Corollary 1.1.12. For an arbitrary node t ∈ V (T ) and branches T1, . . . , Tn of T at t,
consider the subgraphs

Gi := G

 ⋃
l∈V (Ti)

Xl


for 1 ≤ i ≤ n. The subgraphs

G1 −Xt, G2 −Xt, . . . , Gn −Xt

neither have a vertex in common nor edges between them.

This means that the parts of the tree-decomposition are indeed somehow structured like
a tree. We can even transfer some separation properties.

Lemma 1.1.13. For any edge t1t2 ∈ E(T ), let T1, T2 be the components of t1 and t2 in
the graph T − t1t2 and define the corresponding vertex sets

U1 :=
⋃
t∈T1

Xt, and U2 :=
⋃
t∈T2

Xt

There is no path from U1 to U2 that does not use vertices from Xt1 ∩ Xt2. If the tree-
decomposition is reduced in the sense of Definition 1.1.4, the set Xt1 ∩Xt2 separates U1

and U2 in G.

6



1.2 Graphs of treewidth at most k

Proof. Since t1 and t2 are on each T1T2-path in T , Property (T3) implies that U1 ∩U2 ⊆
Xt1 ∩ Xt2 . Therefore, any possible U1U2-path not using Xt1 ∩ Xt2 cannot use inner
vertices from U1 ∩ U2. If we assume the existence of such a path, it has to contain a
direct edge u1u2 with u1 ∈ U1\U2 and u2 ∈ U2\U1 because U1 ∪ U2 = V . Property (T2)
yields a common part Xt with u1, u2 ∈ Xt.

But the corresponding node t is neither allowed to be in T1 nor T2 by the choice of u1
and u2, which yields a contradiction to the existence of t.

If the tree-decomposition is reduced, there are vertices v1 ∈ Xt1 ⊆ U1, v2 ∈ Xt2 ⊆ U2

which are not in Xt1 ∩Xt2 . Those are, of course, not connected anymore if we remove
Xt1 ∩Xt2 and, therefore, Xt1 ∩Xt2 is a separator.

Lemma 1.1.14. Given a set W ⊆ V , there exists either t ∈ T with W ⊆ Xt or there
exist w1, w2 ∈ W and an edge t1t2 ∈ E(T ) such that w1, w2 6∈ Xt1 ∩ Xt2 and they are
separated by Xt1 ∩Xt2 in G.

Proof. Suppose there are no w1, w2, t1, t2 as desired, then for each edge t1t2 in T one
of the sets U1, U2 (as defined in Lemma 1.1.13) contains W . We orient the edge t1t2
towards ti with W ⊆ Ui. This defines an acyclic orientation of the edges of T and there
is a maximal directed path ending at some node t.

Each w ∈ W is contained in some part Xt′ . If t 6= t′ we consider the edge e incident
to t along the unique tt′-path. This edge has to be directed towards t because of the
maximality and thus another node of the component containing t in T − e has to contain
w by definition of the orientation. Property (T3) implies w ∈ Xt for arbitrary w ∈ W
i.e. W ⊆ Xt.

We use the previous result to show that the treewidth does depend on the clique number
of G.

Lemma 1.1.15. The vertex set of any complete subgraph of G is contained in some part
of a tree-decomposition (T,X ) of G. Thus there holds

ω(G)− 1 ≤ tw(G)

Proof. LetW be a clique in G. Since all elements ofW are pairwise adjacent, the second
condition in Lemma 1.1.14 can not be valid. So we get W ⊆ Xt for some node t.

Obviously |W | ≤ |Xt| for all complete subgraphs and all tree-decompositions. Therefore,
the inequality follows directly.

1.2 Graphs of treewidth at most k

In this section, we will consider graphs of bounded treewidth. Using some related con-
cepts, we will give some kind of description for this very interesting subclass of graphs.

7



1 Graph Theoretical Preliminaries

1.2.1 Clique sums

We noticed in the last section that the treewidth of G does depend on the graphs connec-
tivity. We observed that for all edges tt′ of T with Ui 6⊆ Xt∩Xt′ , i = 1, 2 the set Xt∩Xt′

separates the vertices of the two different components of T − tt′ due to Lemma 1.1.13.
This may motivate the following considerations.

We consider graphs constructed using k-cliques i.e. subsets of k vertices of a graph such
that their induced subgraph is isomorphic to Kk.

Definition 1.2.1. A k-clique sum of two graphs G1 and G2 containing k-cliques C1 and
C2 respectively is the graph obtained by pairwise identifying the vertices (and edges) of
C1 and C2, while possibly deleting some of the edges between these k new vertices. We
say that this new graph is obtained by pasting G1 and G2 together along C1 and C2.

This process can be visualized by gluing two graphs together along the fixed k-cliques.
One can show the following lemma

Lemma 1.2.2. If the graphs G1 and G2 both have treewidth at most k, then so does any
k-clique sum of G1 and G2.

Proof. Let G be a k-clique sum obtained by pasting along k-cliques C1 ≤ G1 and C2 ≤ G2

without deleting edges. From the tree-decompositions (T1,X1) and (T2,X2) of G1 and
G2, we construct a tree-decomposition (T,X ) for their clique sum.

Let ti ∈ V (Ti), i = 1, 2 be the node such that Ci ⊆ Xti according to Lemma 1.1.15. Now
choose T to be the tree obtained by connecting the trees T1 and T2 with a new edge t1t2.
Apart from identifying the nodes from C1 and C2 in the parts X1 and X2, we keep the
labels.

It is easy to see that the Conditions (T1) and (T2) hold. Since only labels of the clique
are shared and they are all contained in both nodes t1 and t2, Property (T3) holds too.
Of course, the treewidth has not increased at all.

It remains to notice that we can use this tree-decomposition too when deleting possible
edges – this just weakens Property (T2)!

Using this fact we can derive the following result about the structure of graphs of fixed
treewidth.

Lemma 1.2.3. Let G be a graph of treewidth k. Then G can be obtained by recursively
pasting together graphs of cardinality at most k + 1.

Proof. We consider a tree-decomposition of G of width k. Every part Xt, t ∈ V (T )
consists of at most k + 1 vertices – these essentially give the component graphs Gt =
G[Xt], t ∈ T we are going to paste together!

8



1.2 Graphs of treewidth at most k

For every edge tt′ of T , we iteratively perform a clique sum of the (sub-)graphs Gt and
Gt′ along Xt∩Xt′ . Therefore, we just add the mandatory edges to the component graphs
Gi in the first place and do not remove them until the final clique sum is performed that
involves a particular edge. Obviously the graph obtained in this process is G.

We immediately derive another useful result.

Corollary 1.2.4. Let G be a graph of treewidth k with at least k + 2 vertices. Then G
has a separator of size at most k i.e. a subset S ⊆ V of size at most k such that G − S
is disconnected.

Proof. Since G has at least k + 2 vertices, it is obtained by gluing together at least two
graphs G1 and G2 of cardinality at most k + 1 along a clique C. We can assume that
the graphs Gi−C are non-empty because otherwise the pasting would not add anything
and could be omitted anyway. By definition, C is a separator for G and, of course, its
cardinality is at most k.

1.2.2 Chordal graphs

At this point, we would like to mention chordal graphs. These graphs are not only an
example for graphs with a very special structured tree-decompositions but they also help
understanding treewidth for arbitrary graphs a little better.

Definition 1.2.5. A graph G is called chordal if every cycle C in G of length at least
four contains a chord, i.e. an edge between two vertices of C that are not yet adjacent
along C.

Remark. Every induced subgraph G[W ],W ⊆ V forming a cycle is therefore a triangle.
Therefore, chordal graphs are sometimes called triangulated graphs.
Example. A obvious example for chordal graphs are complete graphs. By definition, all
sets of three vertices induce a triangle.

There are some alternative characterizations that are sometimes quite useful. Especially,
we would like to mention the following.

Definition 1.2.6. A vertex v of G is called simplicial if the neighbourhood NG(v)
induces a complete subgraph of G.

Definition 1.2.7. A perfect elimination ordering is an ordering of the vertices v1, . . . , vn
of a graph G = (V,E) such that for i = 1, . . . , n holds

The vertex vi is simplicial in the induced subgraph G [V \{v1, . . . , vi−1}].

A way to visualize this is that, when iteratively removing the vertices v1, . . . , vn from
our graph G, they are always mutually adjacent. Graphs having a perfect elimination
ordering are sometimes called perfect elimination graphs.

9
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Theorem 1.2.8. Given a graph G = (V,E), the following statements are equivalent:

1. G is chordal.

2. G is a perfect elimination graph.

3. For each pair of vertices v, w ∈ V every minimal vw-separator in G is a complete
subgraph of G.

We are not going to present a proof here since we are not going to use this result anyway.
Nevertheless, the equivalence of chordal graphs and perfect elimination graphs will help
linking this subsection to the following. A proof of Theorem 1.2.8 can, for instance, be
found in [7].

We now show the following.

Lemma 1.2.9. A graph G = (V,E) is chordal if and only if it can be constructed recur-
sively by pasting together complete graphs along complete subgraphs.

Proof by Diestel [1]. It is quite easy to see, that graphs G obtained from chordal graphs
G1, G2 by pasting along complete subgraphs are chordal: the intersection is complete, so
any induced cycle in G either is completely contained in G1 or in G2 and thus a triangle
by assumption. Therefore, the property of being chordal is recursively inherited from the
original complete graphs.

Conversely, if G is chordal, we perform an induction on |V |. If G is complete, we just
have one trivial component; otherwise we find two non-adjacent vertices a, b ∈ G and
take a minimum-size separator X ⊆ V \{a, b} of a and b i.e. every ab-path in G contains
a vertex contained in X. The component of G−X containing a is denoted by C and we
define the subgraphs G1 = G[V (C) ∪X] and G2 = G− C.

G arises from G1 and G2 by pasting along G[X], where G1 and G2 are chordal (as induced
subgraphs of the chordal graph G) and , by induction, both recursively constructed by
pasting along complete graphs along complete subgraphs.

It remains to argue that the pasting along G[X] is also along a complete subgraph.
Suppose there are s, t ∈ X which are non-adjacent. Since X is minimal, both s and t
have a neighbour in the component C of a and we find a st-path with vertices in G1. We
denote the shortest such path by P1 and, analogously, we find a shortest st-path P2 in
G2. We now observe that P1P2 is a cycle in G which has no chord because the paths are
minimal and s, t non-adjacent. This is a contradiction to the fact that G is chordal and,
thus, G[X] has to be complete.

So G is constructed by pasting together complete graphs along complete subgraphs too.

We already mentioned at the beginning of this subsection that chordal graphs have a
very nice structured tree-decomposition.
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Corollary 1.2.10. A graph G = (V,E) is chordal if and only if there exists a tree-
decomposition of G into complete parts i.e. every part induces a complete subgraph in
G.

Proof. If there is a tree-decomposition (T, (Xt)t∈V (T )) with complete parts, then G can
be obtained by pasting together the complete parts along the sets Xt1 ∩ Xt2 , t1t2 ∈ T
as we did in Lemma 1.2.3: We apply induction on |V |. If there is only one part, we are
complete and thus chordal; otherwise we choose a reduced tree-decomposition, take an
edge t1t2 ∈ T and split up G into the subgraphs G1, G2 induced by the components of
t1 and t2 in T as we did in Lemma 1.1.13. Since we chose a reduced tree-decomposition,
the graphs Gi are smaller than G and, thus, they are chordal by induction hypothesis.
G is obtained from chordal graphs G1, G2 by pasting along G1 ∩G2 ⊆ Xt1 ∩Xt2 , which
is complete because Xt1 and Xt2 are. Therefore, G is chordal by Lemma 1.2.9.

Conversely, if G is chordal, Lemma 1.2.9 gives a pasting structure for G. We can re-
cursively define a tree-decomposition by starting with the trivial decompositions for the
complete subgraphs and – whenever we paste together two graphs G1, G2 with tree-
decompositions (T1,X 1) and (T2,X 2) along a complete subgraph – we define a valid
tree-decomposition for the resulting graph. The complete subgraphs C1, C2 we paste
along, are entirely contained in some parts X1

s and X2
t by Lemma 1.1.15. We just keep

the vertex sets and define the tree T for G by connecting T1, T2 by adding an edge st. It
is quite easy to see that this indeed gives a tree-decomposition for the original graph.

We can use this result to compute or at least bound the treewidth of arbitrary graphs.

Corollary 1.2.11. For a graph G = (V,E) there holds

tw(G) = min{ω(H)− 1|G ⊆ H;H chordal }

Proof. For each chordal supergraph H, we know that tw(H) = ω(H) − 1 as immediate
consequence of Corollary 1.2.10. Combining this with Lemma 1.1.6 we already know
tw(G) ≤ tw(H) = ω(H)− 1.

Take a tree-decomposition (T,X ) of G with treewidth tw(G) and consider the subgraphs
G obtained by adding edges uv to G for all u, v that occur in a common part Xt.
Considering (T,X ) as a tree-decomposition of H, we see that H has complete parts and
treewidth at most tw(G). By Corollary 1.2.10, H is chordal and tw(H) = ω(H)− 1. So
there holds ω(H)− 1 = tw(H) ≤ tw(G) and we are done.

As shown in Corollary 1.2.11, we can thus envision graphs with treewidth at most k as
subgraphs of chordal graphs with clique number at most k + 1.

Corollary 1.2.12 (Folklore). G has treewidth at most k if and only if G is the subgraph
of a chordal graph with maximum clique size at most k + 1.

Or, in other words

11
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Corollary 1.2.13 (Folklore). G has treewidth at most k if and only if G has a minimal
triangulation with maximum clique size at most k.

1.2.3 Partial k-trees

Another concept which is often used for algorithmic purposes are partial k-trees. For
instance Arnborg and Proskurowski used the concept of partial k-trees in [6] to build
linear-time algorithms for NP-complete problems on graphs. We will see this notion is
equivalent to the concept of graphs of treewidth at most k.

Partial k-trees are subgraphs of so called k-trees.

Definition 1.2.14. k-trees are defined in a recursive manner:

• The complete graph Kk is a k-tree.

• Every graph obtained from a k-tree G by adding a new vertex v and edges from v
to k mutually adjacent vertices of G is a k-tree.

Example. Obviously k-trees can be seen as a generalization of trees, which are 1-trees.

The recursive description immediately shows that k-trees have a perfect elimination order
and thus are a special case of chordal trees, as mentioned in the previous subsection.

We now give an alternative proof for the equivalence of partial k-trees and graphs of
treewidth at most k.

Theorem 1.2.15. A graph G = (V,E) is a partial k-tree if and only if G has treewidth
at most k.

Proof. Let G be a partial k-tree i.e. a subtree of a k-tree G′. We apply induction on
n := |V (G′)|. If n ≤ k+1, we just have a complete graph and thus treewidth tw(G′) ≤ k.
Otherwise there is a node v of degree k whose neighbourhood forms a k-clique. The graph
G′ − v has treewidth at most k by the induction hypothesis and by Lemma 1.1.15 there
is a part Xt containing N(v). Expanding (T,X ) by adding a new node t′ adjacent to t in
T and defining Xt′ = N(v) ∪ v, we derive a tree-decomposition for G′ of width at most
k. Obviously tw(G) ≤ tw(G′) ≤ k holds.

For the second implication, let (T,X ) be a reduced tree-decomposition of width at most
k for G. We perform induction on n := |V |. If n ≤ k + 1 we obviously have a partial
k-tree; otherwise we examine a leaf t of T and denote its unique neighbour in T by t′.
Since we are reduced, there exists a vertex v ∈ Xt\Xt′ , which is – by definition – just
contained in this one part Xt and, thus, has less than |Xt| − 1 neighbours. Now G− v is
a partial k-tree by induction. Adding v and less than |Xt| − 1 ≤ k edges preserves this
property. Hence G is a partial k-tree.

12
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So these concepts are indeed equivalent and we have found an alternative, and possibly
more intuitive, characterization of the concept of graphs with bounded treewidth. By
the above construction, we can even obtain a bound for the number of nodes.

Corollary 1.2.16. If G = (V,E) has treewidth at most k, there exists a tree-
decomposition (T,X ) with width at most k and |V (T )| ≤ |V | − k.

Furthermore, we can, for instance, observe the following.

Corollary 1.2.17. Every graph of treewidth at most k contains a vertex of degree at
most k.

Proof. If each vertex had degree at least k+ 1, we obviously cannot find a perfect elimi-
nation ordering.

Corollary 1.2.18. Every graph of treewidth at most k has chromatic number at most
k+ 1 i.e. its vertices can be coloured with k+ 1 colours such that adjacent vertices are in
different colour classes.

Proof. This is obviously true for graphs with just one vertex. The above statement
follows by induction: we take away the node v of degree at most k, colour the remaining
graph G\{v} of treewidth ≤ k and there is at least one unused colour in N(v) we can
use for v.

1.2.4 Elimination orderings

During the last sections, we noticed that k-trees do have a perfect elimination ordering.
We now want to find a similar result for partial k-trees and graphs of bounded treewidth.

Definition 1.2.19. An elimination ordering is a permutation (vi)
|V |
i=1 of the vertices of

a graph G. This corresponds to an elimination process for the graph defined by defining
G0 := G and iteratively constructing new graphs Gi by:

1. removing the vertex vi from Gi−1.

2. and making the neighbouring vertices NGi−1(vi) mutually adjacent.

Example. A perfect elimination ordering is just a special case of the above definition,
where the second step of adding missing edges can be omitted: For perfect elimination
orderings, by definition, the vertex vi is always simplicial and its neighbours are thus
already mutually adjacent!

Remark. As a matter of fact, the above definition of an elimination ordering even has
some practical background. Consider a symmetric matrix M = (mij)

n
i,j=1 and the cor-

responding graph GM = (V,E) with vertices v1, . . . , vn with mij 6= 0 if and only if the

13
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corresponding vertices vi and vj are adjacent in GM . When we perform Gauss elimination
for the i-th row of such a symmetric matrix we get new elements

mjk = mjk −mik ·
mji

mii
= mjk −mik ·

mij

mii

mkj = mkj −mij ·
mki

mii
= mjk −mij ·

mik

mii

One can see that an element does not change if either mij or mik is zero. On the other
hand, an element becomes non-zero if and only if mij or mik are non-zero. Translated
into our graph, this means that we add an edge vjvk if the edges vivj and vivk had
previously been present. All the entries mik and mji vanish, which means that the edges
vivj and vivk are deleted.

We can also find some measure for such an elimination ordering.

Definition 1.2.20. The width of an elimination ordering (vi)
n
i=1 of a graph G = (V,E)

is defined by

max
i=1,...,n

∣∣NGi−1(vi)
∣∣

i.e. it is the maximal number of neighbours a vertex vi has at the time of its removal.

We now show:

Lemma 1.2.21. G is a partial k-tree if and only if it has an elimination ordering of
width at most k.

Proof. For a partial k-tree G, we can find a supergraph H which is a k-tree. H has
a perfect elimination ordering as stated before. We now follow this perfect elimination
ordering as an elimination ordering of G. G is a subgraph of H, so a vertex can never
have more than k neighbours at its time of removal and the width is at most k.

If, on the contrary, G has such an elimination ordering of width at most k, we can
reconstruct the graph G by adding vertices in the inverse order of this elimination or-
dering and connecting them to the (previously added) neighbours NGi−1(vi) which are
a |NGi−1(vi)|-clique with |NGi−1(vi)| ≤ k. The result G of this construction is a partial
k-tree because it is a k-tree with some removed edges .

Using Theorem 1.2.15 we see

Corollary 1.2.22. G is of treewidth at most k if and only if it has an elimination
ordering of width at most k.

So there is some kind of natural ordering for the vertices of partial k-trees and simulta-
neously graphs of treewidth at most k.
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1.2.5 Brambles

In graph minor theory, another concept is very useful, which provides an upper bound
for the treewidth. It is mentioned in [4] and – together with some more application – in
Miriam Heinz’s thesis [2, Chapter 4]. For more reference, see also [1, Chapter 11].

Definition 1.2.23. Two setsW1,W2 ∈ V touch if they either intersect or a vertex inW1

is adjacent to a vertex in W2. A bramble B is a collection of mutually touching subsets
of V . The order of a bramble B is the cardinality of a minimal set W intersecting all
sets B ∈ B.

The existence of a bramble of large order gives another equivalent concept to our bounded-
treewidth graphs

Theorem 1.2.24 (Seymour and Thomas). A graph G has treewidth at least k if it has
a bramble of order at least k + 1.

An immediate consequence is that the order of any bramble is an upper bound for the
treewidth of G. The proof of Theorem 1.2.24 is not covered here but can be found in [2,
Chapter 4] or [1, Chapter 11]. Anyway, it is nice to know that there exists some upper
bounds too since previously we only had lower bounds as in Theorem 1.2.13.

1.3 Graph minor theory

As we already mentioned, the concepts of treewidth and tree-decompositions were origi-
nally introduced by Robertson and Seymour in [3] in the field of graph minor theory.

It is used to show the famous graph minor theorem:

Theorem 1.3.1 (Robertson and Seymour, 2004). The class of finite graphs is well-quasi-
ordered by the minor relation i.e. the minor-relation induces a reflexive and transitive
order, in which every infinite sequence s0, s1, . . . of elements contains elements si, sj with
i < j and si ≤ sj.

An essential step in their proof is to show that, for fixed k, graphs of treewidth less than
k are well-quasi-ordered.

The graph minor theorem can also be interpreted in the following sense.

Definition 1.3.2. A graph G is a excluded minor of a class G of graphs, if no graph in
G contains G as a minor.

Corollary 1.3.3. Every minor-closed class of graphs can be described by a finite set of
(pairwise incomparable) excluded minors.
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A famous example of this kind is the theorem of Kuratowski: The class of planar graphs,
which is obviously minor-closed, is characterized by the excluded minors K5 and K3,3.

Note that this result also has some nice algorithmic implications. One could possibly try
to use this set of excluded minors to test membership for the original class of graphs.
Such problems were considered by Robertson and Seymour in their subsequent work [8].

We refer to [2] for a more detailed discussion of the usage of tree-decompositions in graph
minor theory.

We, hereby, finish this mainly theoretical discussion of tree-decompositions and tree-
width. At the end of Chapter 2, we will find tree-decompositions again but in a more
applicable way.
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2 Introduction

This chapter gives a general introduction to the more algorithmic part of this thesis.

We introduce the scope of this thesis by giving a brief overview of the graph theoretical
problems we are going to tackle later on. Afterwards, we introduce the concept of fixed-
parameter tractability in Section 2.1.

Subsequently, in Section 2.2, we introduce the important concepts of nice tree-decompo-
sitions and terminal graphs, which are of special interest for our considerations in later
chapters.

2.1 General settings

2.1.1 Graph problems

In this subsection, we give a first impression of the kind of graph theoretical problems
we are going to deal with throughout this chapter. These definitions are in particular
important for later generalizations but the author decided to move them here to give a
very first impression what this thesis is about. The definitions are taken from [9].

A basic formal notion in this context are graph properties.

Definition 2.1.1. A graph property is a function P, which maps each graph (of a given
class) to a boolean value i.e. true or false and does not depend on the actual represen-
tation/drawing i.e. isomorphic graphs are mapped to the same value.

We say that the property P holds for a graph G, if P(G) = true.

Each graph property P induces a decision problem:

Given a graph G, does P hold for G?

We say that an algorithm decides a graph property P if it solves the corresponding
decision problem.

An example for such a problem is the l-colourability decision problem i.e. deciding,
whether a given graph G admits a function f : V (G) → {1, 2, . . . , l} assigning one of
l colours to each vertex, such that adjacent vertices obtain different colours. This prob-
lem is considered in Section 3.1.

Many graph properties of graphs are so called construction properties.
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Definition 2.1.2. A construction property is a graph property P defined by a pair (D,Q)
in the following way

P(G) = “there is an S ∈ D(G) with Q(G,S) = true ”

where D is a function mapping a graph G to a corresponding solution domain i.e. a set
D(G) depending on G and Q is an extended graph property for G and S i.e. a function
mapping the pairs (G,S), S ∈ D(G) to boolean values.

An element S ∈ D(G) with Q(G,S) = true is called a solution for G.

The induced construction problem P is the problem of not only deciding P for a graph
G but additionally finding a solution S ∈ D(G) if P(G) holds.

For the l-colourability construction problem, we could choose the sets

D(G) = {f : V (G)→ {1, 2, . . . , l}}

and let Q denote whether for fixed f ∈ D(G) the function f corresponds to a valid
colouring for G.

Sometimes we also consider optimization problems. In contrast to graph properties, op-
timization problems implicitly contain some kind of valuation function for the solutions.

Definition 2.1.3. An optimization property is a function Φ defined on graphs by a
quadruple (D,Q, z, opt) in the following way:

Φ(G) = opt{z(S) : S ∈ D(G) ∧Q(G,S)}

where opt ∈ {min,max}, D is a function mapping a graph G to a corresponding solution
domain D(G) depending on G, Q is an extended graph property for G and S and z is a
function mapping graphs S ∈ D(G) with Q(G,S) = true to Z. The function Φ, therefore,
takes values in Z∪{false}, where the value false is obtained in case of optimization over
an empty set.

An element S ∈ D(G) with Q(G,S) and optimal value z(S) is called a solution for Φ.

An optimization property corresponds to the optimization problem of evaluating the value
Φ for a graph G. One can also consider the induced constructive optimization problem of
not only finding the value Φ(G) but also a witness S ∈ D(G) where this value is actually
obtained.

Of course, problems like finding the size of a maximum independent set of vertices are
optimization problems and the problem of constructing a maximum-sized independent
set is a constructive optimization problem.

These types of problems already cover all kinds of problems that we consider throughout
this chapter.
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2.1.2 Complexity and fixed-parameter tractability

This subsection is dedicated to the topic of complexity. We assume that the reader
is familiar with the basic notions of complexity but we want to give a few additional
remarks.

In basic complexity theory and analysis of algorithms, we consider time- and space-
complexity of algorithms. Usually the runtime or used storage of an algorithm is given
in O/Ω/Θ-notation for some given input size n. For instance, a time complexity (or
runtime) O(f(n)) tells us that the number of basic operations performed during the
algorithm is bounded from above by C · f(n) for all inputs of lengths n < n0 with
some constants n0 ≥ 0, C > 0. We often say that such an algorithm takes O(f(n))
time. Similarly the Ω-notation is used for an lower bound function and the Θ-notation
expresses that the given function gives both a lower and an upper bound for different
constants C1 and C2.

Of course, different algorithms for the very same problem possibly have different time
complexity and usually we only bother about the most efficient one. Thus we also speak
of complexity of a problem i.e. the complexity of the best (known) algorithm for a given
problem. Due to these concepts, one can now classify the hardness of problems. For time
complexity, the most common classes are:

• The class P: This is the class of all problems that can be solved by algorithms
taking O(nc) time, for some c ≥ 0, on a deterministic Turing machine i.e. just
by giving a sequence of basic computation steps. Such problems, like searching or
sorting, are usually considered as efficiently solvable.

• The class EXPTIME: A much larger class of problems can, of course, be solved
by algorithms taking exponential time (still on a deterministic Turing machine) in
the input length e.g. traversing all subsets. Since the number of computation steps
grows exponentially, these problems are in practice only solvable for very small
input length.

• The class NP: This class lies somewhere in between P and EXPTIME and con-
tains all problems that can be solved on a non-deterministic Turing machines in a
polynomial number of computation steps. On non-deterministic Turing machines,
it is possible to allow for even more complex computation steps e.g. trying many
different approaches in parallel and waiting for at least one to work out. Therefore,
it is generally believed that the class is strictly wider than P.

Many graph theoretical problems, like colouring or finding maximum matchings,
are NP-complete i.e. they are in NP and as such not easier than any other prob-
lem in NP. If one assumes that P 6=NP, those problems are not in P and they
symptomatically lack in suitable algorithms working for larger input size.

NP-hard problems, i.e. problems which are NP-complete or even harder, like EXPTIME,
still appear quite often in various applications. There is one very useful attempt to deal
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with such NP-hard problems and it is called parametrized complexity [10].

In parametrized complexity problem variants are studied where additional parameters are
fixed. Choosing these additional parameters is non-trivial but some might prove useful.
The goal is to find a parameter such that the parametrized variant is fixed-parameter
tractable i.e. all problems of input size < n and with parameter < k take O(f(k)nc) time
for a suitable function f and a constant c. Note that the dependence on k might even
be exponential but the dependence on the input length n is polynomial!

For our graph problems, we are going to see that the treewidth tw(G) works pretty well
as additional parameter. Throughout this thesis, we will explore quite a few examples
illustrating this fact. Generally the variable n is going to denote the number of graph
vertices |V |, while we use the variable k for denoting our parameter: the graphs treewidth.

2.1.3 A common structure for algorithms on graphs of bounded treewidth

A very common scheme for fixed-parameter tractable graph problems exploiting tree-
decompositions is the following:

1. First we compute a tree-decomposition of the input graph G = (V,E).

Although determining the treewidth of a graph is - in general - NP-complete as we
will see in Chapter 4, some certain problem variants are fixed-parameter tractable.

It is even possible, for fixed k, to find a tree-decompositions of width at most k in
linear time with respect to the input size n, given that such a tree-decomposition
exists. We consider this step in Chapter 4.

2. We apply a special kind of algorithm that traverses the nodes of the tree-
decomposition from the leaves up to the root and evaluates some tables along
the way. These tables correspond to some intermediate solutions. The root node,
finally, should somehow yield a solution for the overall problem.

Those kind of algorithms are, usually, fixed-parameter tractable and many algo-
rithms even have linear time complexity in n. We consider such algorithms in
Chapter 3.

This way, many NP-hard graph problems indeed become fixed-parameter tractable. Of
course, the constants hidden in the O-notation are usually quite large. They usually
grow exponentially with respect to the graphs treewidth!

Nevertheless, the obtained algorithms are of practical significance and the main part of
this thesis will follow this scheme. We will finally mention one other type of algorithm
in the final Chapter 5.
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2.2 Useful concepts for algorithmic considerations

As we already mentioned, the concepts of tree-decompositions and treewidth explored
in Chapter 1 are very useful when they are applied to develop certain kinds of graph
theoretical algorithms. Anyway, the abstract definition is quite difficult to handle.

Therefore concepts, such as the following nice tree-decompositions, were developed which
provide a more specific structure. Both nice tree-decompositions and terminal graphs are
very useful in the following chapters.

2.2.1 Nice tree-decompositions

The following notion definitely serves the purpose of simplifying the structure of a tree-
decomposition. We mainly refer to [11] for this section.

Definition 2.2.1. A tree-decomposition (T,X ) is called nice, if the tree T is a rooted
tree and each vertex of T is of one of the following four types:

• A leaf t ∈ V (T ) with |Xt| = 1 is called a leaf node of (T,X ).

• A vertex t ∈ V (T ) with exactly one child t′ and Xt = Xt′ ∪ {v} for some vertex
v ∈ V \Xt′ is called a introduce node of (T,X ).

• A vertex t ∈ V (T ) with exactly one child t′ and Xt′ = Xt ∪ {v} for some vertex
v ∈ V \Xt is called a forget node of (T,X ).

• A vertex t ∈ V (T ) with exactly two children t1, t2 and Xt = Xt1 = Xt2 is called a
join node of (T,X ).

We again use the term node for all these types of vertices of the tree T .

This definition is quite practical because T provides some kind of order, in which the
vertices can be traversed and, additionally, the possible situations occurring throughout
this traversal are restricted to just four cases.

It is thus nice that we can always find tree-decompositions of this kind - just by intro-
ducing some more intermediate vertex steps and without increasing the treewidth. Our
proof was motivated by the scheme given by Scheffler in [12] but works a little different
because we use a slightly different definition of nice tree-decompositions.

Theorem 2.2.2. Given a tree-decomposition (T,X ) of width k, we can always find a
nice tree-decomposition (T ′,X ′) with the same width k and just O(k · |V |) nodes. This
transformation can be done in O(k2 · |V |) time.

Proof. We obtain a nice tree-decomposition of width k by the following procedure. At
first we choose an arbitrary root r for our tree T and orient it.
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Next we traverse the tree from the root to the leaves, while iteratively removing unde-
sirable cases. When we reach a node with m > 2 children, we recursively replace it by
suitable join nodes i.e. in each step, we split up the m children into smaller sets C1, C2

and make the nodes in C1 successors of the left child the nodes in and C2 successors of
the right child. Children having no children themselves do not need to be considered
because they were redundant in the original tree-decomposition. Iteratively, we end up
with a binary subtree.

For a node t having one child s and Xt ⊆ Xs or Xs ⊆ Xt, we first omit the node with
the minor vertex set, which was redundant in the previous decomposition anyway and
continue with the remaining node. This step is necessary for the later estimation of the
nodes! If t has one child s and the above conditions are excluded, we know

Xs\Xt = {v1, . . . , vn} 6= ∅ and Xt\Xs = {w1, . . . , wm} 6= ∅

We replace t by a series of introduce nodes for the vertices v1, . . . , vn, followed by a series
of forget nodes for the vertices w1, . . . , wm. That way, we replace an edge t−s by a series
of 1 ≤ n ≤ k introduce and 1 ≤ m ≤ k forget nodes with vertex sets

Xt ⊃ Xt\{v1} ⊃ . . . ⊃ Xt\{v1, . . . , vn−1} ⊃
= Xt ∩Xs ⊂ Xs\{w1, . . . , wn−1} ⊂ . . . ⊂ Xs\{w1} ⊂ Xs

Similarly, we replace the nodes t without children and vertex set Xt = {v1, . . . , vn} by a
series of n introduce nodes and a final leaf node with sets Xt ⊃ Xt\{v1} ⊃ . . . ⊃ {vn}.

We are now able to bound the number of nodes: In every forget node, we remove a
vertex v. By Property (T3), these vertices are unique and there are at most n = |V |
forget nodes.

Introduce vertices are a bit more complex to estimate because a fixed vertex is possibly
introduced in different subtrees. We inserted a series of at most k introduce nodes when
dealing with nodes of degree 1, on the one hand, and when dealing with the leaves of T ,
on the other hand. The first type of introduce nodes can be bounded by kn because each
such series is followed by at least one forget node. In our construction, the second type of
construction does not appear after a join node. Since the intermediate introduce nodes
are always followed by at least one forget node, the second type of series is always started
at a forget node. Thanks to this correspondence, there are no more than kn introduce
nodes of the second type either. The same argument bounds the number of leaf nodes
by n.

The fact that the result is a subdivision of a binary tree with at most n leaves immediately
tells us that there are at most n − 1 (join) nodes of degree 2 and the total number of
nodes is, hence, O(k · |V |).

At each node in this traversal, we need O(k) operations for the local changes. Therefore,
the time complexity for the traversal is determined by the number of visited nodes and
the total traversal takes O(k2 · |V |) time.
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2.2 Useful concepts for algorithmic considerations

Through nice tree-decompositions are not more powerful in general, they make the design
of algorithms a lot easier. Typically, the tree T is traversed from the leafs to its root
and - depending on the type of the actual node - partial solutions of the former nodes
are combined in an adequate way to a new extended (partial) solution. The suitable
method for doing this is usually pretty easy for leaf and forget nodes but more complex
for introduce and join nodes. We take a look at this more formally in Chapter 3.

Finally, we want to do a quick reformulation of Lemma 1.1.13 for nice tree-decompositions
that we will exhaustively use in the next chapter.

We know, by Lemma 1.1.13, that for an edge ij ∈ E(T ), j < i either Ui ⊂ Xi ∩Xj for
i = 1 or i = 2, or the set Xi ∩Xj is a separator for the sets U1, U2 of our graph G. In
this case, U1 is exactly the set of all vertices in Xi and U2 is the set of all vertices that
do occur in Xj and later vertex sets. So, in particular

Lemma 2.2.3. For a nice tree-decomposition (T, (Xi)i∈V (T )) and an arbitrary node i
with predecessor parent(i), there are no edges between the vertices of Vi\(Xi ∩Xparent(i))
and the vertices in V \Vi.

This tells us that, whenever we are done executing a particular node i, we do not have
to bother about the vertices in Vi\Xi anymore in future adjacency tests. Therefore, it is
possible to traverse the neighbours very efficiently!

2.2.2 Terminal graphs

One can consider nice tree-decompositions as certain algebraic expressions that generate
a graph, see [4] or [11].

Definition 2.2.4. A terminal graph is a triple (V,E,X), where (V,E) is an undirected
graph and X ⊆ V is an ordered set of terminals i.e. a list of vertices (with a special role).
If there are l terminals, we say our terminal graph is a l-terminal graph.

We sometimes speak of terminal subgraphs.

Definition 2.2.5. A l-terminal graph H is called (terminal) subgraph of G = (V,E) if
there exists a l-terminal graph H ′ with G = H ⊕ H ′, where ⊕ denotes the operation
of first taking the disjoint union and then pairwise identifying the i-th terminals of the
argument graphs. Possible multiple edges are omitted.

Note that the operation ⊕ works on l-terminal graphs but the result is an ordinary graph.
We will reuse this operation in Chapter 3.

The notion of nice tree-decompositions (T, (Xi)i∈V (T )) could also be stated in terms of
terminal graphs. To each node i we associate a terminal graph (Vi, E(Vi), Xi) induced
by the vertex set

Vi =
⋃
{Xj |j = i or j lies below i in our rooted tree T}
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i.e. all vertices contained in the vertex sets of i and the nodes below i. The terminal
vertices are the vertices in the vertex set of the current node. We use i <T j to express,
that a node j lies below i in the tree T - in particular, the root is the unique minimal
element in this tree-order.

The four types of nodes are translated into operations of arity 0, 1 and 2 on terminal
graphs.

Leaf node: The constant Leaf gives a 1-terminal graph ({v}, ∅, (v)) with one terminal
vertex v. This obviously is the associated terminal graph induced by a leaf node v.

Introduce node: For each subset S ⊆ {1, . . . , |X|}, we define a unary operation
IntroduceS that adds a new vertex v to a terminal graph (V,E,X) which is
adjacent to the i-th terminal node, for all i ∈ S. The vertex v is also added to the
terminal list.

The result is, of course, the terminal graph induced by the vertex set X∪{v}, given
that the neighbours of v in (V,E) are given by S. This corresponds to a special
introduce node introducing a new node v with exactly the neighbourhood S.

Forget node: For each node 1 ≤ i ≤ l, we define a unary operation Forgeti that makes
the i-th terminal not terminal. This results, given a terminal graph (V,E,X), in
the terminal graph (V,E,X − {xi}) where X = (xi)

l
i=1 .

This corresponds to a special forget node, where the i-th element is deleted from
the topmost vertex set and thus there is no connection to any possible new vertices
anymore.

Join node: The binary operation Join takes two l-terminal graphs H1, H2 and yields the
graph H1⊕H2 obtained by taking the disjoint union of H1 and H2 and identifying
the terminals. The l nodes obtained by identification are exactly the terminals of
the resulting terminal graph.

This exactly glues the two subgraphs together as it is intended for introduce nodes.
All non-terminal nodes do not interfere with each other anyway by Lemma 1.1.12
and there is no need to identify them anyway.

Directly from the fact that each graph has a nice tree-decomposition, we can find a
way to build a graph of treewidth at most k just by Leaf, Join, IntroduceS and
Forgeti operations. On the contrary, this generation process also immediately gives a
tree-decomposition. We thus observe the following.

Theorem 2.2.6. A graph G has treewidth at most k if and only if (V,E, ∅) can be
formed by Leaf, Join, IntroduceS and Forgeti operations with S ⊂ {1, . . . , k} and
1 ≤ i ≤ k + 1.

The later bounds for S and i immediately follow, since the maximum size of a vertex set
is k + 1 by the definition of tree-decompositions.
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2.3 Implementation details

2.3 Implementation details

Before designing an actual algorithm, one always has to think about some suitable data
structures. An algorithm which involves graphs naturally needs some kind of structure
storing the vertices, edges and their induced adjacency and incidence relations. Even
simple time estimations on graphs, e.g. for adjacency tests, usually depend on this internal
representation of the graph. It is, therefore, important to find a suitable representation.

We devote this short section to giving a clear overview, what kind of structures we intend
to use to unify later complexity estimations.

2.3.1 A data structure for graphs

A very simple approach might be to just store the vertices and edges in lists. Anyway,
this generally is not very efficient, because even for a simple adjacency test the entire
edge list has to be traversed.

In practice, other representations for a graph G = (V,E) with V = {v1, . . . , vn} are used.
Examples for such representations are:

adjacency matrices: We store a (symmetrical) matrix GM = (gij)
n
i,j=1 with gij > 0 if

and only if vi and vj are adjacent. This way we can check adjacency of two vertices
in constant time just by accessing the corresponding matrix element. To iterate
over all neighbours one would need to traverse one column of the matrix, which
can be done in O(n).

Obviously, one needs to store exactly n2 values and the storage complexity is there-
fore Θ(n2).

Adjacency lists: Another useful representation are adjacency lists Li = (nij)
ni
j=1 ⊂

V ni , i = 1, . . . , n where the list Li contains all the vertices adjacent to vi. Of
course, this gives an optimal time for traversing all neighbours, namely O(d(vi)),
where d(vi) denotes the degree of vi in G. On the contrary, for checking adjacency
of two vertices vi, vj we either have to traverse the entire adjacency list Li or Lj .

The storage needed for this representation is linear in |E| because each edge con-
tributes in exactly two adjacency list entries. Obviously this isO(n2), but in general
better - especially for sparse graphs!

Depending on the type of operations which need to be performed different representations
might lead to the most efficient implementations.

We will mainly use adjacency matrices throughout the next chapter and - disregarding
further remarks - we use this representation for giving complexity estimations for sub-
parts of all our algorithms. Therefore, adjacency tests are performed in constant time,
while traversing neighbours generally takes O(n) time. We do not bother because we
usually only traverse the neighbours in the current vertex set Xi. This can obviously be
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performed in O(k) time for graphs of treewidth at most k.

The storage complexity for graphs is thus O(n2).

2.3.2 A data structure for tree-decompositions

We store nice tree-decompositions (T,V) of graphs in linked list of type Node . Each
Node n corresponds to some t ∈ V (T ) and has the following properties:

• leftChild : points to the entry corresponding to the left child of t, if existent

• rightChild : points to the entry corresponding to the right child of t, if existent

• vertices: an (ordered) list of all the indices of the vertices in Xt

We just need to save a pointer to Node nr corresponding to the root node r ∈ V (T )
and then we can visit all nodes of our tree-decomposition by a depth-first- or breadth-
first-search in linear time. Traversing the vertex list of any node, obviously takes O(k)
additional time because the list has at most k + 1 entries if the treewidth is at most k.

The storage complexity for this kind of structure is O(k|T |). Without loss of generality,
we can assume that |T | is in O(kn) by Theorem 2.2.2 and, therefore, we use O(k2n)
storage.

We can distinguish the four types of nodes by checking the child nodes in constant
time: for join nodes both children are defined, for leaf nodes there are no children and
introduce and forget nodes have exactly one child. The later ones generally differ in
the size of vertices; alternatively we can e.g. only use left children for introduce nodes
and right nodes for forget nodes. Anyway, we assume these checks are implemented
via some boolean functions isLeaf(Node n), isJoin(Node n), isIntroduce(Node n) and
isForget(Node n) running in constant time.

Another useful operation is to check at a node t ∈ V (T ) whether a vertex v has a
neighbour in the set Xt. Note that this operation can be performed in O(k) by traversing
the list vertices.

These functions will occur in Chapter 3. For simplicity, we assume that the vertices of
G have a fixed order which is followed in all lists vertices. This simplifies modifications
in the building process, because we can detect the index of the modified element by just
comparing the corresponding vertex lists.

This, finally, concludes the introductory part of this thesis. With Chapter 3, we finally
start to construct some nice algorithms working with nice tree-decompositions.
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3 Algorithms for Graphs with Known
Decomposability

After introducing the necessary basics in Chapters 1 and 2, we are now able to start
solving problems on graphs of bounded treewidth.

The knowledge of a tree-decompositions of a graph G makes a variety of (sometimes
even NP-hard) problems on graphs fixed-parameter tractable. Using this approach, we
can, assuming that the treewidth of our graph G is bounded by some fixed integer k,
solve NP-complete problems such as l-colouring of vertices, maximum independent set
and others in polynomial time.

We will, throughout this chapter, take a look at such algorithms and some general ap-
proaches that can be applied for a number of different graph problems.

3.1 Dynamic programming on graphs

In this section, we introduce a general technique for solving graph theoretical problems
that was first mentioned in 1989 by Arnborg and Proskurowski in [6].

Of the approaches mentioned in this chapter, this one is maybe the most intuitive and
informal one. Nevertheless, it involves a custom process for each problem and we will,
therefore, spend most of this section giving concrete examples for such algorithms.

The original technique by Arnborg and Proskurowski was intended for partial k-trees but
a similar scheme can be applied for graphs of bounded treewidth, as mentioned in [11].

3.1.1 General outline

The algorithm consists of the following steps:

1. Compute a nice tree-decompositions of G with width at most k (or equivalently a
k-tree H containing G). As we will see in Chapter 4, this can be done in linear
time.

2. Traverse the graph in the order given either by the tree T of our tree-decomposition
or by a perfect elimination ordering for H. At each step, some kind of partial
solution for a subtree of G is computed. This partial solution is some kind of table
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3 Algorithms for Graphs with Known Decomposability

storing certain characteristics of the subtrees induced by the set of already handled
nodes.

For this computation, the partial solutions of previous steps are combined according
to the local structure of G. Given a nice tree-decomposition, there is a fixed way of
combining the partial solutions for each type of node. For partial k-trees, a similar
update procedure is used.

The time spend in this traversal obviously depends on the update procedure. A
reasonable update procedure should take at most polynomial time, giving a poly-
nomial time complexity for the traversal. In many cases, the time-complexity of
the update procedure is even constant in the number of vertices/nodes (e.g. O(k)).
This results in linear time complexity for the total traversal linear (with respect to
the size of G).

3. From the characteristics given by the tables of the partial solution for the root node
of T (or similarly the final k-clique in the elimination process of the k-tree H), one
is then able to compute an answer or solution for the global problem.

The structure used by Arnborg and Proskurowski in [6] involves the concept of branches
i.e. connected components induced by descendants of k-cliques (with respect to the or-
der given by the elimination ordering for H). While iteratively removing vertices in
the elimination ordering, the information about branches and their state information is
updated.

In this thesis, we use a dynamic-programming approach involving nice tree-decom-
positions (see Section 2.2) as it is done in [11]. Given some upper bound k on the
treewidth, we compute a tree-decomposition of width at most k and transform it into a
nice tree-decomposition (T = (I, E), (Xi)i∈I) – both steps take linear time.

To each node i ∈ I we associate the set of vertices

Vi =
⋃
{Xj |j = i or j lies below i in our rooted tree T}

i.e. all vertices contained in the vertex sets of i and the nodes j below i. The associated
subgraphs are denoted by Gi := G[Vi].

The tree T is traversed by a depth-first search and the nodes are executed in a bottom-up
order i.e. from the leaf nodes to the root. At each node i the characteristics of the partial
solutions for the direct descendants of i are extended to yield the characteristics for the
subgraph Gi. At the end of the traversal, we obtain the characteristics of the partial
solution for G = Gr where r is the root node of T . From this partial solution, we derive
a solution for our problem.

3.1.2 A detailed framework for graph properties

At this point, we need to get a bit more accurate with some notions we already started
to use. These notions are defined in terms of terminal graphs.
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If we want to find an algorithm deciding some graph property P, we have to define the
following notions.

Solution: A solution for a graph property P is, formally, characterized by a binary
relation solP that takes a graph G and a sufficient description of the solution s
(e.g. in form of a string). There has to hold

P (G)⇔ ∃s : solP (G, s)

Partial solution: A partial solution s for a property P, a graphG and a terminal subgraph
H of G should describe the possible local behaviour of a solution for G on H. It
usually is (at least some kind of) a restriction of the solution on G to the subgraph
induced by H. Formally, we characterize this by a binary function psolP taking a
terminal graph H and a description of the corresponding partial solution s.

Extension of a partial solution: An extension of a partial solution is usually defined
quite naturally e.g. such that the restriction to the original set equals the original
solution. Formally, it is described by a relation exP with four arguments: a graph
G, a solution s, a terminal graph H and a partial solution s′, such that

exP (G, s,H, s′)⇒ ∃H ′ : G = H ⊕H ′ ∧ solP (G, s) ∧ psolP (H, s′) (3.1)

Also there should be partial solutions for all terminal subgraphs i.e. for all graphs
G, solutions s and terminal graphs H,H ′

(solP (G, s) ∧G = H ⊕H ′)⇒ ∃s′ : psolP (H, s′) ∧ exP (G, s,H, s′) (3.2)

Characteristics of a partial solution: The characteristics of a partial solution should
contain all necessary information to see if a partial solution can be extended. This
can, formally, be characterized by a function chP defined on pairs of terminal
subgraphs H and partial solutions s for H.

These characteristics induce equivalence classes of partial solutions for the graph
H by identifying those which have the same characteristics. Since we just want
to work with the characteristics, two partial solutions with same characteristics
should be either both or none extensible i.e. for all terminal graphs H,H ′ and all
(partial) solutions s, s′

chP (H, s) = chP (H, s′)⇒ (3.3)
(∃s1 : exP (H ⊕H ′, s1, H, s)⇔ ∃s2 : exP (H ⊕H ′, s2, H, s′))

Full set of characteristics: This set contains a list of all possible characteristics of partial
solutions for a terminal graph H i.e.

fullP (H) = {chP (H, s)|psolP (H, s)}

For a graph Gi induced by a node in a nice tree-decomposition, we often use the
phrase full set for i.
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While defining all these notions precisely, one also need to make sure that

• for each of the four types of nodes in a nice tree-decomposition, the full set of
characteristics of the terminal subgraph Gi can be computed efficiently given the
full sets for all children of i, and

• the problem can be decided efficiently given the full set for the root node.

Efficiently means here – depending on the application – usually either constant or poly-
nomial time complexity with respect to n.

Generally speaking, the algorithmic structure of algorithm 1 is the following. If we

Algorithm 1 Full set c = Traverse(Node n): traversal algorithm for G
if isLeaf(n) then

c = Leaf(n.vertices)
else if isJoin(n) then

c1 = Traverse(n.leftChild)
c2 = Traverse(n.rightChild)
c = Join(n.vertices,c1,c2)

else if isIntroduce(n) then
m = n.leftChild
c1 = Traverse(m)
i = index of node in Xt i.e. minimal index with n.vertices(i) 6= m.vertices(i)
c = Introduce(n.vertices,i,c1)

else if isForget(n) then
m = n.rightChild
c1 = Traverse(m)
i = index of node in Xt i.e. minimal index with n.vertices(i) 6= m.vertices(i)
c = Forget(n.vertices,i,c1)

end if

execute Traverse(n) for Node n corresponding to the root node of T , the number of
recursive calls of this function, of course, equals the size of T because each node is visited
exactly once. At each of these nodes one of the functions Leaf(Vertex list v), Join(Vertex
list v, Index i, Full set c), Introduce(Vertex list v, Index i, Full set c) and Forget(Vertex
list v, Index i, Full set c) is called. If we denote the maximum complexity of these
functions by c(n), the total runtime is bounded by O(c(n) · |T |) where |T | = O(k|V |).

3.1.3 Example: l-colouring of vertices

At first, we study l-colouring of vertices. Here the above concepts come in a very natural
way. We assume that we are given a graph G = (V,E) of treewidth at most k and we
want to colour each vertex in V with one of l different colours such that no edge in E
has both endpoints in the same colour class.
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We consider the above notions. A solution for the l-colouring problem is obviously given
by a function f : V → {1, 2, . . . , l} such that

∀uv ∈ E : f(u) 6= f(v).

A partial solution for a terminal graph (Vi, E(Vi), Xi) is given by a solution for the graph
(Vi, E(Vi)).

Such a partial solution f of Gi has an extension on the supergraph G if there exists
a solution g for the l-colouring problem on G satisfying g|Vi = f . The corresponding
extension relation exP , by definition, satisfies the property stated in Equation (3.1).
Furthermore, there always exist partial solutions given by restrictions as it is claimed in
Equation (3.2).

We reconsider the result of Lemma 2.2.3. Applied to our colouring problem, we see that
the colours of the vertices in Vi\Xi do not matter anymore because all adjacent edges
were already handled. Reasonable characteristics for partial solutions f on Gi , therefore,
are the restriction of f to the terminal vertices Xi. This way, Equation (3.3) is valid
immediately.

With this definition, the full set for a node i contains all valid l-colourings for the subgraph
induced by the vertex set Xi. We can obviously save these colourings at a node i ∈ V (T )
as an array of vectors

(sij)
|Xi|
j=1 ∈ {1, . . . , l}

|Xi|, where sij denotes the colour-class of the j-th vertex in Xi.

By definition of treewidth, there holds |Xi| ≤ k+1 and, therefore, there are at most lk+1

possible l-colourings. The overall storage complexity at each node is thus O(klk+1).

We need to consider the computation steps at all four types of nodes in a nice tree-
decomposition.

Leaf node: At a leaf t with Xt = {v}, the computation is quite easy. The l possible
colourings of the single node v can obviously be computed in O(l).

Algorithm 2 Full set c = Leaf(Vertex list Xt): computes all colourings for a leaf node
t
for all colours j = 1, . . . , l do

add the unitary vector (j) to c
end for

Introduce node: At an introduce node t with Xt = Xs ∪ {v}, a new vertex v is added,
which is adjacent to at most k vertices in the previous vertex set Xs.

We just need to traverse all solutions for the previous node s (at most lk colourings)
and, for each, check which extensions are valid. This, obviously, can be done
in O(klk+1) operations by checking the colours of the adjacent vertices for each
possible extension.
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Algorithm 3 Full set c = Introduce(Vertex list Xt, Index i, Full set cs): extends the
colourings for introduce nodes
for all colourings (t1, . . . , tn) ∈ cs, colours j = 1, . . . , l do

if for all v ∈ Xt adjacent to the new vertex, si 6= j holds then
add the vector (s1, . . . , si−1, j, si, . . . , sn) to c

end if
end for

Forget node: For a forget node t, the computation is easy. Since each valid l-colouring of
Gs can be restricted to a valid l-colouring of the graph Gt, we just have to restrict
all previous characteristics by omitting the deleted vertex. This can be done in
O(kl2k+1) by restricting each solution while checking for duplicates.

Algorithm 4 Full set c = Forget(Vertex list Xt, Index i, Full set cs): restricts the
colourings for forget nodes
for all colourings (s1, . . . , sn) ∈ cs do

if if all elements of c are different to (s1, . . . , si−1, si+1, . . . , sn) then
add the vector (s1, . . . , si−1, si+1, . . . , sn) to c

end if
end for

Join node: At a join node T , there are two previous nodes t1, t2 with Xt = Xt1 = Xt2 .
If we just evaluate the intersection of the full sets for t1 and t2, the results give
exactly the valid l-colourings for Xt and, therefore, the elements of the full set for
t. This can be done in O(kl2k+2) by just checking all pairs in Xt1 ×Xt2 .

Algorithm 5 Full set c = Join(Vertex list Xt, Full set c1, Full set c2): restricts the
colourings for join nodes
for all colourings (s1, . . . , sn) ∈ c1, (s′1, . . . , s

′
n) ∈ c2 do

if si = s′i, for all i = 1, . . . , n then
add the vector (s1, . . . , sn) to c

end if
end for

It is clear that the corresponding decision problem can be solved efficiently, given the full
set for the root node because we just need to check whether the set for the root node
is non-empty (positive instance) or empty (negative instance). We see that, although
the complexity of some steps might be even exponential in k, the time is constant in
n := |V | and, therefore, the total traversal of all O(k|V |) nodes of T can be done in
O(k2l2k+2 · |V |) time i.e. we have a time complexity linear in |V |.

Additionally, one could also construct one (or even all) actual valid l-colouring by go-
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ing back through all intermediate tables afterwards. At each step in the traversal, we
have to choose one (or all) partial solutions that coincide with the previous one(s) at
the intersection nodes. These could be saved by some additional book-keeping in the
evaluation e.g. by saving pointers to the values in the previous table. Thanks to the fact
that there are still at most lk+1 colourings in each full set, we can execute this traversal in
linear time with respect to the number of vertices/nodes and, therefore, the construction
problem has linear time complexity with respect to |V |.

This approach gives an algorithm for deciding if a graph is l-colorable, and even for the
construction of such a colouring, that performs well in practice – even on graphs with
many vertices – as long as the treewidth stays small.

Theorem 3.1.1. The l-colouring problem for a graph G = (V,E), an integer l and a
nice tree-decomposition for G, can be solved in O(k2l2k+2 · |V |) time i.e. in linear time
complexity with respect to |V |.

The exponents of l could be improved by choosing a more sophisticated implementation
but still we see linear complexity.

It is also possible to evaluate the actual chromatic number (which is at most k + 1 by
Corollary 1.2.18) by just slightly changing the (k + 1)-colouring algorithm if we apply
the method introduced in Section 3.2.

Similar dynamic programming approaches can even be applied to other types of colouring
problems. We would like to mention a discussion of the equitable colouring problem by
Bodlaender and Fomin [13] and the article about precoloring-extension and the list-
colouring problem by Jensen and Scheffler [14].

3.1.4 Example: The k-disjoint path problem

The following problem might seem a bit less intuitive but a similar approach works here
as well. We want to sketch an algorithm for the k-disjoint-path problem i.e. the problem
P of deciding, given a graph G = (V,E) and some pairs of vertices (vj , wj), 1 ≤ j ≤ k,
whether there exist k mutually disjoint paths from each vj to wj .

Again we provide the formal setting: A solution obviously should be a set of paths with
the desired property.

A partial solution for Gi is a collection of disjoint paths that should correspond to the
restriction of a solution to the graph Gi.

Therefore, we consider what happens when we restrict a solution to a subgraph. Due to
the separation-properties of tree-decompositions, a restriction of a solution (vjPjwj)

k
j=1

to a subgraph Gi consists of the following elements:

• If all vertices of Pj are in Vi, then there exists a full path vjPjwj with both vj , wj ∈
Gi.
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• If both vertices vj , wj are in Vi but intermediate vertices are not, we get two paths
vjPjv

′
j , w

′
jPjwj with vj , wj ∈ Vi and v′j , w′j ∈ Xi.

• If vj ∈ Vi but wj 6∈ Vi, then we just get a path vjPjv
′
j with v′j ∈ Xi.

• If, similarly, vj 6∈ Vi but wj ∈ Vi, then we just get a path w′jPjwj with w′j ∈ Xi.

• Additionally, we possibly get some paths v′jPjw
′
j with v′j , w

′
j ∈ Xi which are sub-

paths of paths Pj of the previous three types.

In [12], a collection of such paths is called plausible solution and these plausible solutions
exactly give the partial solutions for Gi. Without loss of generality, we assume that there
are no isolated vertices v′ ∈ Xt in a plausible solution since removing them gives just
another plausible solution.

A partial solution is called feasible if it is the restriction of some solution for the graph
G. This is, of course, compatible with our axioms.

The characteristics of a partial solution Li for Gi is a vector (φ(v))v∈Xi with the following
values:

• φ(v) = 0 if the vertex v is unused by the current set of paths.

• φ(v) = 1 if the vertex v already has maximal degree (i.e. degree 1 for the source
and target vertices vj , wj and degree 2 for all other vertices).

• φ(v) = Pj if v is neither source nor target and there exists a path vjPjv or a path
vPjwj in our partial solution.

• φ(vj) = (wj , 0), φ(wj) = (vj , 0) if there exist paths vjPjv and wPjwj in our current
set.

• φ(vj) = (wj , 1), φ(wj) = (vj , 1) if there exists a path vjPjwj .

Since the number of vertices in a set Xi is at most k + 1, the size of the full set for each
i is bounded by some constant. We can compute the full sets in a bottom-up order such
that the computation step at each node is constant with respect to n := |V |. A detailed
description and full argumentation is given in [12] by Petra Scheffler.

3.2 Adaptation for optimization problems

Many graph problems P do involve some optimization process. For instance, the problem
of finding the chromatic number, which was already mentioned above, where we ask for
the minimum number l of colours such that a graph is l-colorable. Fortunately, we can
reuse the general approach to tackle optimization as well (see [11]).

We define the concepts of solutions, partial solutions on terminal subgraphs and exten-
sions without bothering about optimization. There are also some characteristics similar
to the ones in the previous section.
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The optimization is handled by an additional choice of property for an arbitrary partial
solution s for a subgraph H. We not only consider the characteristics chP (H, s) but
also some kind of valuation νP (H, s) which rates the quality of the corresponding partial
solution. This rating νP (H, s) should be an element of a totally ordered set – usually
either an integer or a real number.

For each equivalence class of partial solutions, we just keep the best possible valuation
νP (Gi, s) i.e. we basically ignore all other partial solutions in the same equivalence class
having worse valuations. Of course, we need to make sure – with a reasonable definition
of characteristics and valuation – that we do not lose any actual solutions here. If we
look for small valuations, we – at least – need for all subgraphs H,H ′ and corresponding
solutions s, s′, t, t′

chP (H, s) = chP (H, s′) ∧ νP (H, s) < νP (H, s′) ∧ exP (H ⊕H ′, t,H, s)
∧ exP (H ⊕H ′, t′, H, s′)⇒ νP (H ⊕H ′, t) < νP (H ⊕H ′, t′).

(3.4)

Looking for large valuations works similarly.

This way, we restrict the full sets for i ∈ I to those characteristics representing only the
best possible partial solution of each equivalence class.

Example (Chromatic number). In case of the chromatic number, we can just choose the
number of used colours to rate partial solutions. Of course, we do not have to consider
solutions that are identical on the sets Xi but use more colours on the nodes Vi\Xi –
they will always result in a suboptimal solution for G! Therefore, it is sufficient to save
the characteristics and the minimum of colours necessary to obtain these.

3.2.1 Example: Independent set

A common application is the problem of finding a maximum-size independent setW ⊆ V .

Definition 3.2.1. A setW ⊆ V is called independent if each pair of vertices w1, w2 ∈W
is non-adjacent i.e. w1w2 6∈ E.

This problem is, for instance, considered in [6] and [15].

The problem is obviously a special case of the more general maximum-weighted
independent-set problem. Given a graph G = (V,E) and some vertex weights c(v), v ∈ V ,
we want to find an independent set W ⊆ V that maximizes c(W ) :=

∑
v∈W c(v). We

follow the approach presented by Bodlaender in [16].

A solution for this problem, of course, is a set L ⊆ V of vertices of G = (V,E) forming an
independent set. A partial solution Li for a terminal subgraph (Vi, E(Vi), Xi) is defined
as a solution for the graph Gi and, as such, Li ⊆ Vi.

A solution L of vertices is an extension of a partial solution Li on the subgraph Gi if
and only if L ∩ Vi = Li. Of course, the conditions stated in Equation (3.1) and (3.2)
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hold. For the later condition, we use that restrictions of solutions on subgraphs induced
by vertex sets Vi are solutions for the graph (Vi, E(Vi)) because adjacency is inherited
from the original graph.

Next, we have to think about reasonable characteristics and valuation of a partial solution
Li on Gi. Lemma 2.2.3 assures that no more edges interfere with the nodes in Vi\Xi

and thus, apart from the nodes in Li ∩Xi, only the sum of the overall vertex weights is
important. Therefore, we choose chP (Gi, Li) = Li∩Xi ⊆ Xi and valuation νP (Gi, Li) =
c(Li). We immediately see that Equation (3.4) is valid. For each possible characteristics
S ⊆ Xi, we store the corresponding maximal valuation ci(S).

In particular, the full set of a node i consists of a table of at most 2k+1 different values.
For each subset S ⊆ Xi, we save the maximum weight ci(S) of an independent set
W ⊆ Vi with characteristics S i.e. W ∩ Xi = S. If there is no such independent set
at all, we define ci(S) = −∞. The subsets could – for instance – be realized as binary
strings of length |Xi|. This way, table lookups are possible in constant time. The storage
complexity of this table is O(2k+1).

We describe the computation necessary in each of the four types of nodes of our nice
tree-decomposition.

Leaf node: Since Xt = {v} for some vertex v, we just evaluate c(∅) = 0 and ci({v}) =
c(v) which can obviously be done in constant time.

Algorithm 6 Full set c = Leaf(Vertex list Xt): evaluates the maximum weight for a
leaf node
c([0]) = 0
c([1]) = c(v), for the vertex v ∈ Xt

Introduce node: There is a unique child s of t such that Gt is obtained from Gs by
adding one terminal vertex v. Note that v is only adjacent to vertices in Xs.

We distinguish the following cases:

case 1: Of course, for S ⊆ Xs we still have the same maximum-weight independent
set and ct(S) = cs(S).

case 2: For the sets S ∪{v} containing the new vertex v, we first consider the case
that v is adjacent to any node in S. There obviously is no valid independent
set and ct(S ∪ {v}) = −∞.

case 3: Otherwise S ∪ {v} is, at least, an independent set. So ct(S ∪ {v}) ≥
cs(S) + c(v) holds. But each maximum-weight independent set W for Gi with
W ∪Xi = S ∪{v} can be restricted to an independent set W\{v} for Gi and,
thus, cs(S) ≥ ct(S ∪ {v})− c(v) as well.

We can implement this evaluation of the at most 2k+1 entries in a total time of
O(k2k+1).
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Algorithm 7 Full set c = Introduce(Vertex list Xt, Index i, Full set cs): evaluates the
maximum weight for an introduce node
Let v be the i-th vertex in Xt

for all (s1, . . . , sn) ∈ 2|Xt|−1 do
c([s1, . . . , si−1, 0, si+1, . . . , sn)) = cs([s1, . . . , sn])
if v is adjacent to some element xk ∈ Xs = Xt\{v} with sk = 1 then

c([s1, . . . , si−1, 1, si+1, . . . , sn]) = −∞
else

c([s1, . . . , si−1, 1, si+1, . . . , sn]) = cs([s1, . . . , sn]) + c(v)
end if

end for

Forget node: Here, it is easy again. The unique child s of our node t was already
handled and the only difference between the terminal graphs Gt and Gs is that
Xt = Xs ∪ {v}. When searching for the maximum-weight independent set W with
W ∩ Xt = S, we distinguish the cases v ∈ W and v 6∈ W . In the first case, the
maximum weight is given by cs(S ∪ {v}) and in the later one by cs(S). We just
evaluate

ct(S) = max{cs(S), cs(S ∪ {v})}

for all subsets S. This can, for each of the at most 2k subsets, be done in O(k).
Altogether, we spend O(k2k) time at a forget node.

Algorithm 8 Full set c = Forget(Vertex list Xt, Index i, Full set cs): evaluates the
maximum weight for a forget node
for all (s1, . . . , sn) ∈ 2|Xt| do

c([s1, . . . , sn]) = max{cs([s1, . . . , si−1, 0, . . . , sn]), cs([s1, . . . , si−1, 1, . . . , sn])}
end for

Join node: For a node t with two children t1, t2, the parts of Vt1 and Vt2 do not interfere
outside Xt = Xt1 = Xt2 by the properties of tree-decompositions. For S ⊆ Xt, we
just glue the independent sets together along S and obtain an independent set for
Gt. Of course, there holds

ct(S) ≥ ct1(S) + ct2(S)− c(S).

On the other hand, a maximum-weight independent set W for Gt induces indepen-
dent sets for both Gt1 and Gt2 . Thus, there holds

ct(S) = c(W ∩ Vt1) + c(W ∩ Vt2)− c(S) ≤ ct1(S) + ct2(S)− c(S)

and we just evaluate ct(S) = ct1(S)+ct2(S)−c(S), by table lookups and summation,
in time O(k). Altogether, this takes at most O(k2k+1) time for a node t.
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Algorithm 9 Full set c = Join(Vertex list Xt, Full set c1, Full set c2): evaluates the
maximum weight for a join node
for all (s1, . . . , sn) ∈ 2|Xt| do

c([s1, . . . , sn)) = c1([s1, . . . , sn]) + c2([s1, . . . , sn])−
∑

xj∈Xi:sj=1 c(xj)
end for

By our usual post-order traversal, we evaluate the table for the root node r in time
O(k2k+1 · |I|) i.e. in linear time with respect to the number of vertices |V |.

The problem of evaluating the maximum-weight of an independent set is solvable by
evaluating the maximum value of all equivalence classes

max
S⊆Xr

cr(S).

This can be done in O(2k+1) and, therefore, does not increase the overall time.

The construction variant of Weighted independent set could be solved from this table
by additional book-keeping (e.g. by saving pointers to the table of the previous nodes
during the evaluation). This does not increase the runtime as well and we obtain:

Theorem 3.2.2. The maximum-weighted independent-set problem for a graph G =
(V,E), a list of vertex weights c(v), v ∈ V and a nice tree-decomposition of G, can
be solved in O(k22k+1 · |V |) time.

Once more, the exponents could be improved by choosing a more sophisticated imple-
mentation.

3.2.2 Example: Vertex cover

We consider another simple optimization problem: A vertex cover is a subset C ⊆ V
of vertices such that for each edge e ∈ E at least one end-vertex is in C. Usually, one
considers the problem of finding a minimum-size vertex cover. We cover a more general
version where fixed vertex weights c(v), v ∈ V are given and search for a minimum-weight
vertex cover i.e. c(C) :=

∑
v∈C c(v)→ min.

Solutions for the minimum-weight vertex-cover problem are subsets L ⊆ V , while partial
solutions for a subgraph (Vi, E(Vi), Xi) are solutions for the graph (Vi, E(Vi)) i.e. subsets
Li ⊆ Vi. Note that restrictions of solutions are solutions for the graph (Vi, E(Vi)) because
all edges in E(Vi) already need to be covered. A solution L is an extension of the partial
solution Li for Gi if L ∩ Vi = Li. Of course, the conditions in Equation (3.2) and (3.1)
are satisfied by definition.

Next, we have to find suitable characteristics. We consider the adjacency lists of a graph
G = (V,E) to give an alternative characterization of vertex covers.
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C ⊆ V is a vertex cover if and only if there either holds v ∈ C or N(v) ⊆ C
for each vertex v ∈ V .

Consider the terminal graph Gi = (Vi, Ei, Xi): Vertices in Vi\Xi are not adjacent to
vertices in V \Vi by Lemma 2.2.3. Therefore, vertices in Vi\Xi neither contain elements
of V \Vi in their own adjacency lists, nor are they contained in adjacency list of vertices
in V \Vi. In conclusion, we do not need to store whether these are in C to be able to test
the above criteria for vertices in V \Vi. Thus it is sufficient to choose the vertices C ∩Xi

as characteristics for assuring Property (3.3).

The valuation of a partial solution Li for Gi is given by the value νP (Gi, Li) = c(Li).
Thanks to the above argument, Property (3.4) holds too. We denote the minimal valua-
tion of a partial solution with characteristics S by ci(S). If there are no partial solutions
with characteristics S, we set ci(S) =∞.

The full set for i contains the value ci(S) for each characteristics S ⊆ Vi. Since there
are at most k + 1 elements in Xi, a full set contains at most 2k+1 entries. We could, for
instance, interpret the characteristics as binary strings and save the elements ci(S) as an
array. This way, table lookups take O(k) time and the storage complexity is O(2k+1).

Now consider the evaluation steps for the nodes in a nice tree-decomposition. We pos-
sibly detect some similarities to the independent-set problem discussed in the previous
subsection!

Leaf node: At a leaf node t, Xt = {v} holds for some vertex v ∈ V . We just have to
store the values ct(∅) = 0 and ct({v}) = c(v) which can be done in constant time.

Algorithm 10 Full set c= Leaf(Vertex list Xt): evaluates the minimum valuation for
a leaf node
c([0]) = 0
c([1]) = c(v), for the vertex v ∈ Xt

Introduce node: For an introduce node t with child s, there holds Xt = Xs ∪ {v} for
some vertex v ∈ V . We could extend minimum-weight solutions for Gs with char-
acteristics S ⊆ Vs to solutions for Gt by adding v and increasing the weight by
c(v). This gives ct(S ∪ {v}) ≤ cs(S) + c(v). On the contrary, a minimum-weight
solution with characteristics S ∪ {v} induces a solution for Gs characterized by S
with decreased valuation. Thus there holds

ct(S ∪ {v}) = cs(S) + c(v).

If all neighbours of v in Xt are in some minimum-weight set S, S is another valid
solution for Gt and ct(S) ≤ cs(S). Of course, we even have equality here. For
N(v) 6⊆ S there is no valid vertex cover with characteristics S for Gt. In total,

ct(S) = cs(S), if N(v) ⊆ S
ct(S) =∞, else
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Of course, each of these at most 2k+1 entries can be evaluated in O(k) by doing
table lookup and testing the at most k neighbours of v in Xt. Altogether, this takes
O(k2k+1) time.

Algorithm 11 Full set c = Introduce(Vertex list Xt, Index i, Full set cs): evaluates
the minimum valuation for an introduce node
Let v be the i-th vertex of Xt

for all (s1, . . . , sn) ∈ 2|Xt|−1 do
if there exists xk ∈ Xt\{v} adjacent to v with sk = 0 then

c([s1, . . . , si−1, 0, si+1, . . . , sn]) =∞
else

c([s1, . . . , si−1, 0, si+1, . . . , sn]) = cs([s1, . . . , sn])
end if
c([s1, . . . , si−1, 1, si+1, . . . , sn]) = cs([s1, . . . , sn]) + c(v)

end for

Forget node: For a forget node t with child s, there holds Xs = Xt ∪ {v} for some
vertex v ∈ V . There is not much to do here because minimum-weight (partial)
solutions for Gt are either induced by (partial) solutions for Gs containing v or not
containing v. Of course, for S ⊆ Xt there holds

ct(S) = min{cs(S), cs(S ∪ {v})}.

We can evaluate these at most 2k entries in O(k · 2k) by two table lookups each.

Algorithm 12 Full set c = Forget(Vertex list Xt, Index i, Full set cs): evaluates the
minimum valuation for a forget node
for all (s1, . . . , sn) ∈ 2|Xt| do

c([s1, . . . , sn]) = min{cs([s1, . . . , si−1, 0, si, . . . , sn]), cs([s1, . . . , si−1, 1, si, . . . , sn])}
end for

Join node: For a join node t with children t1, t2 and Xt = Xt1 = Xt2 , the evaluation for
S ⊆ Xt is quite intuitive:

ct(S) = ct1(S) + ct2(S)− c(S)

This equality holds because – if the characteristics S coincide – we can combine the
maximum-weight solutions for Gt1 and Gt2 to one for Gi with valuation ct1(S) +
ct2(s)− c(S). On the contrary, a minimum-weight solution for Gt induces solutions
for Gt1 , Gt2 with the same characteristics S by restriction. The evaluation works
just like for the independent-set problem.

We can, of course, evaluate these at most 2k+1 values by table lookups and summing
in O(k2k+1) time.
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Algorithm 13 Full set c = Join(Vertex list Xt, Full set c1, Full set c2): evaluates the
minimum valuation for a join node
for all (s1, . . . , sn) ∈ 2|Xt| do

c([s1, . . . , sn]) = c1([s1, . . . , sn]) + c2([s1, . . . , sn])−
∑

xj∈Xi:sj=1 c(xj)
end for

By a simple post-order traversal, we evaluate the table for the root node r in time
O(k2k+1 · |I|) i.e. in linear time with respect to the number of vertices |V |.

We can solve the problem of evaluating the minimum weight of a vertex cover by evalu-
ating the minimum valuation of all equivalence classes i.e.

min
S⊆Xr

cr(S).

This can be done in O(2k+1) and, therefore, does not increase the overall time complexity.

The construction variant of the vertex-cover problem can be solved from this table by
additional book-keeping, e.g. by saving pointers to the table of the previous nodes during
the evaluation. This does not increase the runtime as well.

Theorem 3.2.3. The minimum-weighted vertex-cover problem for a graph G = (V,E),
a list of vertex weights c(v), v ∈ V and a nice tree-decomposition of G, can be solved in
O(k22k+1 · |V |) time.

The exponents could possibly be improved by choosing a better implementation.

3.2.3 Example: Dominating set

Another problem, which is often considered, is finding a minimum-size dominating set.

Definition 3.2.4. A set W ⊆ V of a graph G = (V,E) is called dominating if each
vertex v ∈ V is either in W or has a neighbour in W .

As for the maximum-size independent set, we consider the weighted version instead
i.e. the problem of finding a minimum-weighted independent set given some additional
vertex weights c(v), v ∈ V . Again, we just need to set all weights to 1 if we want the
minimum-size dominating set. We follow the description given in [17].

Solutions are given by subsets L ⊆ V , while partial solutions for a subgraph
(Vi, E(Vi), Xi) are – as restrictions of solutions - given by subsets Li ⊆ Vi. Note that, in
this case, partial solutions are not necessarily solutions for the corresponding subgraphs!

A solution L is an extension of a partial solution Li for Gi if L ∩ Vi = Li. Still, by
definition, Properties (3.1) and (3.2) hold.
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Next, we think of some reasonable characteristics: When doing the traversal for any
subgraph Gi, the vertices in Vi\Xi already have to be covered completely because no
further neighbours do occur. Therefore, we do not need to care about them in later
steps of our algorithm. For the set Xi, we partition the vertices into three classes: the
vertices in the dominating set Li ∩Xi, the vertices that already have neighbours in the
dominating set and the vertices we still need to cover.

We, therefore, choose the characteristics to be a 3-colouring of the vertices in Xi. Colour
class X corresponds to the uncovered vertices, D covers all dominating vertices and C
the dominated vertices. We save this as a vector of colours sj ∈ {X,D,C}, where sj
denotes the colour of the j-th element xij ∈ Xi:

chP (Gi, Li) := (sj)
|Xi|
j=1 ∈ {X,D,C}

|Xi|

Obviously, Property (3.3) holds!

The valuation of a partial solution Li for Gi is given by the value νP (Gi, Li) = c(Li). Of
course, Property (3.4) holds because of our choice of characteristics. For the equivalence
class of some characteristics S ∈ {X,D,C}|Xi|, we denote the maximum value of the
valuation by ci(S). If there is no dominating set corresponding to these characteristics,
we define ci(S) =∞.

The full set for i contains, for each such characteristics S ∈ {X,D,C}|Xi|, the value
ci(S). Of course, since there are at most k + 1 elements in Xi, there are at most 3k+1

entries and the storage complexity is O(3k+1).

We evaluate the tables in bottom-up order. We, additionally, observe recursively that
the tables are monotonous in the following way: If some partial solutions s, s′ differ only
in components si 6= s′i with entries from {X,C}, then the partial solution with the least
number of C-entries yields the smallest value.

Leaf node: For a leaf withXt = {v}, there are only three entries ct(X) = 0, ct(D) = c(v)
and ct(C) =∞ which we evaluate in constant time. We are obviously monotonous
here!

Algorithm 14 Full set c = Leaf(Vertex list Xt): evaluates the table for a leaf node
c(X) = 0, c(C) =∞
c(D) = c(v), for the vertex v ∈ Xt

Introduce node: If, at a node t with child s, a vertex v is introduced as i-th terminal
vertex, there holds

Xt = (xs,1, . . . , xs,i−1, v, xs,i, . . . , xs,n).

A (minimal-weight) partial solution (sj)xj∈Xt\{v} for Xs can be extended to Xt in
three possible ways. If we set si = X, we do not make any new choices yet and we
do not increase the valuation.
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Alternatively, we can choose si = C and keep the valuation – this is only admissible
if v has a dominating neighbour inside Xs! Of course, the new valuations do not
need to be optimal. They are indeed optimal because each (minimum-weight)
partial solution with characteristics (sj)xj∈Xt for Xt induces a partial solution for
Xs. For si ∈ {X,C}, these are simply the restrictions and the valuation remains
the same. So for these cases, we yield

ct((sj)xj∈Xt) = cs((sj)xj∈Xt\{v}), if si = X.

ct((sj)xj∈Xt) = cs((sj)xj∈Xt\{v}), if si = C and v has a dominating neighbour.

ct((sj)xj∈Xt) =∞, if si = C and v has no dominating neighbour.

Note that, due to these evaluations, the monotonicity is inherited from the previous
node.

Another possibility is to make the new vertex dominating. This goes along with
making all uncovered vertices in N(v) dominated and increasing the valuation by
c(v). For si = D, we need to edit the values sj corresponding to some xj ∈ N(v)
with sj = C and no previous dominating neighbours as well. In this case, we
can take the valuation of the induced partial solution (s′j)xj∈Xs which colours all
neighbours of v with X instead. By monotonicity of the previous solution values
this partial solution has the optimal valuation and we just add c(v) to the current
valuation:

ct((sj)xj∈Xt) = cs((s
′
j)xj∈Xs) + c(v), if si = D.

Of course, each of these at most 3k+1 values can be evaluated by traversing all at
most k neighbours and one table-lookup in O(k). Altogether, the time spent at
node t is O(k3k+1).

Algorithm 15 Full set c = Introduce(Vertex list Xt, Index i, Full set cs): evaluates
the table for an introduce node
Let v be the i-th vertex of Xt

for all (s1, . . . , sn) ∈ {X,D,C}|Xt| do
c([s1, . . . , si−1, X, si+1, . . . , sn]) = cs([s1, . . . , sn])
if there exists xk ∈ Xt\{v} adjacent to v with sk = D then

c([s1, . . . , si−1, C, si+1, . . . , sn]) = cs([s1, . . . , sn])
else

c([s1, . . . , si−1, C, si+1, . . . , sn]) =∞
end if
Let s′ be the solution obtained from s by s′k = X if xk ∈ Xj adjacent to v and

sk = 0
c([s1, . . . , si−1, D, si+1, . . . , sn]) = cs([s

′
1, . . . , s

′
n]) + c(v)

end for
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Forget node: For a forget node t with child s, it is is much easier. When making the
vertex v non-terminal, it should either be coloured C or D. Both cases are actually
admissible and we get the minimal valuation (for index i of v in Xt) by

ct((sj)xj∈Xt) = min{cs((sj)xj∈Xt , si = D), ct((sj)xj∈Xt , ci = C)}

This can be done by two table-lookups each in a total timeO(k3k+1) and we observe
that monotonicity is, again, preserved.

Algorithm 16 Full set c = Forget(Vertex list Xt, Index i, Full set cprev): evaluates
the table for a forget node
for all (s1, . . . , sn) ∈ {X,D,C}|Xt| do

c([s1, . . . , sn]) = min(cs([s1, . . . , si−1, D, si, . . . , sn]), cs([s1, . . . , si−1, C, si, . . . , sn]))
end for

Join node: It remains to consider the case of a join node t with two children t1 and t2
and Xt = Xt1 = Xt2 . Two (minimum-weight) partial solutions with characteristics
si, i = 1, 2 for the child nodes could be extended simultaneously if they only differ
in nodes xj ∈ Xt with sij ∈ {X,C}, i = 1, 2 i.e. there are some nodes not covered
by one colouring but, somehow, dominated in the other. Those values yield sj = C
in their common extension. In these cases, there holds:

• sj ∈ {D,X} ⇒ sj = s1j = s2j

• sj = C ⇒ s1j , s
2
j ∈ {C,X} ∧ (s1j = C ∨ s2j = C)

If these properties hold, we say that s1 and s2 divide s. We observe that it is
sufficient to restrict to the case s1j 6= s2j if sj = C because we have monotonicity of
the previous solution. If we have a minimal-weight partial solution for t, then its
restrictions are, of course, of minimal weight too. So indeed,

ct(s) = min{ct1(s1) + ct2(s2)− c({c(xj) : xj ∈ Xi, sj = D}) : s1, s2 divide s}.

But how can we compute these values efficiently? First, we bound the number of
valid pairs of characteristics for t1, t2. For fixed k, there are at most

2|Xt|−k ·
(
|Xt|
k

)
colourings with exactly k values equal to C. For each such colouring, there are at
most 2k colourings that differ only in the C-values and could, therefore, contribute.
Altogether we get at most

|Xt|∑
k=0

2|Xt|−k ·
(
|Xt|
k

)
· 2k = 4|Xt|

possible pairs that can contribute to any minimum. So the minimum can be eval-
uated in O(4k+1).
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3.2 Adaptation for optimization problems

Algorithm 17 Full set c = Join(Vertex list Xt, Full set ct1 , Full set ct2): evaluates the
table for a join node
for all k = 1, . . . , |Xi| do

for all s ∈ {D,C,X}|Xt| with exactly si1 = si2 = . . . = sik = C do
c[s] =∞
for all solutions s′, s′′ that divide s i.e. use some X-values instead of C do

c[s] = min{c[s], ct1 [s′] + ct2 [s′′]−
∑

xti∈Xt,si=D c(xti)}
end for

end for
end for

Altogether, this traversal can be done in time O(4k+1 · |I|) i.e. with linear time with
respect to the size of our graph G.

We can finally compute the valuation of the minimum-weight dominating set from the
full set of the root node r by

min{cr(s) : s ∈ {D,C}|Xr|}.

This just takes the minimum of all partial solutions without uncovered nodes. Of course,
this can be done in O(3k+1) and, therefore, it does not increase the total runtime.

Again, with some additional book-keeping, we can even solve the construction variant in
O(4k+1k · |V |) time. In conclusion, we yield:

Theorem 3.2.5. The minimum-weighted dominating-set problem for a graph G =
(V,E), a list of vertex weights c(v), v ∈ V and a nice tree-decomposition of G, can
be solved in O(4k+1k · |V |) time.

3.2.4 Additional remarks

There have been quite a few attempts to find a common framework for such dynamic
programming approaches, which works for a large class of graph problems and helps
deciding the existence of a linear-time algorithm (or even one with another polynomial
bound for time complexity) at an earlier stage of the design process.

A quite general approach can be found in [18] by Bodlaender, where he works with
monoids to deal with larger classes of graph decision problems on graphs of bounded
treewidth. For some results, he additionally, assumes bounded degree.

In [11], Bodlaender mentions an approach dealing with automata theory. The purpose is
to introduce an equivalence relation on k-terminal graphs which has only a finite number
of equivalence classes. This helps bounding the number of different possible full sets and
can, therefore, be used for bounding the overall runtime.
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3.3 A logical approach

The dynamic programming approach, which was discussed above, seems quite natural
for graphs with given tree-decomposition and is quite powerful. Nevertheless, we have
seen that each problem requires a detailed discussion and it often involves more or less
complex specific considerations.

There have been quite a few attempts to find a more general setting for linear-time
algorithms working for even larger classes of problems. Additionally, it was desirable to
find an approach which allows to decide whether a problem can be solved in linear time
with respect to the number of vertices at an earlier stage in the design process.

A very successful approach of this kind was introduced by Courcelle [19]. He showed
that each graph property which can be stated in monadic second-order logic(MSOL), an
extended version of first-order logic allowing quantification over sets of vertices and sets
of edges, can be solved in linear time for graphs of bounded treewidth.

His work was extended to extended monadic second-order logic, see [20], [21] and [22].

We want to give a short description of this method and the corresponding result, although
a full consideration is out of scope of this thesis.

3.3.1 A language for graph problems

In this first section, we introduce a special language suited for graph problems. We
intend to translate our graph problems into formulas and reduce the problem to a logical
satisfiability problem. Our goal is to find a formulas Φ with the following property:

The problem is solvable for a graph G if and only if G |= Φ i.e. the graph
formula Φ is satisfied by our graph G.

Of course, we hope this new problem is solvable in polynomial (or linear) time for graphs
of treewidth at most k.

The language we will use for this purpose, is a monadic second-order language. Monadic
second-order logic is an extension of first-order logic i.e. there are object variables x, y, . . .
and logical connectives ¬,∧,∨,→,↔ as well as quantifiers for object variables ∀x, ∃x.
Second-order logic, additionally, allows to consider sets of object variables X,Y, . . . and
relate those via the element relation ∈. Anyway, it not only allows quantification over
such sets but quantification over functions and relations as well. In monadic second-order
logic, we do not allow the later quantifications and use only quantification over elements
and sets of elements.

We want to show and motivate how monadic second-order logic can be used to express
graph properties and why this language is appropriate. Whenever we think of graphs,
we express properties in terms of vertices and edges. Additionally, we often need sets of
vertices or edges. Therefore, we try to use the following first-order language for graphs:
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• We have two sorts of object variables: vertex variables v, v1, v2, v3, . . . and edge
variables e, e1, e2, e3, . . ..

• There is another kind of elements called set variables: We have sets of vertices
V, V1, V2, V3, . . . and sets of edges E,E1, E2, E3, . . .. Those can be interpreted as
unary relation symbols for the object variables.

• We have a binary relation symbol ∈ that corresponds to the element operation on
objects and their corresponding set variable i.e. if v is a vertex variable and V a
vertex set, then v ∈ V if and only if v is an element of the corresponding set V .
For an edge e and a set of edges E, we define e ∈ E in a similar way.

• Additionally, there is one more relation symbol Adj(e, vi, vj) of arity 3 which detects
whether the first argument is an edge e from vertex vi to vertex vj . For directed
graphs, this relation should be symmetric in the second and third component i.e. if
there is an edge e = vivj ∈ E, we assure both Adj(e, vi, vj) and Adj(e, vj , vi) are
valid.

Note that for a fixed graph there are just finitely many variables of each sort and finitely
many relations. Additionally, the adjacency relation corresponds the actual adjacencies
in this concrete graph. The set variables V and E will, from now on, denote the set of
all vertex and edge variables respectively for a fixed graph G.

The more formal framework (including all proper definitions of the semantics) is omitted
here. We obtain a proper first-order language suitable for graphs. We have atomic
formulas v ∈ Vi, e ∈ Ei and Adj(e, vi, vj), and we use the operators ¬,∧,∨,←,↔ and
∀v, e, ∃v, e to obtain the set of all formulas. Furthermore, a graph G satisfies a formula
Φ in this language if and only if G contains vertices and edges for each used vertex and
edge variable, in a way that the adjacency relation Adj corresponds to actual adjacencies
in G.

In this language we can already define the following notions:

• We can, obviously, use the abbreviations ∀v ∈ V , ∃v ∈ V , ∀e ∈ E and ∃e ∈ E
instead of the the original quantifiers.

• We can express simple adjacency relations such as vivj ∈ E or vi ∈ N(vj) by

∃ek ∈ E : Adj(ek, vi, vj) = true

• We can also define incidence vi ∈ ej by ∃vk ∈ V : Adj(ej , vi, vk) = true.

• Of course, we can also express the binary subset relation Vi ⊆ V

∀vj : vj ∈ Vi → vj ∈ V

For Ei ⊆ E it works just the same way.

• We can define the set N(vi) by ∀vj : vj ∈ N(vi)↔ vivj ∈ E.
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• There is a simple formula for a set U being empty: ∀v : ¬(v ∈ U). We use the
abbreviation U = ∅.

Anyway, this first-order language is not as powerful as we would like our language to
be. We are not even able to quantify over arbitrary subsets of vertices/edges – a sincere
restriction! Just try to formulate the problems of finding independent or dominating sets
of variable size.

A traditional second-order language, which additionally allows quantification over re-
lations, would accomplish this goal. However, we finally want to find some polynomial
algorithm to test for satisfiability of those formulas and this works much better for tighter
extensions.

So we just introduce one additional feature: quantification over set variables i.e. ∀Vi, ∀Ei

and ∃Vi,∃Ei. This is exactly the setting of monadic second-order logic (MSOL) for
graphs and it allows to formulate a huge class of problems. As we did with the element
relation, we use the subset relation to give a scope for set variables in quantifiers:

∀Vi ⊆ V,∃Vi ⊆ V,∀Ei ⊆ E, and ∃Ei ⊆ E.

Example (l-colouring). In this language, we can, for instance, give a formula whose sat-
isfiability is equivalent to the l-colouring problem:

∃V1, . . . , Vl :(V1 ⊆ V ) ∧ (V2 ⊆ V ) ∧ . . . ∧ (Vl ⊆ V ) ∧ (V1 ∪ V2 ∪ . . . ∪ Vl = V )

(V1 ∩ V2 = ∅) ∧ . . . ∧ (V1 ∩ Vl = ∅) ∧ . . . ∧ (Vl ∩ Vl−1 = ∅)
∧NotAdj(V1) ∧NotAdj(V2) ∧ . . . ∧NotAdj(Vl)
where NotAdj(V ) := ∀v1 ∈ V, v2 ∈ V : ¬(v1v2 ∈ E).

Indeed, this language is quite useful to find a scheme detecting fixed-parameter tractabil-
ity of our graph properties. Nevertheless, it is not sufficient to express cardinalities and
one needs some further extension of monadic second-order logic. The first such extension
was proposed by Courcelle [19] and it is called counting monadic second-order logic.

He adds a new type of unary relation symbol working on set variables:

cardn,p(U), for U ⊆ V or U ⊆ E, a number p ≥ 2 and an integer 0 ≤ n < p.

Those are defined to encode |U | ≡ n mod p. Using these relations give additional types
of atomic formulas cardn,p(Vi) and cardn,p(Ei).

Example. With this extension, we can, for instance, ask for an independent set of fixed
size K.

∃Vi ⊆ V : cardK,|V |(Vi) ∧ (∀v1 ∈ Vi, v2 ∈ Vi : ¬(v1v2 ∈ E)) (3.5)

Similarly, we can detect vertex covers or dominating sets of fixed size K.
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Example (k-disjoint path problem). Counting monadic second-order logic also gives the
possibility to formulate the k-disjoint path problem for (vj , wj), 1 ≤ j ≤ k.

∃V1, V2, . . . , Vk ⊆ V :Path(V1, v1, w1) ∧ . . . ∧ Path(Vk, vk, wk)

V1 ∩ V2 = ∅ ∧ · · · ∧ V1 ∩ Vk = ∅ ∧ . . . ∧ Vk−1 ∩ Vk = ∅

where the formula Path(P, s, t) should denote whether P is a path from s to t. This
formula could be constructed recursively via

Path({v}, s, t) := (v = s ∧ v = t)

Path(P, s, t) := s ∈ P ∧ card1,|V |(NG(s) ∩ P )

∧ (∀v ∈ NG(s) ∩ P : Path(P\{s}, v, t)

As we already mentioned, Courcelle showed in [19] that each problem in (counting)
monadic second-order logic can be decided in linear time for graphs of bounded treewidth.

3.3.2 Extended monadic second-order problems

The concept of counting monadic second-order logic was still not powerful enough to
describe optimization problems which we already tackled in Section 3.1. Now we consider
an approach by Arnborg, Lagergren and Seese [20], which deals with this problem in a
slightly different way than Courcelles counting monadic second-order logic.

We define the class of extended monadic second-order (EMS) problems to be those prob-
lems for which we can find a monadic second-order formula Φ = Φ[X1, X2, . . . , Xn] with
free set variables X1, X2, . . . , Xn such that the original problem is equivalent to satisfying
Φ together with an evaluation relation i.e. a propositional formula φ built from a special
kind of atoms P1, P2, . . . , Pm.

The atoms are called evaluation terms and they are of type P = 0 or P ≤ 0 with terms
P built from rational numbers, arithmetic operators +,−,× and real-valued variables
|Xi|j , i = 1, . . . , n, j = 1, . . .m and Yi, i = 1 . . . , t. The variable |Xi|j corresponds to
the evaluation of some vertex/edge weight functions fj on the set corresponding to the
variable Xi i.e. there holds

|Xi|j =
∑
x∈Xi

fj(x)

and the variables Yi, i = 1 . . . , t denote possible further numbers given by the problem
instance. We define

φ := φ[|X1|1, . . . , |Xn|l, Y1, . . . , Yt].

For this formula containing fixed weight functions f1, . . . , fm there should, finally, hold:
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The given graph property holds for a graph G and some specification num-
bers C1, . . . , Ct if and only if there exist some subsets of vertices or edges
A1, . . . , An, such that G |= Φ[A1, A2, . . . , An] and, additionally, there holds

φ[
∑
a∈A1

f1(a), . . .
∑
a∈An

fm(a), C1, . . . , Ct].

This class of problems also covers the counting monadic second-order problems because
we can express cardinalities of sets by using the weight function f1(x) = 1, x ∈ V .
Additionally, we can formulate problems with custom weight functions given by the
problem specification e.g. edge distances.

Arnborg et al. do not only cover the case of extended monadic second-order(EMS) prob-
lems but allow for extended monadic second-order extremum problems. These are stated
by not only satisfying the above formulas Φ and φ, but simultaneously maximizing an ad-
ditional evaluation term F [

∑
a∈A1

f1(a), . . . ,
∑

a∈An
fm(a), C1, . . . , Ct]. Altogether, these

problems are defined the following way:

The given graph problem holds for a graph G and some specification num-
bers C1, . . . , Ct if and only if there exist some subsets of vertices or edges
A1, . . . , An which maximize F [|A1|1, . . . , |An|l, C1, . . . , Ct] within the con-
straints Φ[A1, . . . , An] and φ[|A1|1, . . . , |An|l, C1, . . . , Ct].

Arnborg et al. show in [20] that EMS extremum problems can be decided in polynomial
time. If the optimized evaluation term is linear in all variables |Xi|j , i = 1, . . . , n, j =
1, . . .m and there are no further evaluation relations, i.e. φ = true, then the correspond-
ing problem can even be decided in linear time. These problems are called linear EMS
extremum problems.

The class of EMS (extremum) problems is, indeed, very powerful. Of course, one can
express the optimization problems considered in Section 3.1.

Example (Independent set). We take the formula with one set variable U

Φ[U ] := (∀v1 ∈ U, v2 ∈ U : ¬(v1v2 ∈ E))

which detects whether U is an independent set for G, φ = true and maximize the
evaluation term |U |1 given by the vertex weights of U . There are no further evaluation
relations and, of course, the evaluation term is linear. So the problem is a linear EMS
extremum problem.

Example (Vertex cover). The vertex-cover problem is a linear EMS extremum problem
as well. We choose

Φ[U ] := (∀e ∈ E : ∃v ∈ U : v ∈ e)

and maximize the single evaluation term −|U |1 given by the vertex weights of U .
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Example (Dominating set). To formalize the dominating-set problem, we define

Φ[U ] := (∀v ∈ V : (v ∈ U ∨N(v) ∩ U 6= ∅))

and maximize the evaluation term −|U |1 given by the vertex weights of U . Hence the
dominating-set problem is a linear EMS extremum problem too.

3.3.3 A proof sketch

By now, we have seen that many graph problems can be reduced to logical formulas which
are in monadic second-order logic. Of course, this is more than just a nice way of notion.
Thanks to the tree-like structure of graphs of bounded treewidth, one can construct a
(finite) automaton accepting binary trees, which decides whether the formula is satisfiable
by a structure representing a binary tree.

The argumentation uses four steps (see [20]):

1. We define a suitable formula Φ in monadic second-order logic for the given graph
problem.

2. We transform the formula Φ in monadic second-order logic for graphs into a for-
mula Ψ in another monadic second-order language suited for binary trees. This
conversion takes linear time.

3. We construct a finite tree automaton, which decides for a given monadic second-
order formula Ψ in this new language, whether there is a binary tree S satisfying
Ψ, i.e. S |= Ψ – again in linear time.

4. If our problem was an extended monadic second-order (extremum) problem, the
automaton has to be modified in linear or polynomial time to give an actual solution
that also satisfies Ψ and optimizes F .

Altogether, this allows to decide the problem in linear or polynomial time.

The first step was already covered in the last section. We want to give a short sketch
what needs to be done in the remaining steps, without claiming to give a full proof. For
a full proof, we refer to [20].

Binary trees In the second step, we reformulate our monadic second-order formula Φ.
Instead of a monadic second-order formula based on the vertices and edges of our original
graph, we obtain another monadic second-order formula on a binary tree constructed from
the graphs (nice) tree decomposition (T, (Xi)i∈T ), which uses just unary predicates.

We start by adding, for each vertex i ∈ V (T ) and each vertex or edge t in the graph
Gi, a new neighbour at of T . The obtained tree T ′ is assumed to have no vertices
of degree 2, because a degree-2 vertex would correspond to a redundant node of our
tree-decomposition.
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Next, we define some suitable predicates PV , PE allowing to recognize the vertices and
edges of G in T ′. A similar thing is done for all other predicates necessary to transfer the
properties of G to our the new language: We encode the adjacency relation and define
additional relations to identify those vertices in T ′ originating from the same vertex of
G (but different parts). In consequence, there is a natural way to transform formulas
containing the original predicates into formulas containing these new unary predicates.
Such formulas are satisfied by a tree T ′ if and only if the original formula was satisfied
by G.

Finally, we introduce a new predicate Pc corresponding to a 2-colouring of T ′. We
recursively split up vertices of degree d ≥ 4 into new ones with degrees d − 3 and 3
belonging to the same colour class of Pc as the old vertex. In the obtained tree T ′′, there
are only vertices of degree 1 and 3. Splitting up one vertex of degree 3 into one vertex of
degree 1 and one vertex of degree 2, finally gives a binary tree. Thanks to the predicate
Pc, we can again transform our formula into the new language for binary trees.

If this transformation is done properly, we find a new formula Φ′′ in the monadic second-
order formula for binary trees (with the predicates mentioned above) in a natural way,
such that G |= Φ if and only if T ′′ |= Φ′′. One can even see that, during this process, we
can somehow reformulate our evaluation terms and relations. Therefore, this process is
also applicable for EMS-problems.

Tree automata In the third step, the monadic second-order formula for binary trees is
decided by a special automaton.

Definition 3.3.1. A tree automaton is a quintuple (S,Σ, δ, s0, A), where S is a set of
states, Σ a finite alphabet, δ : S × S × Σ → S a transition function, s0 the initial state
and A a set of accepting states.

Such a tree automaton executes a binary tree labelled with some elements of Σ by
assigning states to its nodes. The labels are tuples of 0s and 1s – each entry corresponds
to either an unary predicate or a free variable and encodes whether it is valid for the
current vertex. The empty tree has state s0 and, if the child vertices of a vertex v are
assigned states s1, s2 ∈ S and the vertex label is l, then the state for v is given by
δ(s1, s2, l). Obviously, this execution can be performed in linear time in the number of
vertices of the tree.

Before we start with the construction, we eliminate the object variables from our formula
by replacing object variables with set variables of cardinality 1. This can be done quite
easily and reduces the possibilities for atomic subformulas. For each atomic sub-formula
φ, one needs to provide an appropriate tree automaton deciding whether there is a
(labelled) binary tree satisfying φ (see [20, p. 328]).

Given a formula Φ, a tree automaton deciding Φ can be constructed recursively from au-
tomata recognizing the subformulas of Φ. Therefore, we first reduce the logical constants
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in Φ to ¬,∧ and ∃ by doing a reformulation. We start with the automata for the atomic
subformulas and proceed recursively. Let (Si,Σ, δi, s

i
0, Ai) be automata for φi, i = 1, 2.

• We obtain an automaton for ¬φ1 by (S1,Σ, δ1, s
1
0, S −A1).

• An automaton for φ1 ∧ φ2 is given by (S1 × S2,Σ, δ, (s
1
0, s

2
0), A1 × A2) with

δ((s1, s2), (t1, t2), a) = (δ1(s
1, t1, a), δ2(s

2, t2, a)).

• We can build an automaton for ∃x : φ1(x) by (2S1 ,Σ, δ∃, {s10}, A∃) with A∃ = {S :
S ∩A1 6= ∅} and, if the i-th bit of a represents the free variable variable x,

δ∃(Sl, Sr, a) = {δ1(sl, sr, b) : sl ∈ Sl, sr ∈ Sr; b ∈ Σ, aj = bj , j 6= i}

These steps can be executed in linear time and, finally, we obtain a suitable automaton.

Extended MS-formulas For extended MS-formulas, some free set variables do remain.
We denote the alphabet of our automaton by Σ×B, where the elements of Σ correspond
to the predicates and the elements of B to the free variables. We then build from the
automaton (S,Σ × B, δ, s0, A) for the MS-formula Φ a slightly changed automaton. It
is similar to the one for existential quantification: we have state set 2S , language Σ and
transition function

δ′ : S × S × Σ→ S : (s1, s2, σ) 7→ {δ(e1, e2, σ, b) : e1 ∈ s1, e2 ∈ s2, b ∈ B}.

Additionally, we add for each state s ⊂ S and each element e ∈ s a map me, which saves
the values of the evaluations during the execution. These maps are sets of matrices and,
in the end, we obtain the actual values of the evaluations in polynomial time from those
matrices.

For EMS extremum problems, we do not need these maps. It is sufficient to use counters
keeping track of the extremum of the objective function over all possible values in certain
equivalence classes because of the linearity of the objective function. So for each step,
we just need to check all possible combinations and store the maximal values for each
equivalence class. This way, one actually obtains a linear-time algorithm.

We again refer to [20] for all details.

3.3.4 Final results

We already mentioned the result by Courcelle:

Theorem 3.3.2. For each (counting) MS-problem P and each class K of universally
bounded treewidth, deciding the problem P for G ∈ K can be done in linear time if G is
given together with a tree-decomposition.

Arnborg et al. do not even use the result for counting MS-problems but give an even
stronger result.
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Theorem 3.3.3. • For each EMS-problem P and for each class K of graphs of uni-
versally bounded treewidth, the problem P for G ∈ K (with suitable evaluation
relations f1, . . . , fm and parameters C1, . . . , Ct) can be decided in polynomial time
with respect to |G| if a tree-decomposition of G ∈ K is given.

• Additionally, EMS extremum problems P can be decided in polynomial time, for
each class K of graphs of universally bounded treewidth, if a tree-decomposition of
the corresponding graph G ∈ K is given.

• If an EMS extremum problems P is linear and we charge arithmetic operation with
constant cost, then P can even be decided in linear time, assuming that a tree-
decomposition of the corresponding graph G ∈ K is given.

This result covers many graph problems such as the linear EMS-problems of finding
vertex covers, dominating sets, independent sets, planar subgraphs, bipartite subgraphs,
minimum maximal matching, cliques, maximum cuts and longest paths. An example
for a non-linear EMS-problem is finding a partition into perfect matchings or the K-th
shortest path for fixed K.
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In Chapter 3, we observed that considering treewidth and tree-decompositions of graphs
is very useful for algorithmic purposes.

We devote this chapter to the actual treewidth computation and the construction of
suitable tree-decompositions.

The problem of computing the treewidth of a graph, and – if possible – additionally some
tree-decomposition of this width, was already considered by Robertson and Seymour in
their original work on tree-decompositions and treewidth [3]. The complexity of their
algorithm was stated to be O(nf(k)) i.e. polynomial in n := |V |. Their result was
improved a few times thereafter.

4.1 Complexity of treewidth computations

Before the concepts of treewidth and tree-decompositions were introduced, a similar
problem was considered by Arnborg, Corneil and Proskurowski in [23]: the problem of
finding embeddings in a k-tree.

We recall the definition of partial k-trees as subgraphs of k-trees in Section 1.2.3. Since
partial k-trees are exactly the graphs of treewidth at most k due to Theorem 1.2.15, the
treewidth of a graph G can be computed by finding the minimal number k such that G
is a partial k-tree. This number is denoted by kt(G) in the original paper.

Arnborg et al. showed in [23] that this problem is NP-complete.

Theorem 4.1.1 (Arnborg et al.). The problem of deciding for a graph G and an integer
k, whether kt(G) ≤ k is NP-complete.

This is argued by providing a polynomial reduction to the minimum-cut linear-
arrangement problem i.e. the problem of finding an arrangement

τ = (v1, v2, . . . , vi, vi+1, . . . , v|V |)

of the vertices V (G) such that, for each 1 ≤ i < |V |, there are at most k edges between
the first i vertices v1, . . . , vi and the later vertices vi+1, . . . , v|V | of G. This problem has
previously been shown to be NP-complete and thus evaluating the treewidth is NP -hard
as well. NP-membership is quite easy to see because the arrangement naturally corre-
sponds to an elimination ordering for G and we can, thereby, efficiently check whether
the graph is a partial k-tree by counting the edges.
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From these results, we conclude that there are – in general – no efficient algorithms for
treewidth computations and, of course, constructing an tree-decomposition of optimal
width is at least as difficult.

4.2 Exact algorithms

Fortunately, there are some problem variants which are fixed-parameter tractable i.e. can
be decided in polynomial and even in linear time with respect to n := |V |. The most
common variants are obtained by fixing an integer k within the problem specifications
i.e. we ask:

Given a graph G = (V,E) and an integer k, does G have treewidth at most
k? Often, we additionally ask for a tree-decomposition of width k.

For the cases k = 1, 2, 3, 4, linear-time algorithms had already been given when Bodlaen-
der provided a linear-time algorithm for general k in [24].

This was the final result of a series of improvements which started with an algorithm
by Arnborg, Corneil and Proskurowski in [23]. Arnborg at al. provided an O(nk+2)-
algorithm which we discuss in the following subsection. Furthermore, we want to give a
short overview on further improvements and the result by Bodlaender.

Throughout this section, we only consider connected graphs. By Lemma 1.1.8, this is no
essential restriction since

tw(G) = max
components C of G

tw(C).

4.2.1 A polynomial algorithm

The first algorithm by Arnborg, Corneil and Proskurowski ([23]) was actually an algo-
rithm for partial k-trees. We already mentioned in Section 4.1 that the treewidth can be
evaluated by finding minimal embeddings in k-trees.

Arnborg and al. used the following result:

Lemma 4.2.1. A connected graph G of size at least k + 2 is a partial k-tree if and only
if there exists a k-element separator Ci such that all induced subgraphs Ci

j := G[Ci ∪Cj ]

with components C1, . . . , Cj of G− Ci are partial k-trees.

The original proof used inductive arguments constructing those separators. We use the
equivalence of partial k-trees and graphs of treewidth at most k from Theorem 1.2.15
and show the following variant:

Lemma 4.2.2. A graph G (of size at least k + 2) has treewidth at most k if and only if
there exists a k-element separator Ci such that the graphs Ci

j, defined in Lemma 4.2.1,
have treewidth at most k.
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Proof. We take a reduced tree-decomposition (T, (Xt)t∈V (T )) of G having width l ≤ k
and denote one part containing l+ 1 elements by Xt1 , t1 ∈ V (T ). If l < k we choose k− l
vertices of V (G)\Xt1 and add them to each vertex set Xt. Of course, this gives a new
tree-decomposition (T, (Xt)t∈V (T )) of width |Xt1 | − 1 = k.

t1 has at least one neighbour t2 in T and, because we are reduced, the set S = Xt1 ∩Xt2

is a separator of size at most k for G by Lemma 1.1.13.

We extend this separator S by vertices of Xt1 until it has size exactly k. Of course,
the obtained set Ci is still a separator because the remaining nodes in Xt1\S are not
connected to the component containing Xt2\S.

For each component C of G−Ci, the restriction of the original tree-decomposition gives
a tree-decomposition for G[C ∪ Ci]. However, Ci is entirely contained in the part Xt1

and adding edges inside Xt1 does not conflict with (T2). This allows us to use this tree-
decomposition for the corresponding graph Ci

j as well. Therefore, tw(Ci
j) ≤ k and the

given condition is necessary.

On the other hand, the tree-decompositions of the Ci
j each have some part containing the

entire set Ci. If we connect the trees given by their tree-decompositions with a common
root node r and define the vertex set Xr := Ci, we already get a tree-decomposition of
width at most k for G, since all other vertices are disjoint.

The algorithm given by Arnborg et al. simply considers all k-element vertex sets S of G
and tests whether they are separators. For each separator Ci, we additionally compute
the subgraphs Ci

j , j = 1, . . . , l induced by S and the vertices of one of the l components
of G − S. Furthermore, we add edges to make the subgraph induced by Ci complete –
this is necessary to make some “gluing” possible throughout the algorithm.

Note that it is possible to decide whether a set S is a separator and, simultaneously,
compute the components Ci

j in time O(n2) with a simple depth- or breath-first search
algorithm. Evaluating all separators and resulting subgraphs, therefore, takes O(nk+2).

It remains to decide whether all graphs Ci
j , for some separator Ci, have treewidth at

most k. Fortunately, there is a quite useful criteria which allows a bottom-up evaluation.

Lemma 4.2.3. A subgraph Ci
j has treewidth at most k, if there exists a vertex v ∈ V (Ci

j)
and some k-vertex separators Cm 6= Ci contained in Ci ∪ {v} such that some of the
components Cm

l −Cm with Cm
l ⊂ Ci

j and treewidth of Cm
l at most k partition Ci

j−Ci−{v}.

Proof. If Ci
j has treewidth at most k, there exists a reduced tree-decomposition of width

k by Lemma 1.1.5. Ci is entirely contained in some vertex set Xt because Ci is complete.
So either Xt = Ci ∪{v} for some v ∈ V (G) or Xt = Ci. First we handle the second case:
We extend Xt by some vertex v ∈ Xs\Xt for some node s adjacent to t. Its existence
is guaranteed since we use reduced tree-decompositions and we additionally yield, for all
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4 Determining Treewidth

neighbours s of t that

Xt\Xs 6= ∅. (4.1)

We know that the graphs Gk induced by the different branches of G at t, result in graphs
Gk−Xt which are disjoint and not connected by Lemma 1.1.12. Their vertices partition
G − Xt (by Property (T1)) and thus they are exactly the components of G − Xt. For
Xt = Ci∪{v}, the components of G−Ci are obviously obtained from the components of
G−Xt by merging those components adjacent to v. Therefore, the components Gk−Xt

with vertices adjacent to v partition Ci
j − Ci − {v}.

It remains to show that each such component Gk−Xt with vertices adjacent to v actually
results from removing some separator Cm 6= Ci. In the branch of G at t which induces
Gk there is a unique neighbour s of t. For its part Xs, we have that Xt\Xs 6= ∅ by
Property (4.1). Let w ∈ Xt\Xs, then w is not adjacent to any node in the component
Gk − Xt due to Property (T2) and Property (T3). Obviously, w 6= v since v does not
share this property. Since Gk −Xt has no outgoing edges to vertices outside Xt\{w}, it
appears as some component Cm

l − Cm of G − Cm for Cm ∪ {w} = Ci ∪ {v}, v 6= w. his
shows that the above condition is necessary.

If such sets Cm
l with the property stated above exist, we take a tree-decompositions of

those Cm
l . We root each one of them at the node nml containing the complete subgraph

Cm − {v} and we glue them together at a common root r node with set Xr = Ci ∪ {v}.
We just have to check Property (T3) for the vertices in Ci∪{v} to see that this is a valid
tree-decomposition for Ci

j because having a partition of Ci
j −Ci−{v} implies all others.

All the nodes nml contain v and the root node glues together the subtrees containing {v}.
If some node nml does not contain a vertex w ∈ Ci, then Cm

l cannot contain it either
because Cm

l −Cm ≤ Ci
j −Ci − {v}. Again, the subtree containing w is connected. This

gluing process thus gives a tree-decomposition for Ci
j of width k.

The graphs Cm
l in the previous lemma are strictly smaller than Ci

j and we can use this
to do a bottom-up evaluation. This gives a procedure testTreewidth(integer k)stated
in Algorithm 18.

We already noticed that finding separators can be done in O(nk+2) and so does the first
loop.

Bucket-sorting is linear in the number of graphs Ci
j . We can at least bound the number

of graphs Ci
j by (n− k) · nk+1 because there are at most nk separators and each one has

at most n− k resulting components.

In the second loop, testing all vertices v ∈ Ci
j adds a factor O(n) to these costs. Checking

the exit condition does not increase the loops time complexity. The additional effort for
evaluating the union in the innermost loop is O(n) because – for a proper implementation
we can access the (at most k) possible separators Cm in constant time each and find the
subgraphs Cm

l in O(n) for each separator. The last estimation works because the total
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Algorithm 18 testTreewidth(k): tests whether the input graph G has treewidth at
most k
for all k-element vertex sets S do

if S is a separator then
Save Ci = S in an array (Ci)i∈I and the resulting subgraphs as list (Ci

j)j∈Ji .
end if

end for
Bucket-sort the graphs Ci

j by increasing size
Store the answer true for all Ci

j with size k + 1

for all Ci
j with increasing order do

for all v ∈ V (Cj
j ) do

U = ∅
for all Cm

l in (Ci
j − Ci) ∪ Cm with Cm ⊂ Ci ∪ {v} and answer true do

U = U ∪ Cm
l

end for
if U contains Ci

j − Ci then
set answer for Ci

j to true and continue with next Ci
j

end if
end for
if Answer for Ci

j not yet set then
Set answer for Ci

j to false
end if
if for this i all Ci

j have answer true then
witness found, return true

end if
end for
no witness found; return false
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number of vertices in
⋃

j(C
m
l −Cm) is bounded by n. Checking the union again does not

increase the time complexity and altogether we find that the time complexity for this
algorithms is O(nk+2).

We already argued above that this algorithm is correct. Therefore, the above method
indeed gives a O(nk+2) algorithm for testing whether the treewidth is at most k. In the
original work [23], there is, of course, no construction of an actual tree-decomposition
but the option of finding an embedding into a k-tree along the way. Anyway, we modified
the proofs for the two lemmata above to indicate that the algorithm can be modified to
construct tree-decompositions. One would just need to start with the construction for
small Ci

j and glue those together along the way.

4.2.2 A two-step algorithm

The time complexity of treewidth computations has, afterwards, been reduced by a new
kind of two-step algorithm.

First, a tree-decomposition of width bounded by some constant depending on the fixed
value k is evaluated. In the original version by Robertson and Seymour in [8], the
treewidth bound was 4k and the evaluation could be executed in O(n2) time.

This first step was improved a few times: Lagergren [25] and Reed [26] gave sequential
algorithms in O(n log2(n)) and O(n log(n)), respectively – all based upon finding some
kind of balanced separators. Those algorithms can even be efficiently parallelized to use
sub-linear time. We skip the details of those algorithms here and instead sketch another
approach for the first step by Bodlaender in Subsection 4.2.3.

The second step of the algorithm was, at first, an abstract one using graph minor theory.
This abstract algorithm uses the obstruction set of forbidden minors for the minor-closed
class of graphs of treewidth at most k and checks whether the graph contains one of
these minors. For minor-testing, there exist linear-time algorithms developed with a
dynamic-programming-approach (like in Chapter 3).

Later, it was discovered that the second step can be done without the use of graph minors.
Lagergren and Arnborg [27] and, independently, Bodlaender and Kloks [28] gave explicit
algorithms for the second step which take a tree-decomposition of treewidth linear in k
and decide whether the graphs treewidth is at most k. Bodlaender and Kloks also gave
instructions, how to actually find tree-decompositions of width k.

Since this algorithm is actually used by the linear-time algorithm introduced in Subsec-
tion 4.2.3, we choose to give a short characterization of the algorithm by Bodlaender and
Kloks in [28].

The main result is the following one:

Theorem 4.2.4 (Bodlaender and Kloks, 1996). For all k and l, there exists a linear-time
algorithm that – given a graph G = (V,E) together with a tree-decomposition (T,X ) of
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4.2 Exact algorithms

treewidth at most l – determines whether the treewidth of G is at most k and, if so, finds
a tree-decomposition of G with treewidth at most k.

Bodlaender and Kloks start by turning the tree-decomposition of width at most l into
an equivalent nice tree-decomposition (T, (Xi)i∈V (t)) of same treewidth. Subsequently, a
dynamic-programming algorithm similar to the ones in Chapter 3 is executed.

As solutions, we define any tree-decomposition for G. Partial solutions for subgraphs Gi

induced by a vertex set Vi are, again, solutions for Gi i.e. tree-decompositions for Gi.
Extensions are defined in a natural way i.e. such that the restriction to Gi equals the
original partial solution.

Defining suitable characteristics is a bit more challenging. We start with any partial
tree-decomposition Y = (T Y ,SY ) for a subgraph Gi of G. Whenever we want to extend
it, we are interested in the distribution of the nodes containing vertices of Xi. Those
nodes have to contain all potential neighbours of new vertices in V (G)\Vi to archive
Property (T2) and, therefore, some of them might need to be extended by additional
vertices.

Definition 4.2.5. The pair (T Y , {S ∩Xi : S ∈ SY }) for Xi is called restriction of the
partial tree-decomposition Y = (T Y ,SY ).

It is quite obvious that the restriction is a tree-decomposition for the subgraph G[Xi].
Nevertheless, it might contain quite many nodes and we want to restrict to the essential
structure – just as we did for the reduced tree-decompositions mentioned in Chapter 1.
Here we recursively remove those leaves which are already fully contained in the vertex
set of their parent node and thus not contain any new vertex. Additionally, we replace
subsequent nodes of degree 2 by single nodes. This just gives another tree-decomposition
of G[Xi].

Definition 4.2.6. The trunk of a partial tree-decomposition Y = (T Y ,SY ) is the tree
T obtained from T Y by recursively removing leaves which do not contain any vertex v
not contained in any other vertex set of SY . Additionally, we remove possible chains of
vertices with degree 2 by replacing them with a single edge e.

Each edge e ∈ T corresponds to some path v0v1 . . . vn in T Y containing the inner vertices
of degree 2 which were removed along e in the construction of the trunk. We consider
the sequence of corresponding parts of the restriction

SY
0 ∩Xi, S

Y
1 ∩Xi, . . . , S

Y
n ∩Xi

and remove possible subsequent identical vertex sets. The remaining list

Ze := (SY
t0 ∩Xi, S

Y
t1 ∩Xi, . . . , S

Y
tp ∩Xi)

with 0 = t0 < t1 < . . . < tp = n is called interval model for the edge e.

The pair (T , (Ze)e∈E(T ) is called tree model for Y .
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4 Determining Treewidth

These tree models define our equivalence classes of partial tree-decompositions.

The trunk of any partial tree-decomposition of width k has a very nice property: Since we
removed leaves not containing any new vertex and we just use nodes of Xi, there are at
most k+1 leaves. There are no degree-2 vertices and, for trees, there holds |E| = |V |−1.
This, immediately, yields that

2 · |E| = 2 · |V | − 2 =
∑
v∈V

d(v) ≥ l + 3 · (|V | − l)

where l ≤ k+1 denotes the actual number of leaves, and thus |V | ≤ 2l−2 ≤ 2k. So, both
the number of trunk vertices and the number of trunk edges are linear in k. Bodlaender
and Kloks additionally showed that the number of subsets in each set Ze can be bounded
by 2k+ 3 and, consequently, the number of possible tree models is only dependent on k.
Hence, there is only a constant number of equivalence classes with respect to the number
of nodes in the original graph G.

To finally select good partial solutions, we need to keep track of the sizes of the vertex
sets in the partial tree-decomposition for Gi. Intuitively, in each equivalence class, those
tree-decompositions with smaller vertex sets are better since they result in extensions
with smaller vertex sets. The goal of minimizing the set sizes is archived through an
additional valuation component (similar to the algorithms for optimization problems in
Section 3.2).

Definition 4.2.7. Let Y = (T Y ,SY ) be a partial tree-decomposition with tree model
(T , (Ze)e∈E(T )). For each edge e and interval model Ze = (SY

t0∩Xi, S
Y
t1∩Xi, . . . , S

Y
tp∩Xi)

we define [ye] := [y1e , . . . , y
p
e ] with (for 0 ≤ i ≤ p− 1)

yi+1
e = (|Sti |, |Sti+1|, . . . , |Sti+1−1|)

This array of lists is too long to actually use it. It might even contain duplicates. This is
why Bodlaender and Kloks use some nice variant of the lists defined above. They replace
each list [ye] by some new list τ [ye], which is obtained by taking each list yie = (ai)

n
i=0

separately and recursively applying the following operation:

If there is any sub-sequence (ai, . . . , aj), i < j + 1 with either ai ≤ ak ≤ aj
for all i < k < j or ai ≥ ak ≥ aj for all i < k < j, replace it by (ai, aj).

Since replacing those sub-sequences does not influence the order of the remaining el-
ements, this uniquely defines a new list τ [ye], named the typical list for e. We not
only replace possible subsequent duplicates; the above ascending and descending sub-
sequences e.g. also cover the case of adjacent nodes with some subset relation for the
corresponding vertex sets. They also define a very nice relation on such integer lists.

Definition 4.2.8. We use the notation [y∗] ∈ E([y]) for some arrays of integer lists
[y] = (y1, y2, . . . , yn), [y∗] = (y∗1, y

∗
2, . . . , y

∗
n), if each integer list y∗i is obtained from yi by

subsequently taking each element at least once i.e. if yi = (xi1, x
i
2, . . . , x

i
n), y∗∗i is of form

(x1, x1, . . . , x1, x2, . . . , x2, . . . xn, . . . , xn).
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Using this notation, we define a relation <L on such integer lists by [x] <L [y] if and only
if there exist [x∗] ∈ E([x]), [y∗] ∈ E([y]) of equal length n such that for all 1 ≤ i ≤ n
there holds x∗i ≤ y∗i .

Bodlaender and Kloks observe that this relation on the lists τ [ye] for partial solutions
with the same tree model indeed rates its quality. For reference, see [28, Chapter 3].

A dynamic programming algorithm finally computes the tables containing the best val-
uation of each equivalence classes in bottom-up order:

• At leaf nodes, there is just one tree-decomposition where each leaf contains a new
vertex.

• At join nodes, we somehow glue together pairs of partial solutions while, of course,
checking whether the set sizes stay at most k + 1.

• At forget nodes, we need to remove the corresponding vertex from each set in Ze

for all e and re-compute the tree model as well as the typical list.

• At introduce nodes, they exploit that there are only constantly many equivalence
classes for the new node and they check the restriction for each one.

We end up with the corresponding table for the root node of the tree-decomposition. Of
course, if this table is empty, then the treewidth is > k; otherwise one can compute some
tree-decomposition of width at most k from this table. We skip all details here and refer
to the original paper by Bodlaender and Kloks [28].

4.2.3 A linear time algorithm for graphs of bounded treewidth

As we observed in the previous subsection, the second step was known to be tractable
in linear time soon and, for a long time, the first step remained the crucial one for
complexity issues. Bodlaender finally managed to improve this step to take linear time
with respect to the number of vertices. This immediately gave a linear-time algorithm
for the combined decision and construction variant on general graphs.

While previous algorithms had been based on well-chosen separators, Bodlaender ob-
served that bounded-treewidth graphs only have few vertices with large degree. We want
to give a rough sketch on the main ideas of his algorithm. The full argumentation can
be found in [24].

For his argumentation, he uses some fixed integer value d depending on the treewidth k.

d := 2k3 · (k + 1) · (4k2 + 12k + 16)

Definition 4.2.9. A vertex of degree at most d is called low-degree vertex, while vertices
with degree at least d are called high-degree vertices.

A vertex v is called friendly if it is a low-degree vertex and adjacent to another low-degree
vertex.
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We start with a simple observation which is obtained using a special kind of tree-
decomposition called smooth tree-decomposition: For smoothed tree-decompositions, we
demand |Xi| = k + 1 for all nodes i and |Xi ∩Xj | = k for all edges ij. This demand is
admissible since we can recursively apply the following operations without violating the
Axioms (T1), (T2) and (T3).

• If Xj ⊆ Xi, we contract the edge ij to some new node k with Xk = Xi.

• If Xj 6⊆ Xi but |Xi| < k + 1, we add a vertex v ∈ Xj\Xi to Xi increasing its size.

• If |Xi| = |Xj | = k+ 1 but |Xi−Xj | > 1, we subdivide the edge ij by introducing a
new node k with vertex set Xk = Xi\{v} ∪ {w} where v ∈ Xi\Xj and w ∈ Xj\Xi.
This decreases the number of overlaps by 1.

We now show the following lemma:

Lemma 4.2.10. If G = (V,E) has treewidth at most k, then |E| ≤ k|V | − 1
2k(k + 1).

Proof. We use a smooth tree-decomposition for G; If there is just one bag, there holds

n = k and |E| ≤ n(n− 1)

2
= kn − 1

2
k(k + 1). If there are at least two parts, we

consider the graph induced by removing one leaf i of the tree-decomposition. Since our
tree-decomposition is smooth, there is a unique vertex v ∈ Xi which is not contained
in any other vertex set. This vertex is connected to at most k neighbours in Xi by
Property (T2). Applying the induction hypothesis for G′ = G− {v}, we yield

|E| ≤ |E(G′)|+ k ≤ k|V (G′)| − 1

2
k(k + 1) + k = k|V (G)| − 1

2
k(k + 1).

We see that a violation of the above inequality suffices to see that the treewidth is strictly
greater than k. Additionally, we derive a nice bound for the number of high-degree
vertices.

Lemma 4.2.11. There are fewer than
2k

d
· |V | high-degree vertices in a graph G = (V,E)

with treewidth k.

Proof. If there are l high-degree vertices, there are at least l·d2 edges. Using Lemma 4.2.10,
we yield

l · d ≤ 2|E| ≤ 2k|V | − k(k + 1) < 2k|V |.

Bodlaender finally obtains the following result.

Theorem 4.2.12. For every graph G = (V,E) with treewidth at most k, at least one of
the following properties holds:

1. G contains at least |V |/(4k2 + 12k + 16) friendly vertices.
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2. The improved graph G′ = (V,E′), i.e. the graph obtained from G by adding edges
between vertices with at least k + 1 common neighbours of degree at most k in G,
contains at least |V |/(8k2 + 24k + 32) simplicial vertices having degree at most k
in G.

We omit this slightly technical proof here and refer to [24, Section 4]. The structure
of the algorithm is a recursive one. For small graphs, the algorithm uses an arbitrary
algorithm – it does not influence the complexity anyway. In each of the above cases, a
reasonable modified graph G′ is computed and the algorithm is called recursively for G′.
Afterwards, the tree-decomposition for G′ needs to be modified to yield another one for
G.

In the first case, Bodlaender exploits the following fact.

Lemma 4.2.13. If there are nf friendly vertices in G, any maximal matching of G
contains at least nf

2d edges.

Proof. For some maximal matching M , any friendly vertex v must either be an endpoint
of an edge inM or – by maximality – the friendly (low-degree) neighbour of v is endpoint
of an edge inM . For each edge inM , at most 2d friendly vertices are incident or adjacent
to a friendly incident vertex. This gives the correspondence 2d|M | ≥ nf .

The algorithm computes a maximal matching using a greedy O(|V | + |E|) = O(|V |)-
algorithm. Afterwards, all edges in M are contracted and we yield a graph G′ = (V ′, E′)
and some map fM : V → V ′ which maps vertices in G to their resulting vertices after
the contractions. One easily observes the following lemma.

Lemma 4.2.14. For a graph G with some maximum matching M and a graph G′, as
defined above, there holds:

If (T, (Xi)i∈V (T )) is a tree-decomposition of G of width k, then the pair
(T, (Yi)i∈V (T )) with Yi = {v ∈ V : fM (v) ∈ Xi} is a tree-decomposition
for G′ of width at most 2k + 1.

We then recursively compute a tree-decomposition for G′ and extend it to G in a natural
way. This yields a tree-decomposition for G of width at most 2k+ 1. Finally, we use the
algorithm by Bodlaender and Kloks stated in the previous subsection to test whether the
treewidth is at most k. Of course, since the treewidth of G and G′ correspond, we also
detect if G has treewidth at least k + 1.

In the second case of Theorem 4.2.12, we have many friendly vertices. We compute the
improved graph mentioned in Theorem 4.2.12 i.e. we make vertices with at least k + 1
common neighbours of degree at most k in G adjacent. There holds:

Lemma 4.2.15. Any tree-decomposition of G of width k is also a tree-decomposition for
the improved graph of G, and vice versa.
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Proof. If (T, (Xi)i∈V (T )) is a reduced tree-decomposition for G and v, w share k + 1
neighbours N , we apply Lemma 1.1.14 for the set W = {v, w}.

Assume there is some edge t1t2 ∈ E(T ) such that v, w 6∈ Xt1 ∩Xt2 and the sets Xt1 , Xt2

were separated by Xt1 ∩Xt2 in G. The separating set has to contain all k + 1 vertices
in N to separate v and w which implies |Xt1 | = |Xt2 | = k + 1. Of course, this is a
contradiction to the fact that we used a reduced tree-decomposition and thus there has
to exist some part containing the set {v, w}. Making v, w adjacent does, therefore, not
increase the treewidth.

The second implication is trivial since G is a subgraph of G′.

The algorithms for graphs with less friendly vertices starts by computing the improved
graph of G. In the next step the simplicial vertices stated in Theorem 4.2.12 are consid-
ered.

Definition 4.2.16. A vertex v ∈ V which is simplicial in the improved graph of G is
called I-simplicial.

Of course, the improved graph is not allowed to have simplicial vertices of degree at least
k + 1 since such vertices would result in a k + 2 clique. If the treewidth is at most k,
there obviously are no cliques of size k + 2 and thus the restriction for the degree of
I-simplicial vertices is natural. The algorithms first checks this condition and the lower
bound on the number of such vertices stated in Theorem 4.2.12.

If all these tests are negative, we remove the I-simplicial vertices from the improved
graph and, recursively, apply the algorithm for the new graph. We notice the following
fact.

Lemma 4.2.17. If (T, (Xi)i∈V (T )) is a tree-decomposition of the graph G′ obtained by
removing the I-simplicial vertices, then for all I-simplicial vertices v there exists an node
i ∈ V (T ) with NG(v) ⊆ Xi.

Proof. Since each such vertex v is simplicial, their neighbourhood NG(v) forms a clique
in the improved graph. However, Bodlaender states that I-simplicial vertices can not
be adjacent in G and thus their neighbourhood does not contain any other I-simplicial
node. Therefore, all neighbours of v have to be contained in some vertex set Xi of this
tree-decomposition.

For each tree-decomposition of the graph G′ without those simplicial vertices, we still
have some part Xi with NG′(v) ⊆ Xi for each I-simplicial vertex v. By appending one
new node adjacent to i in the tree T with vertex set NG(v) ∪ {v} we already find a
tree-decomposition of width k for the original graph. If the treewidth of the subgraph
G′ of G is larger than k, then so is the treewidth of G and the algorithm returns false.

Implementing the ideas from above in some suitable way, Bodlaender actually yields the
stated linear-time algorithm for the second step.
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Theorem 4.2.18. For all k ∈ N, there exists a linear-time algorithm finding a tree-
decomposition of width at most k or recognizing that the treewidth is at least k + 1.

The non-recursive steps can easily be observed to be linear. For many friendly vertices,
we observe that the matching is sufficiently large and thus the size of the obtained graph
can be bounded from above. For fewer friendly vertices, Bodlaender shows that there
are sufficiently many I-simplicial vertices and again the size of the obtained graph is
bounded from above. Both bounds are sufficiently tight to yield a linear runtime for this
recursive algorithm.

Bodlaender also estimates the constant factor hidden in the O-notation: After all this
effort it is, sadly, still exponential in k3.

There is one more improvement of this algorithm by Perković and Reed in [29], which,
in case the algorithm returns that the treewidth is ≥ k, also returns a subgraph G′ with
treewidth ≥ k along with a tree-decomposition of G′ of width ≤ 2k. We do not consider
this improvement here.

4.3 Approximating treewidth

Since exact algorithms for treewidth and tree-decompositions are still time-consuming, it
is, additionally, important to consider approximation algorithms which do not guarantee
to give an optimal width for their tree-decomposition but still give reasonable results for
the corresponding applications.

We just want to state a few results which were mentioned by Bodlander and Koster in
[16, Chapter 4].

4.3.1 Approximation algorithms

We observed in Section 1.2.2 that the treewidth is bounded from below by ω(G) − 1,
where ω(G) denotes the graphs maximum clique size.

To compute the treewidth for chordal graphs, one would possibly start by computing a
perfect elimination ordering v1, . . . , vn and then recursively building a tree-decomposition
by adding simplicial vertices.

Since in each step the vertex vi is simplicial in G[V \{v1, . . . , vi−1}], its neighbourhood
N(vi) induces a clique. By Lemma 1.1.15, this clique is contained in some vertex set
Xi of any tree-decomposition for G[V \{v1, . . . , vi−1, vi}] and by adding one new part
adjacent to Xi with vertex set Xj = N(vi) ∪ {vi}, we yield a valid tree-decomposition
for G[V \{v1, . . . , vi−1}]. That way we, recursively, get a tree-decomposition of optimal
width for G. Obviously, the width corresponds to the maximum degree of any vertex vi
at the time of its removal.
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Of course, this does not work for arbitrary graphs. Anyway, we can try to construct a
chordal supergraph G′ of G by chordalization (or triangulation) and exploit that

tw(G) = min{ω(H)− 1|G ⊆ H;H chordal }

as stated in Corollary 1.2.11.

According to [16, Chapter 4], many heuristics actually exploit this very simple fact. We
just need to choose an arbitrary elimination ordering for G. There are some different
approaches to do this: One could e.g. chordalize a graph in a greedy way by repeatedly
selecting vertices having a neighbourhood which is already nearly complete and adding
those edges for chordalization (called greedy fill-in). Another popular example is mini-
mum degree fill-in, where only vertices of minimum degree are selected for elimination.

Other algorithms searching for possibly suboptimal solutions use the concept of separa-
tors. A nice survey on all these methods is given in [30].

Other approximation algorithms even give some guaranty for the quality of the obtained
solution. For instance, there is an early algorithm by Bodlaender and al. in [31], which
outputs a tree-decomposition of width O(k log(k)) and takes polynomial time. There are
other log(k)-approximation algorithms i.e. algorithms guaranteeing treewidthO(k log(k))
in polynomial time as well.

It would, of course, seem desirable to find algorithms with a constant approximation
factor. However, it is not known whether there are such algorithms running in polynomial
time both in n and the treewidth k ([16]).

Additionally, people have tried various other attempts which are common for known
NP -problems: There are some heuristics which locally improve solutions by replacing
large vertex bags while preserving the axioms. Of course, these can be used to improve
solutions found by any other algorithm as well as for starting with the trivial tree-
decomposition consisting of just one bag.

Other attempts use meta-heuristics e.g. simulated annealing of genetic algorithms. We
do not consider those approaches here.

4.3.2 Lower bounds

Another way to tackle our problem is to find some good lower bounds. Of course, this
does not give a feasible tree-decomposition but it might still give a good estimate. This
could prove useful e.g. to decide which instances are actually to complex to deal with.

Additionally, good lower bounds are used in another common approach for NP -problems,
namely branch-and-bound algorithms.

Most common methods for lower bounds are based on (minimal or average) degrees.
Since those degree values do not appear to be closed under subgraphs or minors, they
are often substantially improved by evaluating these bounds for all (or at least many)
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subgraphs or minors and combining those results. Another approach for finding a lower
bound might be the concepts of brambles which was briefly mentioned in Section 1.2.5
and seems useful for close-to-planar graphs.

A survey on approaches for lower bounds is given in [32].

69





5 An Alternative Approach: Reduction
Algorithms

Throughout this section, we present one more interesting method to solve decision and
optimization properties on graphs of bounded treewidth. It is based on graph reduction
i.e. we try to replace graphs of typeH⊕K by a smaller graphH ′⊕K without changing the
answer to our problems. This method is of special interest since it does not use an actual
tree-decomposition and, therefore, skips the complexity issues of treewidth-computations
discussed in Chapter 4.

As the treewidth concept itself, the idea for this approach was taken from algorithms
working for special graph classes. A reduction algorithm for some series-parallel graphs
could, for instance, reduce the original graph to a single edge by iteratively deleting
parallel edges and removing series of subsequent vertices.

A first algebraic theory for graph reductions was given by Arnborg et al. In [33], they
show that for special kinds of graph properties (including MS-definable problems as
considered in Section 3.3) a O(n)-time decision algorithm using more than linear space
exists. Each such algorithm is characterized by defining a suitable set of reduction rules.
This chapter deals with such reduction systems and indicates how to find them.

We basically follow the considerations of Bodlaender and Antwerpen-de Fluiter in [9].
We first give a general definition of graph reductions and, afterwards, consider the case
of bounded treewidth graphs.

Throughout this section, we use a slightly different representation of graphs G = (V,E):
For each vertex v ∈ V , we save an adjacency list i.e. a doubly-linked list of all incident
edges and a record containing a pointer to the first and last edge of this list. This
way, edges are represented twice – we link those with some more pointers. In total, we
store 2 · |E| edges and additionally 2 · |E|+ 2 · |V | pointers which still gives linear space
complexity. We call such a representation an adjacency list representation of G.

5.1 Reduction systems

In this section, we want to give a short insight on graph reductions. We, again, use the
concept of terminal graphs as introduced in Section 2.2.2.

Definition 5.1.1. A reduction rule r is an ordered pair of l-terminal graphs H1,H2 for
some l ≥ 0. Such a reduction rule can be applied to a graph G in the following sense:
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If G contains a l-terminal subgraph G1 isomorphic to H1 and G = G1 ⊕ G3, then we
replace G1 by a graph G2 isomorphic to H2 and yield a new graph G′ = G2 ⊕G3. Such
an application is called a reduction, and it is denoted by G r→ G′.

Given a set of reduction rules R, we denote the application of an r ∈ R by G R→ G′. A
graph G is irreducible for R if no further reduction is possible with any reduction rule in
R.

5.1.1 Reduction systems for graph properties

We usually want reduction rules to have some nice properties with respect to a fixed
graph property P.

Definition 5.1.2. We define the following properties:

• A set of reduction rules R is called safe for P if, whenever G R→ G′, the equivalence
P (G)⇔ P (G′) holds.

• A set of reductions rules R is called complete for P if the set of irreducible graphs
for which P holds is finite.

• A set of reductions rules R is called decreasing for P if, whenever G R→ G′, we have
|G| > |G′| i.e. G′ has less vertices.

A reduction system for P is a pair (R, I) whereR is a finite, safe, complete and decreasing
set of reduction rules for P and I is the (finite) set of irreducible graphs for which P
holds.

A reduction system characterizes P:

P holds if and only if there is a sequence of reduction rules in R which reduces
G to one of the graphs in I.

This immediately gives an algorithm of deciding P. This algorithm consists of performing
at most n := |V | reductions because the reduction rules are decreasing. It remains to
find an efficient way to decide, whether a rule can be applied to a give graph. In [9],
a method called bounded adjacency-list method is used. They define so called special
reduction systems, for which this decision algorithm for P takes O(n) time and uses
O(n) space for connected graphs.

Definition 5.1.3. A reduction system (R, I) is called special if there are integers nmin <
max{|V (H1)| : (H1, H2) ∈ R} < d satisfying

• For each rule (H1, H2) ∈ R, the graphs H1, H2 are connected and open i.e. there
are no edges between their terminals.

• Each connected graph G (given by an adjacency-list representation) which satisfies
P (G) and |V (G)| ≥ nmin, G contains a d-discoverable match, i.e. a connected and
open l-terminal graph G1 with the following properties:
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– The maximum degree of any vertex in G1 is at most d.

– There is a l-terminal graph G2 with G = G1 ⊕G2.

– G1 contains a non-terminal vertex v such that for all vertices w ∈ V (G1) there
exists a vw-walk v = u1u2 . . . un = w in G1 in which incident edges ui−1ui,
uiui+1 have distance at most d in the adjacency list of ui, for all 1 < i < n.

Due to this definition, there always exist some walks from any inner vertex to arbitrary
other vertices of G1 (via v) which admit this restriction on the distance in the adjacency
lists. We can, obviously, restrict to walks where each edge occurs at most twice; otherwise
an edge would be used twice in the same direction and we can omit the intermediate part.

Consequently, we can find d-discoverable subgraphs by starting at v and exploring walks
using edges at most twice. Of course, this yields the following result:

Lemma 5.1.4. If v ∈ V is a vertex of G and a non-terminal vertex of of some d-
discoverable match G1, then the match can be found from v in time depending only on d
and the size of G1, but not on the size of G.

Therefore, we note that inner vertices in G1 do not only need to have degree ≤ d in G1

but also in G. One can thus find a linear reduction algorithm based on the following
steps.

1. S = {v ∈ V (G)|deg(v) ≤ d}

2. if S 6= ∅ take v ∈ S else return G ∈ I

3. If v is inner vertex of a d-discoverable match G1 to a rule in R, apply the rule to
G else remove v from S

4. continue with step 2

Since both essential steps can be executed in constant time, the runtime depends only
on the number of iteration steps and thus on the number of vertices removed from S.
Initially, there are O(n) vertices; when applying a rule we possibly have to add some of
the terminal vertices as their degree decreases but for each reduction step their number
is O(1). Altogether the execution takes O(n) time.

This seems pretty promising but we have to keep in mind that the constant hidden in
the O-notation is dependent on the number of reduction rules.

5.1.2 Reduction systems for construction properties

For construction properties, we not only need a reduction system but algorithms to
provide the actual solutions. We again characterize construction problems by pairs (D,Q)
in the following way

P(G) = “there is an S ∈ D(G) with Q(G,S) = true ”
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where D is a function mapping a graph G to a corresponding solution domain i.e. a set
of solutions D(G) depending on G and Q is an extended graph property for G and S
i.e. a function mapping the pairs (G,S), S ∈ D(G) to boolean values (see Section 2.1.1).

If we not only provide a (special) reduction system but

• an algorithm AR which, given a reduction rule r = (H1, H2), terminal graphs Gi

isomorphic to Hi, i = 1, 2 and a solution S ∈ D(G2 ⊕ H) with Q(G2 ⊕ H,S),
computes a solution S′ ∈ D(G1 ⊕H) with Q(G1 ⊕H,S′), and

• an algorithm AI which, given a graph G isomorphic to I ∈ I computes a solution
S ∈ D(G),

we could extend the above decision algorithm to a construction algorithm by undoing the
reduction afterwards. If the algorithms above use only constant time this gives a O(n)
time and space construction algorithm.

5.1.3 Reduction systems for optimization problems

For optimization problems induced by a function Φ, we have to use extended reduction
rules that use an additional integer counter. These ruled are called reduction-counter
rules.

Definition 5.1.5. A reduction-counter rule is a pair (r, i), where r is a reduction rule
and i an integer.

A match for (r, i) in a graph G is defined as a match for r in G.

An application of a match (r, i) to a graph G together with an integer counter cnt is an
operation which applies r to G an additionally replaces cnt by cnt+i.

The integer i keeps track of the cost/gain of the reduction i.e. for safe reduction rules
(r, i) we have Φ(G) = Φ(G′) + i for the corresponding optimization property Φ. The
notations and remaining definitions work as for graph properties.

Definition 5.1.6. A reduction-counter system for a graph optimization problem Φ is a
triple (R, I, φ), where R is a finite set of reduction-counter rules which are safe, complete
and decreasing for Φ, I is the set of irreducible graphs with Φ(G) 6= false and φ is a
function mapping graphs G ∈ I to their (optimal) valuation φ(G).

We do not want to go into more details here and refer to [9] for the formal definition.
However, one obtains an algorithm similar to the algorithm by the induced graph property
by just additionally summing up the counter values during the reductions and, at the
end, adding the value φ(G) of the obtained irreducible graph G,

If necessary, a construction of the solutions for the optimization problem can be obtained
in a similar way as it was done for graph problems. The full details can be found in [9].
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In all these cases and even without a full consideration, a (linear) algorithm can be
obtained from a (special) reduction system in a quite intuitive way. We just need to find
a (special) reduction system suitable for our problem and this can actually be done for
a quite huge class of graph and optimization properties on graphs of bounded treewidth
as we will see in the next section.

5.2 Obtaining reduction systems for graphs of bounded
treewidth

In this section, we sketch how special reduction systems can be found for a large number
of graph problems.

5.2.1 Graph properties

For a graph property P, we start by defining a relation ∼P,k on k-terminal graphs,

G ∼P,k H ⇔ (∀K : P (G⊕K)↔ P (H ⊕K)). (5.1)

Definition 5.2.1. A graph property P is of finite index if for every k ≥ 0, the number
of equivalence classes of ∼P,k is finite.

Such finite index properties can actually be solved in linear time on graphs of bounded
treewidth by introducing some special reduction systems.

We just consider refinements of the above relation i.e. related relations where each equiv-
alence class is a subset of one of the equivalence classes of ∼P,k. Of course, if those are
already of finite index, so is ∼P,k. Similarly, one can show:

Lemma 5.2.2. If some graph properties P1 and P2 are of finite index, then the graph
properties Q1 and Q2 defined by Q1(G) = P1(G) ∧ P2(G) and Q2(G) = P1(G) ∨ P2(G)
are also of finite index.

Example (Graphs with bounded treewidth). For G = G1⊕G2, a tree-decomposition of G
can be obtained from tree-decompositions of G1 and G2 by gluing the trees together at
a common root node with vertex set Xr = ∅ and keeping all other sets while identifying
the necessary vertices. Thus, we have tw(G) ≤ max(tw(G1), tw(G2). Anyway, if the
original tree-decompositions were of minimal treewidth, so is the result, because both G1

and G2 can be interpreted as subgraphs. Therefore, tw(G) = max(tw(G1), tw(G2) and
the relations are given by

G ∼TWk,l H ⇔ (∀K : tw(G⊕K) ≤ k ↔ tw(H ⊕K) ≤ k) (5.2)
⇔ (∀K : (tw(G) ≤ k ∧ tw(K) ≤ k)↔ (tw(H) ≤ k ∧ tw(K) ≤ k)).

(5.3)
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Of course, there are just two equivalence classes: the graphs with treewidth ≤ k and
those with treewidth > k, and TWk(G) is of finite index.

Given a finite-index graph property P, we define the property Pk by

Pk(G) = P (G) ∧ TWk(G) (5.4)

By Lemma 5.2.2, this property is again of finite index.

Finally, one obtains the following result.

Theorem 5.2.3. Let P be a graph property and suppose that P is of finite index. For each
k ≥ 1 there exists a special reduction system for Pk. If P is efficiently decidable i.e. there
is a known algorithm deciding P and there is a finite, efficiently decidable refinement ∼l

of ∼P,l for each l ≥ 0, then such a special reduction system can be constructed efficiently.

Proof sketch. For each l ≤ 2(k + 1) and every equivalence class Cl of ∼Pk,l, we check
whether Cl contains open and connected l-terminal graphs with treewidth at most k and,
if possible, we choose a representative H l

Cl
∈ Cl. Consider a fixed value nmin > |H l

C | for
all C and l.

One can show that there exist integers d and nmax with 2(nmin − 1) ≤ nmax ≤ d and
a constant c > 0 such that in each connected graph with treewidth at most k and with
n := |V (G)| > nmin, there are at least [cn] d-discoverable open and connected terminal
graphs H with at most 2(k + 1) terminals and nmin ≤ |V (H)| ≤ nmax. As done in [9],
we use [34] as a reference.

For each l with 0 ≤ l ≤ 2(k+1) and all open l-terminal graphsH with nmin ≤ |H| ≤ nmax

and treewidth at most k we find a graph H ′ with H ∼l H
′ (e.g. the representative) and

add a rule (H,H ′). These are only finitely many because the number of graphs with
restricted number of vertices is finite. Furthermore, we choose

I = {G|G is irreducible ∧G is connected }.

By definition, the reduction system is safe and decreasing. One can also see that we
indeed get a special reduction system. The second condition follows from the above
choice of d and nmax. This also shows that the system is complete.

We can efficiently find such a system by just trying all possible values for nmin until a
suitable value is found because the above process works and is efficient.

Of course, the number of rules in such reductions systems can be quite huge and the time
complexity of the corresponding reduction algorithm is highly dependent on their number.
On the other hand, we notice that we do not even need an actual tree-decomposition
to perform the above construction. That is, why a more efficient parallel variant of the
obtained reduction algorithm sometimes gives efficient algorithms.
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A parallel setting for the above principle is used by Bodlaender and Hagerup in [34]
and their algorithms sometimes even take O(log(n)) time. Even with parallelization,
the most efficient known algorithms for the construction of tree-decompositions still take
O(log2(n)) time (see [34]).

5.2.2 Construction properties

For construction properties, it is not sufficient to just consider equal satisfiability when
defining the equivalence classes. We also need to make sure, that the obtained solutions
correspond.

For this purpose, we consider solutions to be t-vertex-edges-tuples i.e. elements of the
Cartesian product of t sets, which are either V ,E, P(V ) or P(E). This also gives a
natural way to restrict solutions to subsets: we just restrict the corresponding domain!
One defines a compatibility for solutions, which expresses whether solutions can be glued
together.

Definition 5.2.4. Let D be a vertex-edge-tuple, G and H l-terminal graphs and SG and
SH be some partial solutions for G or H respectively. If there is a solution for G ⊕ H
whose restriction to G and H equals SG and SH respectively, then (G,SG) and (H,SH)
are called ⊕-compatible and we denote S = SG ⊕ SH .

Similarly, for l-terminal graphs G1, G2 and corresponding solutions S1, S2 the pairs
(G1, S1) and (G2, S2) are compatible, if for each l-terminal graph H and solution SH for
H the pair (G1, S1) is ⊕-compatible with (H,SH) if and only if (G2, S2) is ⊕-compatible
with (H,SH).

The equivalence relation ∼Q,l for l-terminal graphs G1, G2 and a construction property
Q is, then, defined the following way:

(G1, S1) ∼Q,l (G2, S2)⇔(G1, S1), (G2, S2) are compatible and for all l-terminal
graphs H and corresponding solutions S we have
Q(G1 ⊕H,S1 ⊕ S) ≡ Q(G2 ⊕H,S2 ⊕ S).

Again, we work with refinements and finally obtain:

Theorem 5.2.5. Let P be a construction property defined by (D,Q) and suppose D is
a vertex-edge-tuple. If ∼Q,l has finitely many equivalence classes for each l ≥ 0, then
for each k ≥ 1, there exists a special constructive reduction system (R, I,AR,AI) for Pk

defined by (D,Qk) with Qk(G,S) = Q(G,S) ∧ TWK(G).

We omit the case of optimization problems here. Reduction systems for optimization
problems as well as a study of the parallel variant of the actual reduction algorithm is
given in [9].
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With the mentioned parallel variants, the reduction algorithm takes O(log(n) · log∗(n))
or even O(log(n)) time (depending on the type of parallelization) with O(n) operations
and space.
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Conclusion

We want to conclude by summarizing the observations made throughout this thesis.

The discussed approaches indicate that the treewidth parameter k is indeed a suitable
parameter for parametrized complexity. It not only works well for dynamic-programming
approaches, as discussed in Chapter 3, but it even allows for other methods such as
reduction algorithms which are based on fundamentally different ideas, as observed in
Chapter 5. The parameter k, therefore, seems to reflect the essential structure which
determines the actual complexity of the corresponding graph – at least for some important
computational purposes.

Nevertheless, some constants hidden in the O-notation of the mentioned and related
algorithms are still quite huge. There is still a need for improvements and heuristics with
better performance for treewidth computations for arbitrary, and also for special types of
graphs. However, the diversity of approaches for algorithms based on tree-decompositions
allows for a variety of such improvements. This makes this field an interesting and wide
area for further research.

The author hopes that this thesis raises the readers interest in this area, just as it did
raise her own.
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